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ABSTRACT

Web-based distributed volunteer computing enables scientists to constitute platforms that can be

used for computational tasks by using potentially millions of computers connected to the internet.

It is a widely used approach for many scientific projects, including the analysis of radio signals for

signs of extraterrestrial intelligence and determining the mechanisms of protein folding. User

adoption and clients’ dependence on the desktop software present challenges in volunteer

computing projects. This study presents a web-based volunteer computing framework for

hydrological applications that requires only a web browser to participate in distributed computing

projects. The framework provides distribution and scaling capabilities for projects with user bases of

thousands of volunteers. As a case study, we tested and evaluated the proposed framework with a

large-scale hydrological flood forecasting model.
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INTRODUCTION

With the recent advances in high-resolution sensing and

monitoring capabilities, large-scale spatial and temporal

modeling became computationally challenging and mostly

beyond the capabilities of a single ordinary computer

(Nakada et al. ). Surpassing this limitation is possible

only with high-performance computing (HPC) clusters or a

distributed system of many computers working in parallel.

Distributed systems and computing rely on physically separ-

ate participant computers that make up a large system

(Lamport & Lynch ). Considering, nowadays the com-

puting power is not clustered only in computing centers

(Anderson ), and the distributed systems form an evi-

dentiary opportunity for scientific computing purposes.

Blockchain-based systems, ARPANET (the ancestor of the

internet) and the internet itself, are common examples of

distributed systems (Stone & Bokhari ; Coulouris et al.

). In parallel computing systems, physically separated

computers, or computing instances, carry out computations

for a task as directed by a central system (Culler et al. ).

Similarly, in distributed computing, instances use a distinct

messaging system to work asynchronously with all

instances, with scheduling support from a central system

(Almasi & Gottlieb ).

Forming the base for distributed computing, distributed

systems are widely used in both academia and industry

(Attiya & Welch ). As an efficient way of computation

(Korpela ), distributed computing depends on the com-

putational power of connected instances to solve the

assigned computational tasks (Coulouris et al. ). Conse-

quently, a distributed system is able to achieve tasks that are

beyond the capabilities of a single computing instance. Such

a distributed computing system is considered a volunteer

system when it is comprised of volunteers with capable

devices that contribute to the acceleration of the cumulative

process of the completion of computational tasks needed to

solve the problem (Anderson & Fedak ). In such
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volunteer computing systems, volunteers with idle compu-

tational power within their desktops and portable devices

(smartphones and tablets) take part in a scientific process

of solving problems.

In a regular centralized system, all computation is car-

ried out by a dedicated HPC instance owned by the

computing project’s operator. The HPC instance is, most

of the time, expensive to both setup and maintain. Similarly,

in grid computing or distributed computing without volun-

teer participation, the cardinal factor on the cost becomes

the financing of the infrastructure. In contrast, in volunteer

computing, a project operator only needs to maintain a web

server to form a central authority on the computation

medium, while the computation is done by connected

third-party computers. This nature of distributed voluntary

computing makes it a suitable option for CPU-intensive

tasks (Anderson & Fedak ).

Citizen Science, as a term, describes scenarios in which

people who are not scientists participate or conduct

research. Citizen volunteers and researchers can cooperate

to address and answer scientific questions (Cohn ).

For instance, volunteer test subjects can contribute to

research by providing data (Bonney et al. ; Wiggins &

Crowston ; Fienen & Lowry ; Ferster & Coops

; Jonoski et al. ; Horita et al. ). Volunteers can

even serve as field assistants in scientific efforts (Cohn

). The goal of this study is to enable people to partici-

pate in scientific studies through a web browser by letting

researchers use the idle computational power of their com-

puters. A crowdsourcing-oriented platform provides a

channel for this ‘volunteer computing’ (Granell et al. ).

Thus, a volunteer in volunteer computing is a user with a

computationally capable machine that is connected to the

distributed computation system to let the system use its

resources in various computing tasks. Occasionally, the vol-

unteer is also referred to as the ‘client’, borrowing the term

from web terminology.

Related work

Volunteer computing has been used in many large-scale

scientific projects for more than two decades. One of the

earliest examples of a distributed volunteer computing pro-

ject is the Great Internet Mersenne Prime Search (Durrani

& Shamsi ), which aimed to find Mersenne Prime num-

bers using hardware provided by volunteers. In the early

2000s, the few web-based volunteer computing efforts met

with limited success because of the slow performance of

web systems and the lack of capabilities for multicore and

background process support. One volunteer computing

project known as Bayanihan (Sarmenta & Hirano )

interprets Java usage behaviors on web browsers to create

a distributed computation system. In the same year, a project

called Charlotte (Baratloo et al. ) used web browsers to

create a parallel distributed computing framework.

SETI@Home is an early example of distributed comput-

ing that uses software to access computer’s resources to

work on assigned tasks only when the computer is idle

(Sullivan et al. ). The software was designed as a screen-

saver (Shirts & Pande ) that used volunteer computers

to search for extraterrestrial existence in the universe by

analyzing radio signals that reached Earth as a part of

universal SETI effort. In 2000, the Pande Lab at Stanford

University introduced the Folding@Home project, which

aims to carry out protein folding simulations to enhance

disease research processes. Similar to SETI@Home,

Folding@Home also began as a screensaver (Shirts &

Pande ).

In 2004, researchers released BOINC (Berkeley Open

Infrastructure for Network Computing), an open source gen-

eric framework for volunteer computing (Anderson ).

BOINC consists of two separate entities, one of which

uses the server for centrally managed task distribution,

while the client software uses volunteer computing

resources. Client software enables volunteers to choose a

project from several options on the BOINC framework,

download assigned tasks from the server, and send the

computed results back to the server after computation.

After BOINC was released, distributed computing projects

and studies that involved volunteer participants gained

momentum. Many volunteer computing projects such as

SETI@Home and Folding@Home started to take advantage

of the BOINC infrastructure, including MilkyWay@Home

(Cole et al. ), Rosetta@Home (Das et al. ), and

Einstein@Home (Einstein@Home ). Several studies

also expanded BOINC to different implementation levels,

some of which use BOINC middleware on mobile devices

(Black & Edgar ; Theodoropoulos et al. ) to
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enhance their ability to handle and distribute data (Costa

et al. ).

The first conceptual studies worked on web browsers

(Cappello et al. ; Sarmenta & Hirano ) they were

using Java, which requires a plugin. After many years,

these were followed by studies using the native JavaScript

language (Boldrin et al. ; Cushing et al. ). The

focus of these studies was to use JavaScript to get distributed

data for computation and to have computed results on the

client-side (deThread ). Recent developments in new

JavaScript engines (e.g., V8) and revised web standards

improved JavaScript’s efficiency and enhanced performance

that was close to low-level languages. Early limitations on

web-based distributed computing studies included perform-

ance and multicore support. In 2016, the Atlas framework

was proposed as a solution to the performance problems

of these web systems (Gullapalli ). Atlas’ main contri-

bution was the use of Emscripten (Emscripten ) as

middleware before the computation. Emscripten is a tech-

nology created by Mozilla to compile LLVM bitcode into

JavaScript, with the goal of accelerating the JavaScript

code, bringing it closer to the native computer code.

Emscripten can be used with many programming languages

that can be compiled into LLVM bitcode, such as C and

Cþþ. Besides the conventional computing, the distribution

of computation tasks is done on Blockchain-based systems

as well (Golem ; GridCoin ). While Golem focuses

on renting out idle computing power, GridCoin presents a

way of utilizing BOINC with Blockchain. Even though the

early examples of blockchain centered computing do not

involve browsers, this can be made possible by arranged

implementation choices.

Many distributed computing projects require volunteers

to download the software (Larson et al. ). Volunteers

must install and maintain client software, which raises

privacy and security issues. The use of web browsers that

are pre-installed on most computers rather than custom

standalone applications that have limited cross-platform

compatibility looks like a promising approach. The hetero-

geneous dissemination of different hardware across a large

spectrum is one of the biggest problems in software adap-

tation (Durrani & Shamsi ). JavaScript is the most

widely used scripting language on the web and it works on

a virtual machine within any web browser. A distributed

volunteer computing system based on JavaScript runs on a

web browser and can handle the same tasks that a desktop

framework does without any client software. In this paper,

we present a generic scientific volunteer computing frame-

work, Hydrology@Home, that runs on web browsers and

an evaluation study to demonstrate the capabilities of the

framework with a real-time large-scale hydrological model.

This paper starts with a review of the literature on

distributed computing, volunteer computing, and citizen

science. The Methods section explains the framework for

the server-side as well as the client-side, with corresponding

components and technologies. The Results and Discussion

section includes a case study on hydrological modeling for

the evaluation of the framework with benchmarks and

results that demonstrate the performance and capabilities

of the framework. The paper concludes with a summary of

our objectives and findings, as well as future perspectives

about the distributed computing framework.

METHODS

In this section, we will present the web-based distributed vol-

unteer computing framework and its technical aspects,

explaining the stack and technologies that power the frame-

work and how these technologies use both server-side and

client-side resources.

Framework

The goal of the framework is to be able to distribute any kind

of scientific computing task among participant devices and

logging the computation results. The current version of the

framework expects scientists to generate an analysis or mod-

eling code written in JavaScript to run on volunteer

computers. New web standards (e.g., WebAssembly)

enable the framework to use the native C/Cþþ code

directly in the framework. Computation tasks in the frame-

work rely on inputs (i.e., data and model parameters)

provided to the model code. Input data for the intended

computation task can be integrated directly into the frame-

work by the database connection interfaces to be

distributed to the volunteer computers with computing

subtasks.
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The framework’s infrastructure consists of two major

parts (Figure 1): one that deals with task scheduling and

task distribution on the server-side and another that handles

computations and communication with the server on the

client-side. ‘User interface’ describes the panel volunteers

(or users) use to start participating in scientific computing

tasks. The framework asks users to give their consent to

join a selected scientific effort and contribute computer

time for the project. The volunteer can always revoke this

permission later. Also, users can pause a computation

when they need the computational power for a personal

task, resuming their participation at any time. The frame-

work can be embedded on any website with a single line

of code. This allows researchers to easily enable this frame-

work on websites with a heavy user base (e.g., organization

or university websites).

The framework allows users to select multiple projects

or a single project. The framework will make an on-

demand stress test on the volunteer computer with multiple

threads to understand the multi-CPU configuration of the

volunteer system and to optimize the model runs. This

allows the framework to utilize JavaScript Web Workers

(also known as workers) to run multiple tasks in parallel

on a single volunteer computer. In the framework, each

computation run over a set of parameters is called a task.

When a set of tasks bundled together, they form a job.

Each volunteer system gets a job at one time. The frame-

work can estimate the optimal job size, or in other words,

the optimal number of tasks for each job by a stress test. It

is also possible for the framework to optimize the compu-

tation process depending on the participant device’s

capabilities in terms of data storage, CPU, and GPU time.

The framework requires the user to keep the browser session

active during runs and continue running if the session

breaks and resumes. When starting to run the computation,

besides the recommended values by the stress tests, users

can also provide job size and worker count to the frame-

work. Since each JavaScript worker uses only one CPU

core at one time, contributors who prefer to not to have

all computational power they possess to be utilized by the

framework can limit this utilization by setting the worker

count.

Since each job contains a number of tasks and they are

acquired and sent results by the client when the compu-

tation is done, they do not depend on each other. A

volunteer instance that is set to contribute by taking 10

jobs with 1,000 tasks runs the computation functions with

given parameters 10,000 times (10 × 1,000). In other

words, if 10 different jobs were conveyed to a client one

by one each with 1,000 separate tasks, this client computer

Figure 1 | Architecture of the volunteer distributed computing framework.
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computes 10,000 separate function runs and generates

results.

Project creation

Researchers can create projects using the server-side inter-

faces of the framework. Project creation consists of two

separate steps. The first step is the submission of the compu-

tation code for modeling or analysis of the data. The code is

needed to be written in JavaScript and it should be stored in

the framework’s database. The second step is to define com-

munication methods to provide input data to the framework.

The framework implements communication application

programming interfaces (APIs) for input and output data.

The data are expected to be supplied from a PostgreSQL

database table using these APIs. Each parameter that the

computation function needs must have its own column on

the database table with its respective name that it has on

the JavaScript function’s parameter list.

One important aspect that affects data loading into the

framework is task scheduling. The scheduling system in

the framework needs a priority scheme regarding the data

tables. The scheme provision is optional and depends on

the computation task itself. If the priority scheme is pro-

vided, it must be included in the input data table with an

integer column of ‘priority’ starting from the value ‘0’. This

value represents the level of data entry on a dependency

table. The lower the value of the ‘priority’ column, the

more priority a data entry is given. Thus, the data entries

with a priority value of ‘0’ will be the first to be sent to the

volunteers, and entries with the value of ‘1’ will be second

and so forth. Besides the additional column of ‘priority’,

each data entry also should have a Boolean column in

order to keep track of the completed tasks namely ‘is_com-

pleted’ and an array column of ‘connections’.

The connection between upstream and downstream

nodes in the priority list is established by the ‘connections’

column. This column incorporates an array of indices

which are the IDs of future computation tasks. By using

this connections array, each task can be linked to any

number of future tasks and this information enables the fra-

mework to use outputs of previous tasks as inputs in future

tasks. Output saving to the output table and inserting the

outputs to the input table for future computations handled

by the results mechanism. The results mechanism needs to

be defined using the database connection interfaces that

the framework proposes. The result engine that will be

described in the following subsection uses this interface to

make the project database store the computation outputs.

If outputs of any task will be used as an input for a further

computation task, the column name that the individual out-

puts will be saved within the input table must be specified

within the interface.

After the communication medium between the server-

side of the framework and the data source established via

database interfaces, volunteers are able to load the website

and to start contributing to the project.

Server-side task handling

The stack powering the framework consists of the Linux

operating system, PostgreSQL database management

system, PHP server-side scripting engine, and Apache web

server. PHP is one of the most common web programming

languages for server-side development. PostgreSQL is an

open source database management system that handles

tasks, input datasets, and output from the computation.

The framework runs on Red Hat Enterprise Linux with

Apache 2. Apache is an open source project that enables

developers to serve their web applications. The framework

depends entirely on open source and free systems to facili-

tate reproduction and adaptation by other research groups.

Input data and modeling codes should be stored in a

PostgreSQL database. Once the data are stored in the desig-

nated database and afore-mentioned connections are done,

they are available to be shared with connected volunteer

computing instances.

Task handling on the server essentially relies on three

components of the framework: task engine, result engine,

and web engine (Figure 1). The web engine handles inter-

actions when a user visits the user interface and triggers

the computation. It broadly handles the new volunteer

device and makes arrangements to enable the task engine

to transfer the data and the computation code to the user.

After the web engine initiates the process to enable the

new volunteer client to contribute to the project, the task

engine gathers tasks from the project database based on

their dependencies and their availability. The task engine
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also restricts the assignment of tasks that have any unmet

dependencies to volunteers. After the selection is done,

task engine bundles assigned tasks as a job package, then

it transfers the data and the code to the client. The data con-

sist of parameters and the actual code. Each parameter entry

in its corresponding column from the connected database is

conveyed to the volunteer devices with other parameters.

The term distribution comes into play with the task

engine. The task engine manages all tasks and data distri-

butions to volunteer computing instances. After the client

has processed the data, it sends the results of the analysis,

as a set of task results, to the result engine. The result

engine’s job is to save the computed results to the database

and mark the assigned tasks as completed using the column

‘is_completed’.

All server-side tasks handling within the framework is

done on a first-come-first-served basis. A client computer is

taken to a queue when it makes a request to get tasks.

After the serving for all clients who requested tasks before

them is completed, the computation data they need to con-

tribute to any project are conveyed to them. If there are

fewer tasks on the database than the requested amount,

then all remaining tasks are conveyed to the volunteer com-

puter and the next requests get the message of ‘No tasks

available’ from the server-side until new data are made

available.

Client-side task handling

Client-side task and job management consists of two com-

ponents: the worker library and the computation library.

The worker library is the installation of the framework

that operates JavaScript Web Workers for computations.

The computation library is the core foundation of the infra-

structure that integrates different web technologies to

provide a versatile approach to the computation. The work-

flow of the computation library implicitly depends on the

implementation. For example, the analysis code can be writ-

ten with the latest technologies, such as WebGL which

enables web applications to take advantage of the graphical

processing power of the GPUs. The computation library is

flexible and supports many high- and low-level computation

libraries and technological choices. After the task engine on

the server-side sends the input data and the computation

code to the client, the worker library with the JavaScript

Web Worker implementation on the framework handles

client-side processing. Because the user has already deter-

mined the number of workers and job sizes, the worker

library creates the desired number of workers to share the

tasks. The tasks are sent directly to the client to be distribu-

ted to workers.

Normally, a webpage becomes irresponsive to user inter-

action or interference when a JavaScript code is running on

the page. HTML5 Web Workers enable JavaScript codes to

run in the background while keeping the webpage respon-

sive to the user. With the help of Web Workers,

computational tasks on a web browser run within the Java-

Script Virtual Machine without affecting the interface.

Also, because each worker is created as a separate thread,

tasks assigned and distributed to a computing instance can

easily be computed by the independent workers, i.e.,

threads. This approach enables the framework to use mul-

tiple cores simultaneously for different tasks. It should be

noted that all created web workers work on the same job

at any given time.

The data sent from the server to the client by the task

engine must be stored on the client-side for an organized

and orderly computation process. The framework uses

IndexedDB, a transactional database that handles large-

scale data on the web browser. After the task engine

pushes the data that will be used in distributed tasks, the

Web Worker script stores them locally on an IndexedDB

database. After the data are stored, the tasks within a job

are randomly distributed to the workers, the computation

begins, and all data are drawn from this new local Index-

edDB to workers. Computed results are also saved to the

same storage to be pushed back to the server, i.e., result

engine. This structure allows local organization and schedul-

ing of the tasks and handles interruption and resumption of

the computing session on the client-side. After all tasks in

the IndexedDB are completed, the client-side of the frame-

work can either ask for a job or terminate the connection

with the server-side.

Interrupted and corrupted task handling

The above-mentioned distribution, computation, and com-

munication pipeline assume that all parts of the framework
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do their defined jobs properly. However, since the client-side

cannot be completely managed by the framework itself,

there are some overhauling mechanisms within the frame-

work for cases that the client-side fails to convey the

expected output. When volunteer computer disconnects

from the server-side of the framework by browser window

closure, the server-side still waits some time for the response

from the client. If the response that includes computation

results is not issued within a time interval that is defined

by the project admin, the tasks assigned are not marked as

complete on the database. Incomplete tasks are later sent

to new volunteer instances by being taken into account in

the regular scheduling system.

Another problem that may occur on the client-side is that

malevolent attempts can bemade through regular API routes

of the framework using client computers. For instance, com-

putations can be simulated to be seen as the right results by

the server-side while not providing actual computation

results. This potential problem can be surpassed by validating

the results by distributing the same tasks to multiple random

volunteer instances but with each extra validation task, the

overall computation time increases. Consequently, the

advantages of using a distributed approachmay be lost if vali-

dation is overdone. Nevertheless, the framework presented

in this paper enables researchers to define a validation

threshold for distributed tasks via the scheduling system. It

can be zero or a non-zero value, and this decision is left to

the project administrator.

Case study on hydrological modeling

The Iowa Flood Information System (IFIS) was developed at

the Iowa Flood Center (Demir & Krajewski ; Krajewski

et al. ) using a generalized water cyberinfrastructure.

The IFIS is based on an integrated and extensible architec-

ture that allows researchers, instructors, and students to

create custom cyberinfrastructures for their own research

projects and curriculum (Jones et al. ; Sermet &

Demir ; Weber et al. ), enabling reproducible scien-

tific workflows (Duffy et al. ; Gil et al. ). The IFIS

features many data management, scientific visualization,

and communication tools, as well as data resources to facili-

tate flood risk management and research at the watershed

scale (Demir & Beck ; Demir et al. , , ).

The Iowa Flood Center operates a real-time, HPC-

based flood forecasting model (Cunha et al. ; Small

et al. ). This model transforms the rainfall from the

climate projections and provides quantitative stage and

discharge forecasts and a 10-day flood risk outlook in

the IFIS for more than 1,500 locations in Iowa (e.g., com-

munities and stream gauges). It is a distributed model

running on HPC (Quintero et al. ; Krajewski et al.

) that builds on the concept of the landscape

decomposition into hillslopes and channels (Mantilla &

Gupta ). The mass transport equations for each hill-

slope in the network are defined as a power law relation

describing flow velocity as a function of discharge and

drainage area (Ayalew & Krajewski ). Details about

the model equations, configuration, and numerical solver

are provided in Quintero et al. () and Krajewski

et al. (). The model runs for more than 600,000 hill-

slopes in Iowa (Figure 2). These hillslopes consist of 10

dependency levels and scheduling was done by this

order of dependency (Table 1). Each level in dependency

needs previous levels to be computed before being sent to

the volunteer instances. Each independent task focuses on

a single hillslope and needs minimal data transfer of 5–10

kilobytes. Running such a comprehensive model in an

operational setting requires extensive resources for data

processing, computation, and communication of results.

Operational systems like the IFIS can benefit from the

proposed framework to distribute computations for its

operational flood forecasting model to its large userbase.

We used a simplified version of this hydrological model

for the case study to understand the scalability and per-

formance of the volunteer computing framework. The

model is simplified to reduce the data needs but not

affect the computational evaluation of distributed com-

puting. Simplification is only done on the system

parameters to minimize the effort on data preparation

for the case study. Average values are used at the hillslope

level for these parameters instead of unique values. The

simplifications are implemented in a way to not affect

the computation and data transfer complexity for objec-

tive evaluation of the performance of the framework.

This framework will allow volunteers to contribute to

hydrological research and applications from their homes,

as in the case study on flood forecasting.
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RESULTS AND DISCUSSIONS

As a part of the evaluation and testing of the distributed

computing framework, we carried out several tests to

better understand the performance and robustness of the

framework. We evaluated the performance of the frame-

work and the model separately. Because the initial model

implementation will be in JavaScript, we wrote the

model’s code in both JavaScript and C language to compare

the performance of the JavaScript engine (e.g., V8) on web

browsers to the native code. To carry out this test, we pre-

pared a script to run both codes in JS and C languages

1,000 times each and to return the time elapsed to execute

the model code with data. According to these results,

C-based code performed twice as fast as JS code. This

shows promise for web-based computing based on Java-

Script and implementation using new technologies (e.g.,

WebAssembly) that will enable native C code to run on

web systems close to the speed of desktop-level

computations.

Since browsers do not allow a webpage to run a script in

the background when the tab is closed on the client compu-

ter, the computation process could be interrupted suddenly

without notice. This would interrupt the volunteer comput-

ing project. The framework can handle such interruptions

and continue where it left off when the user returns to the

page. One solution uses browser extensions to fully elimin-

ate interruption and allow clients to continue running

even after the browser is closed. The extension can easily

be installed in the client browser when the user visits the

project website.

Another challenge we encountered when running the

model and testing the framework was about data and task

dependencies of the specific model used. Some models

might have a prioritized hierarchy for the computation of

certain tasks. Thus, the next steps of the computations

need the results of prior computations. When a lack of

data is experienced in the model, volunteers will need to

wait until new data become available for computation.

This is more common for hydrological applications in

which computations from upstream nodes are required by

downstream nodes. Priority scheduling of the tasks by

prioritizing tasks from upstream nodes to the volunteer

computing instances can reduce the dependency and

improve the time-efficiency of the computations.

Table 1 | Dependency layers and their respective hillslope numbers

Level number Number of hillslopes

0 318,205

1 140,975

2 76,002

3 41,496

4 23,837

5 10,867

6 5,582

7 2,423

8 763

9 22

Figure 2 | Computational tasks for 620,172 individual hillslopes (left) and 1,500 points of interests reporting model results (right).

242 R. Agliamzanov et al. | Hydrology@Home – distributed volunteer computing for hydrological research Journal of Hydroinformatics | 22.2 | 2020

Downloaded from http://iwaponline.com/jh/article-pdf/22/2/235/665560/jh0220235.pdf
by guest
on 16 August 2022



Because the idea of distributed computing using volun-

teer instances depends on data transfers, a reliable data

transfer process is crucial. Even though the internet pro-

vides a proper medium for such interactions, the data size

creates a limitation in a system that heavily depends on

these transfer operations. Thus, in this study, we selected

the use case; these limitations and data transfer processes

were optimized for this use case’s needs. Considering the

trade-off and effects on total run time, web-based volunteer

computing systems are more suitable for computationally

intensive tasks and studies with limited or low data needs.

Benchmarks with the model and framework

We conducted various tests to evaluate the server and

client communication in terms of performance and

timing and to observe the behavior of the framework

and the model. We used a moderate client system for

tests with Intel(R) Core(TM) i5-4258U CPU @ 2.40 GHz.

Selected tests and their goals can be listed as follows: (a)

tests with a single client and different numbers of workers

and job size combinations to understand the performance

changes; (b) tests to measure average and total elapsed

time by each step of the computation; (c) performance

on the utilization of separate browser windows versus the

utilization of workers on one browser window; (d) tests

with only job size changes on the same client to observe

the linearity of the performance gains when job size is

increased; (e) tests with the heterogeneity of clients to

evaluate the performance of both the client and the

server; and (f) server performance when multiple clients

are connected to the server to evaluate the task retrieving

durations as the number of clients increased.

In the case study, we defined each task as solving rain-

fall–runoff model equations for a hillslope (watershed) for

discharge predictions. Test results for different numbers of

jobs and job size combinations (a) and elapsed times for

each step of the process (b) can be seen in Figure 3. These

tests are conducted using a client computer with a two-

core CPU (Intel(R) Core(TM) i5-4258U CPU @ 2.40 GHz).

Our benchmarks showed that an increase in worker count

did not dramatically decrease the computation time elapsed.

Nevertheless, there is an indisputable improvement when

the worker number is increased. This parallel increase

continues until the CPU cannot handle the number of

workers selected.

In another test (c), when the client computer uses two

different browser windows instead of two separate

workers within a single window, the efficiency increases

steadily in terms of time. This discrepancy can be linked

with threading of the selected web browser (e.g., chro-

mium-based) used in the tests because of its JavaScript

Engine (e.g., V8). Another client test (d) focuses on

retrieving tasks and sending results – when the total

number of tasks being computed is kept at 10,000 and

the job size is increased (in result the number of jobs is

decreased), the total elapsed time while tasks were being

fetched by the client decreases. This is basically because

the data for each hillslope are small and the network over-

head requires more time than processing the data itself.

The trade-off between job size and elapsed time starts to

become trivial when job size is set to 2,500. It is not prac-

tical to choose small job sizes with the goal of enhancing

efficiency because retrieving tasks and sending results for

smaller job sizes increase network overhead. We rec-

ommend a job size that is neither too small nor too big

for a distributed computing project that works on the

framework.

We carried out heterogeneity tests (e) to see if frame-

work-related issues could affect the performance of clients

with a variety of hardware and software combinations.

Because the computation code provided runs on JavaScript

Virtual Machine, the main performance limitation is due to

having a non-native code. Depending on the JavaScript

engine, browser selection can also affect the performance

of the framework. We conducted tests with several

modern browsers and achieved mixed performance results.

There is no strong candidate for the best web browser

and/or engine selection. The operating system choice has

a limited or minor effect on the performance. A major and

inherent limitation is the hardware components including

CPU- and GPU-based on the computation engine structure.

In particular, the volunteer computers’ CPU speed and cores

affect the performance of the computation and the number

of workers that the computer can handle concurrently.

The geographic location of the volunteer is a natural

obstacle for data transfer in retrieving tasks and sending

results, but not an essential problem in most cases. Network
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connection is another bottleneck for an overall voluntary

computation process.

The server’s ability to handle users concurrently is the

only factor that depends on the server specifications and

the framework code itself. Tests conducted (f) with multiple

clients simultaneously requesting tasks does not produce a

significant overhead on the server and its efficacy in the

task distribution process. Besides the server’s scaling abil-

ities, we also tested the scalability of the framework by

utilizing an open source load test tool (i.e., Locust ).

Tests were done by concurrent and swarmed users as well.

A Locust file was created containing possible scenarios

within the framework with different job sizes (e.g., 100,

200, 500, and 1,000), number of jobs (e.g., 10, 50, and

100), and worker counts (e.g., 1, 2, and 4). Different num-

bers of users (e.g., 100, 500, 1,000, and 2,000) were tested

on the framework’s server-side abilities, and consequently,

we clearly saw that framework was successful at handling

various swarming rates. The success rate of the made

requests to the framework starts to decrease at the swarming

rate of 200 users per second.

Finally, we made a test run in operational settings for the

entire system with seven computers that have various speci-

fications utilizing various numbers of workers (Table 2). For

simplicity, the job sizes for every computer were kept fixed

at 1,000 tasks at a time, and when there were less than

1,000 tasks remaining at the server-side, all remaining

tasks were conveyed to the requesting party without trying

Figure 3 | Elapsed time for each step of the task management process and several worker counts.
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to fulfill the requested job size. There were no specified

number of jobs and all machines were run until no other

tasks have remained on the database. It should also be

noted that the validation mechanism was not used for this

experiment and all computers were assumed as trusted

volunteers.

The time required for the overall process (task retrie-

val, computations on the client, and sending results to

the server) varies based on the computer. The model

used in the framework runs with data for a total of

620,172 hillslopes in the State of Iowa with 10 levels of

dependencies (Table 1). Task distribution and the compu-

tation were started with the first level of dependency

(Level 0), and any following level was not initiated

while there are still unfinished tasks at a previous level.

For this case study that needs to compute 620,172 tasks,

working with a user base of seven volunteer computers

with various hardware, software, and network capabilities,

the model was solved approximately in 11 min (exactly

661.02 s) for the entire case study. During the compu-

tation, the number of tasks left on the database

decreased near-linearly.

To understand both the performance constraints and

scalability of the framework, we also ran separate simu-

lations with 20, 30, 50, 70, and 100 volunteer computers

identical to the Computer 1 in Table 2 each contributing

two workers. These simulations took 280.2, 187.1, 115.8,

80.1, and 62.3 s to finish all hillslope computations, respect-

ively. It should be noted that the simulation may not reflect

the real-world settings completely but considering that the

framework is able to handle up to 200 requests per

second, it nevertheless provides concise remarks about the

performance of the framework.

It warrants mention that the use case we selected for test

purposes in this study relies on a time-sensitive task; time-

sensitive tasks need to be done almost simultaneously. By

its very nature, distributed volunteer computing depends

on the number of participants, and this may be a drawback.

Nevertheless, we expect to have more participants when

flood prediction models are needed most due to extreme

weather events and when it is important to finalize all com-

putations. Because of this fact, the volunteer computing

systems can be used more efficiently when it is more impor-

tant to have intended computations made without any time

Table 2 | Computers used in the experiment, their utilized CPUs, worker counts, and time-wise performance for each of them for a job with the job size of 1,000

Computer CPU Worker count Elapsed time for 1,000 tasks (ms)

Computer 1 Intel(R) Core(TM)

i5� 4258U CPU

@ 2.40 GHz

2 8,909.3

Computer 2 Intel(R) Core(TM)

i7� 2600 CPU

@ 3.40 GHz

2 6,435.3

Computer 3 Intel(R) Core(TM)

i7� 2600 CPU

@ 3.40 GHz

4 6,186.5

Computer 4 Intel(R) Core(TM)

i5� 6200U CPU

@ 2.30 GHz

2 6,928.8

Computer 5 Intel(R) Core(TM)

i7 860 CPU

@ 2.80 GHz

2 9,586.9

Computer 6 Intel(R) Core(TM)

i7� 7700HQ CPU

@ 2.80 GHz

4 6,363.7

Computer 7 Intel(R) Core(TM)

i7� 6800 K CPU

@ 3.40 GHz

4 9,216.8
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constraints. Even though the limited number of volunteer

participants seems to be crucial for the success of such a dis-

tributed volunteer computing task, as mentioned earlier, the

required number of volunteers for this study can easily be

met through user base of the IFIS (over 300,000 unique

users as of December 2018).

CONCLUSIONS

The main goal of this study is to develop a web-based volun-

tary scientific computing framework and a platform with the

capability to use multiple cores and take advantage of low-

level technologies to enhance computation speeds. There

are many computational approaches such as grid computing

and cloud computing to achieve the similar goals to distri-

bute the computational load to multiple nodes. These

approaches can provide more stable environment than dis-

tributed volunteer computing with regard to accessibility

of the computational power. However, relative low cost of

the distributed volunteer computing makes it a favorable

choice for non-time-sensitive scientific computing tasks.

Subsequently, time-sensitive tasks such as running a flood

forecasting model on recent measurements still can be

done by distributed volunteer computing via operational

web systems with large user bases. The web-based nature

of the proposed framework makes it easy for any researcher

to adapt the framework and use for their project and utilize

existing user base of their labs or institutes with limited

effort.

While the framework is specialized to work efficiently

with hydrologic computational tasks, it is also designed for

use by scientists from other disciplines. The model chosen

for the study allows easy parallelization of the tasks and is

large enough to be used as an example for a distributed com-

puting project. This browser-based approach provides easy

adaptation and maintenance for both project managers

and volunteers. The results of performance tests suggest

that the framework is capable of handling scientific compu-

tation tasks and scales efficiently with multicore systems and

multiple users. The hierarchical dependency structure of the

models or data can be handled at the server level during

scheduling. The framework empowers the use of low-level

computing and programming technologies, which provides

a significant improvement in computational performance.

Since the overhead caused by large numbers of volunteers

is shown to be not significant empirically, the work here

has inferred that web browsers and usage of computation-

ally capable devices around the world can facilitate the

participation of volunteers in scientific efforts, including

data processing and modeling.

Our large-scale hydrological case study shows that the

framework can even handle an operational real-time

system using a limited number of volunteer computers, sup-

porting flood prediction efforts for disaster preparedness.

Although it is not ideal or recommended to rely on volun-

teer computing for operational systems, this case study

shows the potential of the framework for resource-

constrained communities. The current version of the

framework can run with models and analysis written in

JavaScript, and codes powered by WebAssembly and

compiled by Emscripten. This allows a significant improve-

ment in the performance of the framework as new

technologies are allowed in web-based systems. The web-

based nature of the platform will enable new capabilities

without updating the client-side software. The generic struc-

ture of the framework also allows researchers to use the

framework for any distributable scientific task by loading

their model and datasets to the framework by creating com-

munication medium as mentioned in the Project Creation

subsection under Methods. Besides being open to any

web-based low-level technology implementations over

JavaScript, it is worth mentioning that the framework pre-

sented here can be extended by implementing it in a

serverless decentralized fashion as a future perspective. As

another potential future work on the framework, in order

to ensure data security and discard possible malware attacks

on the server, a medium could be implemented between the

user and the server to have the users sign their outputs with

a unique key given to them.
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