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llYDRCMA.GNETIC EQUILIBRIUM OF A THIN-SKIN, FINITE-BETA TOROIDAL PlASMA COLUMN 

I. INTRODUCTION 

by 

J. L. Johnson, R. L. Morse, w. B. Riesenfeld 

ABSTRACT 

This report presents an analytic approach to describing the 

toroidal equilibrium of a finite-beta plasma column in the 

hydromagnetic approximation. The thickness of the sheath 

region separating the plasma from the confining magnetic 

field is assumed to be negligibly small compared to all 

other dimensions (the "thin-skin" approximation). The de

viations of this sharp interface from a toroidal cylinder 

shape are treated by perturbation theory,·a procedure which 

is shown to be consistent with the usual series expansion in 

powers of reciprocal aspect ratio. This analytic formulation 

has the merit of providing engineering design estimates for 

the auxiliary external current strengths required in a toroidal 

theta-pinch device (Scyllac) to compensate for toroidal drifts 

and provide an equilibrium configuration for a finite-beta 

plasma. The auxiliary fields are superp?S:i. tions of azimuthally 

modulated multipole fields applied in addition to an azimuthal 

modulation component of the main toroidally directed theta

pinch field. It is shown that the presence of this latter 

component is necessary for a. convergent superposition. 

A ma.;or problem in the design of plasma exper

ments using toroidal configurations, such as the 

toroidal Scyllac device,1 is to construct coils 

such that equilibrium can exist. Much work has 

been done on this problem using a simple hydromag

netic model for low-~ systems with magnetic shear0
•
3 

(here ~ refers to the ratio of plasma particle pres

sure to the pressure, B2 /8rr, of the confining mag

netic field, B). The analysis of high-~ systems, 

in which the plasma currents generate magnetic 

fields of the same order of magnitude as the exter

nally applied fields, poses special difficulties 

with respect to both the equilibrium and the stab

.ility aspects of the problem. A major achievement 

in the analysis of toroidal high-~ devices was the 

demonstration, by construction4 and by calculation, 5 

that there exists an equilibrium unity-~ plasma 

with a sharp boundary separating the plasma from 

the field. Although this type of configuration can 

be successfully investigated by numerical· tech-· 

niques,
6 

engineering design is greatly facilitated 

by an analytic formulation. This .report provides 

such a study, incorporating'simplifying approxima

tions where demanded by analytical tractabiiity 

3 



without excessively compromising the engineering de

sign implications. 

We restrict the discussion to systems in which 

.all magnetic field lines close upon themselves af

ter azimuthally traversing the torus. The·hydro

magneti~ equilibrium p~oblem consists of finding 

solutions of the system of equations 

and 

.... 1 .... 
j = 

4
rc curl B, 

(1) 

(2) 

with closed toroidal, constant-pressure surfaces, 

where p is the plasma pressure, j the electric cur

rent density, and B the magnetic_.i;ield as a function 

of position. Equation (1) determines the component 

of current density, j , perpendicular to the magnet-
J. 

ic field: 

(3) 

Let us consider a flux tube (a bundle of·neighboring 

field lines) whose nearly rectangular cross section 

is depicted in Fig. 1. 

P- 8_P 
' 4! 

Fig. 1. Cross section of a fluX tube wit~ the mag
netic field directed out of the plane of the dia
gram. 

4 

The magnetic field has an i"nstantaneous direction 

perpendicular to the plane of the diagram and point

ing toward the reader. The pressure gradient, ~p, 

is a vector which, according to Eq. (l),must lie in 

the plane of the diagram; hence we may choose two 

_opposite bounding surfaces of. the. flux tube to be 

·neighboring constant-pressure surfaces correspond• 

ing to pressures p + (5p/2) and p - (5p/2), re

spectively. Since j is a vector perpendic.ular ·to 
.... .... J. 

both ~p .and B, we choose the remaining two bound-

aries of the flux tube to have their outward nor

mals parallel and antiparallel to j , respectively, 
J. 

Let d£ be the differential of length along a field 

line, Then the area, dS, of the upper boundary in 

Fig~· 1 corresponding to a thickness, d£, along the 

field liries is given by 

The current flowing into the flux tube across this 

boundary is, according to Eq, (3), given by 

j . dS = .&1. ...§E.._ d£ 
J. B l~pl 

5p d£ 
B 

(4) 

Hence the total current, 5!, flowing into the flux 

tube is obtained by taki.n.e thP. U.ne integral of Eq, 

(4) along the total length of the (closed) field 

lines: 

5I 
5 .r. d£ 

p :r B • (5) 

The current flowing out of the flux tube .has iden

tical form except that the integral is evaluated a

long a field line at the bottom boundary of Fig,, 1. 

But the steady-state equilibrium.condition oemanos 

that there be no net charge buildup in any flux. tube. 

This condition can be .. satisfied··only by demanding 

that.·the quantity 5I/5p = f· dt/B. be constant on a 

constant-pressure surface: 

f :£ = f :£ (p) • (6:) 

Conversely, since a surface of constant f dt/B. is a 

a constant 5I/5p.surface, and since the current den-



sity is always normal to the pressure gradient, it 

follows from the conservation of current that such 

a surface is also a constant-pressure surface: 

p p (& :£) 

Thus, in equilibrium, the surfaces of constant 

pressure coincide with the surfaces of constant 

§ dt/B. 7 

(7) 

Substitution of Eq. (2) into Eq. (1) yields 

the condition 

(8) 

i.e. the volume forces on the left-hand side of the 

equation, describing the compression of plasma and 

field·, must balance the tension along the field 

lines.8 The absolute value of the right-hand side 

of Eq. (8) may be simply expressed in terms of the 

local radius of curvature, P, of the field lines: 

........ ""'I B2 I (B • V)B = - • 
p 

(9) 

When there is a transition layer of thickn:ess t:. 

separating plasma and field, the magnetic contribu

tion from the left-hand side of Eq. (8) is of order 

B 2 /8~t:.. The ratio of these terms is therefore given 

by 

(10) 

Hence, in the limit where there is a sharp discon

Linuity in rhe plasma and field pressures, i.e., 

when there exists a sharp interface between plasma 

and field, the right-hand side of Eq. (8) does not 

contribute and the equation may be integrated to 

yield the jump c::nndition acrooc the constant-§ .dt/D 

interface, 

8~p, (11) 

where Bout and Bin are the field magnitudes just out~ 

side and inside of the interface. 

The general hydrolllRgnet,i.c toroidal squilibrium 

problem consists of finding solutions of' Eqs. (7) 

and (8) with toroidal constant-pressure surfaces. 

We restrict ourselves to the more tractable problem 

of constant plasma pressure except for a jump dis

continuity across a mathematically thin boundary 

surface, so that Eq. (11) can be used. Since Meyer 

and Schmidt4 have sho~ that such a "thin-skin" 

equilibrium exists, our purpose is to provide a 

guide for an explicit engineering design of such a 

configuration. 

The major difficulty is that in a toroidal de

vice the azimuthal field is inversely proportional 

to the radial distance from the toroidal major axis, 

so that the constant-~· dMB surfaces would be cyl

inders concentric with the major axis and thus 

would not close on themselves within the machine·. 

This problem is overcome in low-~ Stellarators and 

pinches by providing a rotational transform2
•

3 

so that the magnetic field lines curve around a 

cl~sed magnetic axis and thus form surfaces on 

which the pressure is constant. In systems with 

closed field lines, additional magnetic fields must 

be applied to ripple the field lines so that the 

.inner lines tvith higher values of magnetic field are 

lengthened and the constant-§ d£/B surfaces are 

changed into toroids. 

It is convenient to work in the coordinate 

system illustrated in Fig. 2, whic.h is an orthogo

nal curvilinear system ha.ving a differential ele

ment of Ji~tance d£ given by 

. ----,--
/ MINOR AXI$7 

/ OF TORUS L 

---

Fig. 2, Toroidal coordinate system. 

5 



(12} 

From the form of the metric it is evident that the 

.z-coordinate is not the usual cylindrical coordi

nate; however, in the limit of large aspect ratio, 

aiR- 0, the coordinates reduce to the·cylindri~al 

system (here R is the major radius of the torus and 

a is some relevant minor radius, such as the radius 

of the unperturbed toroidal plasma boundary). While 

this coordinate system does not yield separable sol

utions for the r'igorous toroidal harmonics, it is 

nevertheless. very suitable for car·rying out pertur

bation calculations with aiR as an expansion para

meter. The construction of the various differential 

vector operators is straightforward.9 The gradient· 

operator, for example, is of the form 

where e ' ee, and e are unit vectors along the cor-
r z· 

r.esponding coordinate directions. 

To make analytical progress, we assume that the 

aspect ratio is large and.retain terms only to first 

order in aiR. The only rippling fields which can be 

applied by external conductors to counteract the ef

fects of toroidal curvature without destroying the 

closure of the field lines must be periodic func

tionc of z, say B(o) (r.,R). sinkz, where the ~uper
script refer.; to ripple field components pruduciug 

field line excursions of order 5, and k ·= 2rriA is 

the azimuthal wavenumber corresponding to wavelength 

A. .Since the torus can accommodate only an inte-gral 

·number of wavelengths, k is a ~iscrete parameter 

given by 

k 
6 

s R, s integer· • (14) 

To first order in aiR, the curvature term in Bz 

which must be overcome is proportional to a cosB/R 

and ·is independent of z: . 

where_B(o) is a constant field intensity of zeroth 

order in aiR. If we superpose this field with a 

ripple component B(B) and impose the equilibrium 

6 

. ) 

condition by demanding the constancy .of B2 (or f~£./B) 

over the plasma surfac.e, r .= a, then the z-independ

e~t term in B2 imrnedi~tely forces us to an ordering 

(16) 

Furthermore, the magnetic field outside of the plas~ 
. ) 

rna is irrotational so that it can be represented as 

a gradient of a scalar potential satisfying the 

Laplace equation. These circumstances lead to the 

consideration of a model in which the field external 

to the plasma is given by 

B(r, e, z> = 

cos (.te + a.s) _cos (ksz + y ) 
"' :ts 

(17) 

Here I.t and K.t are the modified Bessel functions of 

integral order .t, and from Eq. (16) 'it follows that 

(18) 

The parameters a, a, y, y are constant ph~ses whose 

inclusion is demanded by generality but for which we 

ultimately shall make appropriate choices. In Sec

tions II, III, and IV we assuine 'that there is ·no mag

netic field inside the plasma surface, which repre

sents the case of a perfectly diamagnetic, unit:y-.f3 

plasma. In Section V we treat the more general case 

of arbitrary ll in which field .penetrates into the 

plasma. ~n the latter case, we still retain·the 

;'thin-skin" approximation so that the plasma pres

sure is constant within a boundary surface, and 

plasma currents are surface currents flowing on t~e 

boundary. The internal field .is .then given by .an 

expression similar to Eqs. (17) and (18} except that 

all n:fs> coefficients are set equal t·o zero. Since 

I.t(ksr) is .regular at r = 0 and becomes large as 

r - "'• Whereas K. (k r} is singular at r = 0 and falls 
"' s (1) 

off for large r_, the C n terms represent fields ·ere-
. ...s 



ated by currents in external conductors while the 

D~)terms are generated by the plasma itself. 

It is convenient to introduce a dimensionless 

parameter 

- (k a)2 K,(k a) • 
s "" s 

(19) 

For the configurations treated, we shall see that 

aois is the distortion amplitude of the surface of 

discontinuity generated by the ripple field compon

ent associated with i and s. The ordering of Eq. 

(18) asserts that 

(20) 

A perturbation theory with a/R as expansion paramet

er is therefore by necessity also a perturbation 

theor.y i.n 5is' Fr.om the form of Eqs. (17), (18), 

and (13) it is evident that we have included terms 

of first order in a/R in the azimuthal field compon

ent B but have omitted such curvature corrections 
z 

from the peloidal components represented by the stun 

over i and s. The reason is that the present calcu

lation will be limited to second-order terms in ois 

while the neglected terms are, according to Eq. (20), 

of third ord~u in 5 is. Th!i form of the BIOI termo io 

well known,10 , 11 however, and the latter could, in 

principle, be included in a higher-order calculation 

~~ithout difficulty. 

Our task, then, is to determine the relations 

which must exist between the C(
1

) D~) similar 
is ' is ' 

higher-order fie:lu:;;, and the aspect Lal:lo such Lhat 

Eqs. (7) and (11) are satisfied. In Section II we 

illustrate the technique by calculating the shape of 

the boundary surface for an unperturbed straight 

plasma cylinder with all C~~) and D~~) equal to zero 

except for the term with i = 0 and ks = k. In this 

rase we. may, withr,>ut los& of generality, iiet th4i 

phases a , y , a , and y equal to zero. We consid-
o 0 0 0 

er the toroidal, unity-p problem ii"t 3e.::t.i.ou III, aud 

in Section IV we show that a solution, convergent 

with respect tu the stun uver i, can be found. A 

discussion of the more general toroidal equilibritun 

in which a magnetic field exists inside the plasma,. 

so that~ is arbitrary, is presented in Section V. 

Itl 3ectio" VI we estimate the lflagLt.i.Lud., uf Lit., cUL'• 

rents necessary to generate the field. 

II. THE BUMPY, UNITY-BETA CYLINDER EQUILIBRIUM 

We seek solutions of Eqs. (7) and (11) for a 

cylindrical plasma coltunn of unperturbed radius a, 

subject only to an i = 0 rippling field. The mag

netic field external to the plasma is then given by 

B = B(o)~ ~z + ~ [c<1
\

0
(kr) + D(

1
)K

0
(kr)J coskz 

(21) 

+ L D(
2

)K (2kr) sin 2kz + ••• / 
2k o I 

where the gradient operator is cyl~ndrical and the 

coefficient D (?. \s of order [c (1 
>J • The particular 

choice of the second-order field will be justified 

a posteriori. 

To zeroth order our surface of discontinuity is 

a cylinder r(o) =a. We obtain the equation of the 

surface to first order by integrating the differen

tial equation of motion of a field line, 

(22) 

obtaining 

r(z) =a+~ [c( 1 )I~(ka) + D(
1
)K~ (ka)J sinkz + ... 

(23) 

for a field line which passes thro~gh r = a at z = 0. 

The priines on the Bessel functions denote derivatives 

with respect to the argtunent kr. 

We next evaluate the magnetic pressure B2 (r,z) 

on this surface and adjust the coefficients C(1
) and 

D(
1

)so that it is constant. To second order in our 

expansion pil.r.amP.tP.; WA obt.;;dn 

B2 = B(o)
2 

{ 1- 2 [c(1
)I

0
(ka) + D(

1
)K

0
(ka)J sinkz 

2k(r- a) [c( 1 )I~(ka) + D( 1 )K~(ka)J sinkz 

+ 2D(
2

)K (2ka) cos 2kz (24) 
0 

2 

+ [c(1
)I

0
(ka) + D(

1
)K

0
(ka)J sin2 kz 

2 

+ [c (1 ) I~ (ka) + D (
1 )K~ (ka)} cos2 kz + ••• } 

The term containing (r - a) arises from a Taylor

series expansion about the zeroth-order surface; the 

form for this quantity is given by Eq. (23). Clear

ly B2 cannot be constant on th~· surface unless 

7 



I (ka) (l) _o __ C • 
· K

0 
(ka) 

(25) 

By substituting Eqs. (23) and (25) into Eq. (24), 

we obtain 

where L is a periodicity length which, in the pres

ent case of an infinitely long cylinder, replaces 

the length of a closed field line. Eq, (31) tells 

(l )~ 
c o o o o a 

[

I' (ka)K (ka) - i (ka)K
1 (ka)Ja 

K (ka) (cos kz 
0 

We simplify this expression, as well as the form of 

Eq. (23}, by using the Wronskian relation1 a 

(2 7) 

Use of Eqs. (25) and (27) in Eq, (23) yields, for 

the amplitude of field line excursions in units of 

radius a, an expression 

5 
0 

(28) 

which has precisely the form of Eq. (19}. By making 

use of obvious trigonometric identities and by choos

ing 

(29) 

we may express the magnetic pressure on the surface 

in the form 

(30} 

which is constant. An arbitrary combinatfon of sec

ond-order ·c(2)and D(a)terms could equally weli have 

been chosen to eliminate the cos 2kz dependence. The 

particular choice above requires no contribution from 

second-order externally imposed fields. Instead, the 

second-order correction is generated by plasma cur

rents set up by the pressure imbalance on the uncor

rected plasma surface, and .thus is taken care of 11 by 

nature," Such a conclusion, of course, relies tac

itly on the stability of the equilibrium configura-

tion. 

To show that this surface and field configura

tion satisfies Eq. (7), we evaluate§ d~/B, using 

Eqs. (21), (23), (25), (21), and (29): 

J.' dB~ L 
:r = B(o} [ 

1 a a J 1 + 2 (ka) 50 + .... (31) 

8 

us that.f d~/B is identical for all field lines ly

ing on the surface of the bympy cylinder. Thus the 

surface is simultaneously a constant-pressure and a 

constant-f d~/B surface, satisfying the equilibrium 

condition of Eq. (7), While the constancy off d~/B 

in the present example is a trivial consequence of 

cylindrical symmetry, the analogous result for the 

toroidal cases will be a crucial feature of our so

lution •. 

III. THE TOROIDAL, UNITY-BETA PLASMA COLUMN EQUI

LIBRIUM 

We next analyze a toroidal plasma column with 

completely excluded field, corresponding to a unfty

~ value. The superposition of rippling fields will 

. be of the general form described by Eq. (17). The 

procedure outlined in the Introduction depends upon 

the generatio·n of terms in the magnetic pressure, B2
, 

which compensate the a cos B/R terms a~sociated with 

toroidal curvature. It is clear that such a cancel

lation can be achieved by mixing terms with ~ = 0 

and ~ = 1; the z-independent part of the interference 

·ttonn between these two contributions has exactly the 

desired properties. But in superposing these t\vO 

terms we automatically introduce cos 2e contribu

tions, which in turn must be compensated by an i = 2 

term. The latter generates cos 3e and cos 4B de

pendences which then must be cancelled by higher ~

value fields, etc. In this fashion we obtain an in

finite system of coupled algebraic equations for our 

field line excursion parameters, o~s' of Eq. (19). 

Our secondary expansion technique, descr1be·d in Sec

tion IV, will be consistent only if we succeed in 

finding a solution having a rapidly converging se.t 

of parameters o~s as ~ increases, so that the reten

tion of only the first few terms will provide a 

practical solution of suffi~ient accuracy. 

In this section we perform an analysis for the 

toroidal case analogous to that of Section II for 

the straight cylinder. The resulting infinite sys

tem of equations for the excursion parameters is 



solved in Section IV, where it is shown that the 

t = 0, 1, superposition does, indeed, lead to 

convergence, From an engineering standpoint, it 

would be desirable to omit the t = 0 field (for 

which one pays a relatively high price in energy 

because of the work done in compressing the plasma) 

and to use a superposition starting from.£.= 1, 

The equilibrium analysis for this case can still be 

done, but it also can be shown that the resulting 

set of ots ·has constant-magnitude contributions 

from terms of arbitrarily high £,, This does not 

necessarily mean that such a configuration is phy

sically impossible; it merely means that the mathe-· 

matical requirements for handling it are beyond the 

scope of our present expansion technique. 

We consider the field given by Eq, (17) with 

additional ni:>contributions properly chosen to can

cel the terms sinusoidal in z which arise in the ex

pression for the magnetic presourc, The procedure 

is identical to that illustrated in the example of 

the preceding section, We again restrict our atten

tion to configurations in which the unperturbed, 

zeroth-order surface of discontinuity corresponds 

to a toroidal cylinder r(o) =a, It is clear ~hat 

to first order in ots the magnetic pressure B
2 

will 

vary as we move along a line of force unless we re

strict consiriP>:<1tion to Holda with 

a 
ts 

a . 
ts' y ts y ts (32) 

and 

. (1) It(ksa) c (1) 
Dts Kt(ksa) ts 

(33) 

the last being a generalization of Eq, (25), The 

differential equations of motion for the field lines 

are of the form 

(34) 

By substituting the form of Eq. (17) for the field 

components and using Eqs. (32), (33), and (27), we 

obtain the equation for the field lines up to first 

order in our expansion parameter: 

"' 

Here ots is given by Eq. (19), and the constants of 

integration were chosen such that the field line 

passes through r = a, e = e
0 

when z = z
0

, Evalua

tion of B2 on the first-order perturbed surface, 

Eq, (35), leads to the expression 

B' ",(o)' -~ + 2a :oe00 

- t L L L ksazotsomt 

t=O m=O s,t 

cos {te
0 

+ ats} cos (me
0 

+ amt) 

l (2k - k > cos r<k - k > z + v. 
s t L s t ~s - Jmt] (36) 

- 2ks cos(ksz - ktzo + Yts - ymt) 

+ ''• ooe(k,• + k,a0 + Yta + Ymc)! + nf,\,~) 

The various constant parameters which appear in Eq. 

(36) can be chosen to make the magnetic pressure· 

·independent of z. The last two cosine terms in

volving z
0 

(the ''initial condition" terms) can be 

eliminated by choosing ktzo + ymt to be integral 

multiples of 1l f.or all pairs of indices m and t. 

Without loss of generality we can take z
0 

= 0 and 

for simjJlicity set all y = 0. Clearly the second-
(z) mt 

order Dts terms, which are quadratic in the ots am.-

plitudes, can be chosen to compensate for the re

maining·z-dependent terms in Eq, (36), i.e., for all 

terms except cos 1Ck
9

- kt)z] with~= t. Thio pro· 

cedure is completely analogous to the one which led 

tu Eq. (29) for the D(Z)coefficient in the cylindri

cal analysis, Hence nothing is gained by super

posing external fields with two or more periodici

ties in z, We simplify Eq. (36) by restricting the 

summation to a single k
5 

value and by droppi.ne the 

subscript, s, which has now become superfluous (the 

value of k is still governed hy Eq. (llo), of course): 

r· "'a+ aLL bts cos(,e(;l
0 

+ Cti.s) Ls:!n(ks7. + Y;,s) - oin(ltsno I yts)]; 1:) e 
0 

(35) 

t=O s 
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( 

2r cose 
1 + 0 

R ~cos 
(37) 

If two terms with t = 0 and t = 1 were present, _theri one could set the als equal to zero a~d take 

5 0 ~ 2/k2
Ra to eliminate the cos e

0 
dependence. Then the oi term would introduce a cos 2e

0 
variation. 

An t 2 contribution can be introduced to cancel this term, thereby generating cos 3e and cos 4e varia-
q 0 

tions which must be compensated in turn. Fortunately, as.shown in the next section, the series converges 

rapidly enough so. that orily a few terms should be needed for a reasonable given limit on the magnetic.pres

sure fluctuations. 

To complete the proof of unity-~, hydromagnetic equiliprium, we n~ed to show that the construction 

which makes B2 constant on the surface of discontinuity also causes ~ dt/B to be constant, i.e., .independent 

of e • That this is indeed the case follows from direct evaluation: 
0 

2n:R 
B (o) 

2a cose 
0 

R 

dz 
B 

z 

CD CD 

+ (k:t L L ol>m {cos [<t - m)e~ +at - am] 
t=O m=O 

+ oo, [<t + m)9
0 
+ a, + "ml } + •.• ) • 

IV, DETERMINATION OF FIELDS FOR THE TOROIDAL, UNITY-BETA PLASMA COLUMN 

(38) 

The determination of the equilibrium field reduces, in view .o~ Eq. (19), to the c~lculation of a set 

of ols such that the expression 

4 cose 
CD CD 

:=: .(eo) - _.,.._..;.;.n - J. 
.k"'aR '2' 

(39) 

which .occurs in both Eqs. (37) and (38),.becomes independent of e
0

• For simplicity we have set all the at 

phases equal to zero. In this section we show how to find such a· set for engineering design. 

We assume that multipul~ fields of all orders t ar.e present, and that the dominant cancellation of the 

4 cos e c/k2 aR term will arise from the interference of t = 0 and t = 1 fields. Tu make 3:(0~) independent of 

e
0 

we demand that the coefficient of ~ach cos ne
0 

term, n = 1, 2, 3, ••.• , vanish. This leads to the follow

ing infinite set·of coupled equations for the ot: 

0 ' 

0 ' (40) 

.o 

o, 

10 



where the last line represents the general condition 

that the coefficient of cos ne
0 

vanish for arbitrary 

n > 1. Let us assume that ~ is small compared to 

5
0 

so that we may introduce a small ordering para

meter, e:: 

~=e:<<l. 
0 

(41) 

A systematic way of solving the set of coupled equa

tions (40) consists of making an a priori assumption 

" that 5'-/5
0 

e: Then the set of equations may be 

solved up to a given order in e: by neglecting higher

order terms in a given equation and by truncating 

the system of equations at the line in which each of 

the terms exceeds the given order in e:. Our system 

of equations then becomes finite, with the number of 

unknown quantities, 5'-/5
0

, equal to the number of 

equations. Finally, une may verify that the solu

tion obtained in this fashion indeed has the proper-

'-ty 5'-/5
0 

- e: and converges as one goes to higher 

order in e:. 

To. illustrate, let us solve Eqs. (40) to the 

lowest few orders in e:. To first order, we keep 

only ~/5 0 , neglect~. Bs, ... ' and cut off the 

system at the first equation: 

4 
25o51 = k2 aR 

This has the solution 

(42) 

o. 

The ordering parameter, e:, is therefore equal to 

2/k2 aR52
, and the field line excurRion parameter, 

u 

5
0

, may be arbitrarily chosen subject only to the 

constraint e: < < 1. If the plasma pressure, p, is 

prescribed, howeve:J:, then, according to Eq. (11), 5
0 

satisfies the relationship 

and, consequently, 

e: = !!. 
R 

1 
(43)' 

1 -

It should be noted, however, that we could have in-

serted a constant B -field of second order in. the 
z 

5's into Eq. (17) 

and chosen its relative magnitude E(
2

) to be arbi

trary. By adjusting E(
2

)we could then have removed 

this constraint. Physically, this corresponds to a 

Je-current balancing the secono-order term. We 

shall follow such a procedure in the more general 

development of Section V, as is evidenced by the · 

form of. E~. (47). 

To second or9er in e:, we keep only 51/50 and 

~/5 0 , neglect 5s, 54 , ••• , and truncate the sys

tem at the second equation: 

~of + 250~ = 0 

This has the solution 

~ = 2 
5 k

2 
aR52 

' 
0 0 

2 

~ 

- ( k 2 ~R5~) (44) -g-= 
0 

5s 54 o. 

The quantity ~/5 0 experiences no second-order cor

rections. There is a third-order correction to 

~/G 0 , huwever, as may be seen by constructing the 

solution for ~/5 0 , ~/5 0 , and 5s/5o up tci third 

order in e:: 

1 
+-

2 

~= (45) 
0 

3 

~ = (k 2 a~5~) 

Continuing in this fashion, it is easy to see that 

the dominant contribution to each 5'-/5
0 

is of the 

f -~- ' '£ . i . Th orm cte , JUSt:.. ·y:..ng our a pr on. assumption. e 

constants c'- satisfy the recursion relations 

ll 



(46) 

With c1 = 1, it is easy to obtain the ci,s in sequence. Thus ca = '- 1/4, c3 = 1/8~ c4 = - 5/64, · cs 7/12.8, 

etc. The coefficients decrease so rapidly that our series for the field converges rapidly even when e is' 

not infinitesimal compared to unity. For example, e as 'large as 3/4 still produces rapid convergence. 

Since it is difficult, because of·energy considerations, to use coils which provide a large £ = 0 

field, the question arises whether one might develop a similar formulation with the toroidal curvature term 

compensated mainly by an interference between£ =·1 and£= 2 fields. The straightforward series expansion 

does not converge in this case, even when Ba/~ is asstmted small. In fact, cine can· show that 5a ""' -· 54 ·,.,' 5s. 

so that convergence is impossible. As we pointed out in the preceding section, this d·oes not necessar

ily mean that such a configuration does not exist; it.means that our expansion technique cannot be applied 

usefully. 

V. TOROIDAL EQUILIBRIUM FOR ARBITRARY BETA 

In this section we generalize the analysis of Sections II at:td IV to the. case in which the magnetic 

field does not vanish inside the plasma, so that the beta, is arbitrary. We ,retain, howeyer, the. "thin-skin" 

asstmtption for the structure .of the interface between the plasma and the external field. 

We seek an equilibritmt in which the plasma it~ !Jouru.led by a surface r(O,z) • a + 5a(8,z) + ••• 1 where 

we take oa to be zero when z is zero. Inside this surface the plasma pressure is constant, and the .inter

nal magnetic field is given by 

.... 
B. 

1n 
'fj ~z ( 1 + E (2 ) ) + l ~ A (

1 
) I (kr) 

k.L..J£ £ 

£=0 

00 

cos£8 coskz + ~k LAi
2

)I£(2kr) cos£8 sin 

£=0 

(47) 

where we have explicitly retained a second-order correction, E~~ to the unmodulated part of the azimuthal 

field component. For the magnetic field outside of the plasma we write 

B (.::.) 
out ~ I z + l ~ [c(l)i (kr) + D(l) K (kr)J 

k L..J ! £ J J 

00 

2: 
£=0 

£=0 

D (:a )K (2kr) cos.ee sin 2kz + •.. 
£ £ 

cos£tl cos kz 

(48) 

We might have kept a superposition of fields with different wave ntmtbers and phases, but the discussion of 

Sections II and III shows that Eqs •. (47) and (48).are sufficiently general. It is convenient to define the 

plasma beta as 

-~ 
13 = (o)~ ' 

Bout 

(49) 

and to introduce the notation 

(5,0) 

The pressure balance condition of. Eq. (11) across the perturbed surface becomes, to first order in the rip

ple amplitude oa, 

(51} 

12 



\ 

(52) 

By integrating the differential equations (34) for the field lines just inside and just outside of the plas

ma boundary, we can relate our fields to the shape of th~ boundary. We find that 

where 

Ba(9,z) =a L 
t=O 

5 coste sin kz, 
t 

5 n L A (l ) I 1 (k ) 
"' ka t t a ' 

The pressure balance, Eq. (52),may therefore be rewritten in the form 

Equations (54) and (55) furnish a complete specification of the first-order fields in terms of 5t: 

ka5t 

I' (ka) ·, 
t 

(ka)
2

5tKt (ka{l - (1 - ll) 
It (ka)K~ (ka) J 
I 

1 
(ka)K. (ka) ' 

t t 

(53). 

(54) 

(55) 

(56) 

These formulas constitute the generalizations of Eqs. (19) and (33) for the arbitrary-!! case, We note that 

the fields satisfy the requirement that the normal component be continuous across the boundary. The normal 

component, being given to first order in 5t by the cxpre.ssion Dr - Bz ka ) Bt coste cos kz, vanishes on 

each side of the boundary because of Eq. (54). · ~ 

To construct the equations which couple the various 5~s we must examine the pressure balance condition 

to second order. As before,· the equality involves two classes of terms, those independent of z and those 

which V~FY as sin 2kz. Clearly, the A i:a) and D ~
2

) coefficients can be chosen to compensate the sinusoi.clA 1 

terms ·and, at the same time, keep the normal field component continuous across the boundary. Then the pres

sure balance condition reduces to 

l [1 + (1- ll)(tm + ~a 2 )I(.e)I(m)J 

cos (t + m)e ~ ' 

which is the generalization of Eq, (37) for the arbitrary-!! caoe. 

cos (t -. m)e 

(57) 

The second-order correction field, E(:a), can be_ chosen to satisfy the 9-independent part of Eq. (57). 

The 5~s can then be adjusted to cancel the case, cos29, ••• terms, 

For the equilibria of. interes_t, we. have ka < 1, and nothing is lost by retaining only the lowest-order 

terms in the small-argument expansion of the Bessel functions 

It (x) + ... J . (58). 
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From Eq. (50) .we find the approximate relations 

I (o) "' 2 
- (ka) 2 

and '(5,9~ 

I(£)"' l · (£I 0). 
- £ 

Eguation :(57) then reduces to the following infinite se·t .of coupled ·equations for .the o:es: 

"' 
2(3 - 2p)o 0 ~ + (2 - p) 2:-o.e.8.e+l 

£=1 "' 

4 

~ 

t P of + 2 (2 - P) Bo~ + (2 - P) ~ 8£8 £+2 

~ (5 - 2p) o0 5s + p~~ + (2 - p) t 8£5£+3 

£.=1 "' 

0 

= 0 

i p~ + (3 - p)80 54 + p~ 5s + (2 - p) L 8£8£+4 

£=1 

n-1 

L 8£8n-£ + 
£=1 

(2 ~ p) 

0 ' 

"' 
0. 

:(6'0') 

. ,. 

This .set of equations reduces to Eq. (40) for p = L We may systematically solve this .sys.tem in ·precisely 
'£, 

•the same way that we solved Eq. (40), by introducing an ordering pararne.ter., .e;, cSuch .that 8£./'00 "" e and 

c;alculating to any desired order in e. Thus, to .third order we obtain the .solution 

~= 
0. 

[ 
1 + 2 (3-2p)3 1k2 aRo~) 2 

] 

~ =- (2-P><3-2P>r<k~aRtP>'~ 

2 

T,hese solutions reduce to those of Eq. (45) when p 

s.olutions exist if 8 vanishes, 
0 

.(6i) 

1. Again it is possib'le to ·show .thac .r;o ·convergent 

To quantitatively understand the magnitudes involved, in ·the ,graphs of Fig. 3 we plot values of :~/5 0 
and ~/8 0 as functions of 8

0
, with two values of P as a .parameter.. The curves are obtained on ·the basis •Of 

r,easonabl.e toroidal s·cyllac design values, R = 250 ern and .a = 0,:75 ·em, :and the results are shown .for az·imu-

thal wavelengths A 

In Table I we 

and ~(in units of 

p 1.0 

p o. 75 

14 

= 21.6 ern and A = 13.5 ern, 

list corresponding values 

a dimensionless Br(£ 1) 

" 

of 0 (in 
0 

amplitude 

units· of a dimension1ess Bz (£=0) alllpli.tude on axi.s) 

on axis). 

TABLE I. Typical Values ·Of 8
0 

and 8
1 

A = 21.6 ·Cm A "" 13.5 ·Clll 

8 /B 
z (.e=O) 

8
1 /Br {£=1~ 8 /B 

z(£.=0~ ~ /Br'(£=1) 0 .o 

12.49 9.42 6.59 6.24 

1. 76 7.43 1.62 ·4.87 
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VI. CURRENT SOURCE STRENGTHS 

Although experimental techniques should be used to determine the precise values of the externally ap

plie d currents necessary to generate the rippling fields, it seems worthwhile to make analytical estimates 

not only to obtain general design information but also to check how rapid the series convergence discusse d 

in the last two sections really is. 

In order to obtain a ripple component, ots' on the plasma boundary, we must impose an external field 

of the form 

( ) C • s 
B 0 v N 

k 
s 

(62) 

Let us assume that we accomplish this by means of surface currents on a shell of radius p >a. The field 

exte rna l to the shell due to this current sheet is of the form 

(63) 

The boundary conditions at r = P are that the normal cOmponent of the magnetic field must be continuous and 

that the jump in the tangential component be proporti6nal to the linear surface current density. Thus, 

using Eq. (19) for Cts and the Wronskian relation Eq. (27), we obtain the surface current density 

coste sink z - e 
s z 

The coefficient in Eq. (63) is given by the relation 

(ksa)
2 

ots Kt (ksa)I~ (ks p) 

K~ (ks p) 

_L 
k p 

s 

(64) 

'(65) 

The currents of Eq. (64) can be qnitP l"rgP, e~p<>r-ialiy if al P i::i om.J.lL If k/' is su.Ciit.!ientiy small 

that the small-argument limit can be used for the Bessel fnn,t i nns, then \ve obtain 

4rrt (
_ap ) t (e ,.., coste sinksz - e _L . te k . ) 

0 
z k P s~n cos sz 

s 
t f. o. 

Thus, the multipole currents do not form a diverging sequence in t , provided that 

0
t s 

0 
OS 

a requirement which can be satisfied by the restriction 

(6 7) 

.(68) 

We note that the current necessary to generate the field of Eq. (56) for the general toroidal case i:s 
given by 

[ 1 - (1 - ~) It(ka)K~~ka? J ( eo cos te sinkz - ez kt p 
It (ka)Kt (ka) o 

sint e coskz). 
. ~ 

(69) 

16 



VII. DISCUSSION 

We have constructed an analytic series solu

tion of the hydromagnetic equilibrium equations for 

a plasma with a sharp surface confined in a bumpy 

torus. For a system of large aspect ratio, and bul

ges of short wavelength, the series converges very 

rapidly and only the first few t values (say up to 

t = 2) should be needed. An uncomfortable feature 

of our results is that an t = 0 field is indispen

sable; such a field, implying compression of field 

and plasma, costs much more energy to set up than 

the higher t fields, which merely distort the sur

face. From a physical standpoint, however, a sys

tem without the t "' 0 cotllponent is not excluded, 

even though it cannot be treated by perturbations 

about a toroidal cylinder. If the surfaces of con

stant § dt/B were not circular at z = 0 but had fi

nite ellipticity, then the latter could partially 

compensate . for the. of and Ba· terms which are pro

portional to cos ze, and, thus, a configuration 

without t = 0 fields might exist. The ellipticity 

is necessarily so large that our expansion technique 

becomes inapplicable. A more suitable method might 

be the formulation of the 'entire problem in terms of 

separable toroidal-elliptical coordinates, a most 

formidable mathematical undertaking. 

More serious reservations are in order relative 

to the highly idealized nature of our model. in PR•

t1cular the thin-skin assumption which was dictated 

by the demands of mathe~tical tractability. Tech

niques for an analytic solution of the toroidal, 

high-beta, diffuse equilibrium problem are not known 

at present, especially if a realistic self-consist

ent treatment of the particle orbits ann rharge ocp

aration f.ields is to be provided. 

A third, and crucial, reservation must be made 

concerning the stability of our equilibrium config

uration. The self-adjustment of the'column to 'pro

vide the ~orrect Dia) z-dependent fields, for exam

ple, is predicated upon the equilibrium's being sta

ble. While our configuration can be made stable 

against generRl magnetohydrodynamic interchanges, 

locali?.ed b~llooning moues are known to develop in 

the unfavorable region of the bumps, and a normal 

mode analysis has been made for the modes of higher· 

m-number.13 The question of stability with respect· 

to a rigid outward (m = 1) displacement is open, but 

Haas a1:1<:1 Wessnn14 have shown Lhat n rel;~ted conUs~ 

uration is unstable. Haas and Wesson16 have found 

that dynamic stabilization is helpful but its effi

cacy is not yet understood. The subject of micro

instabilities for a more realistic plasma model is 

untouched. 
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