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Hydromagnetic Instability in a Stellarator

By M. D. Kruskal,* J. L. Johnson,{ M. B. Gottlieb* and L. M. Goldmanj

Kruskal and Tuck? (in a paper hereafter referred to
as KT) have examined the influence of a longitudinal
magnetic field on the instabilities of the pinch effect.
The pinch effect is the confinement of a thin column
of plasma by means of the magnetic field due to a high
current discharge along the column. Instabilities in
the form of lateral “buckling’ of the column (in the
absence of a longitudinal field) have been predicted
theoretically 2 and are well known experimentally.

In KT it was noted that when there is a uniform
externally imposed longitudinal field much larger than
the field of the discharge current, one should expect
instabilities in the form of a lateral displacement of
the plasma column into a helix of large pitch. At the
wavelength of fastest growth the e-folding time
approximates the time it takes a sound wave in the
plasma to traverse the radius of the plasma column.
In successive sections we (a) re-examine this pro-
blem under the conditions which might be expected
to occur in the stellarator during ohmic heating, in-
cluding the presence of external conductors; (b) apply
this theory to the stellarator; (¢) show that the ex-
ternal conductors are in fact unimportant; () discuss
the important effects due to the finite length of the
machine; (¢) consider the effects of more general
current distributions; and {f) give the relevant
experimental results.

It should be emphasized that the considerations of
this paper apply only to stellarators in which the
rotational transform3 results from the large scale
geometry of the tube (such as a Figure 8 shape)
rather than from small local perturbation coils (such
as helical windings). It is perhaps worth noting that
the theoretical results of the following four sections
are given in less condensed form elsewhere;4 the
appearance of instability and the dependence of the
critical current, both on the confining field and on
the direction of the plasma current, were predicted in
this earlier work well in advance of the experimental
confirmation.

INFINITE CYLINDER THEORY

We start with the analysis of pinch instability
under the conditions considered in KT, but now
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additionally taking into account the effect of a thin
cylindrical sheet conductor coaxial with the plasma.
Familiarity with KT is assumed.

The material pressure, density and velocity of the
plasma are denoted by #, p, and v, the magnetic and
electric fields by B and E, the current and charge
densities by j and ¢, the permeability and permittivity
of space by wp and «o, and the ratio of specific heats
by y. (We employ MKS units throughout.) The
equations we use for the interior of the plasma
(treated as infinitely conductive) are Eqgs. (1) through
(8) of KT.

At an interface between plasma and vacuum, n
denotes the unit normal to the surface, directed into
the plasma; u, the normal velocity of the surface; j*
and e*, the surface current density and surface charge
density; brackets, the jump in the enclosed quantity
upon crossing the surface from the vacuum into the
plasma; a bar under a quantity, the arithmetic mean
of the values of that quantity on each side of the sur-
face; and subscripts P and V, respective values on the
plasma and vacuum sides of the interface. The
equations we use at the interface are Eqgs. (9) through
(14) of KT.

Suppose we have a sheet of solid material of small
thickness, 8, fixed in space with vacuum on both sides.
Let o be the volume conductivity of the material and
7 a characteristic time for the phenomena to be
considered. If 8 is much less than the penetration
distance (r/ugo)? of the material, the thickness may
be disregarded and the sheet treated as a surface of
surface conductivity o* = ¢%, With the same notation
as at an interface, our equations at the sheet are then

nx[B] = ugj*, (1)
n-[B] =0, )
nx[E] =0, 3)
n - [E] = ¥k, (4)
E—nn-E = j*/o¥%, (5)

We use cylindrical coordinates 7, 8, z. Consider the
following situation (Fig. 1). Inside the infinite cylinder
7 = 7o we have a uniform plasma with p = pq, p = pq,
v=0,B=B;=0,B,=Bp,E=0,j=0, ¢ = 0.
Outside the cylinder 7 = 7y is a vacuum in which
By =0, By= Byrofr, B, =By, E=0. On the
cylindrical interface 7 = 7p we have 7;* = 0, j5* = 71,
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Ja* = Jo¥, €* =0. At v =71>7p there is a fixed
cylindrical thin material sheet of surface conductivity
a* on which j* = 0, e* = 0. This will be an equili-
brium situation (time-independent solution) if the
constants 79, 71, o, po, Bo, Bre, Bv, jo*, 71*, and o*
satisfy

Bg = pojo*, — By = pof1¥,
Bo2+ By2— Bp? = 2ugpo. (6)

We now seek solutions of our equations which are
close to the equilibrium solution just described. We
suppose that every physical quantity is equal to its
equilibrium value plus a small perturbation term. We
consider all our equations as equations for these per-
turbation quantities and linearize them in the usual
way. We obtain a system of algebraic and differential
equations, linear and homogeneous, with 7, 6, 2, and ¢
as independent variables. The coefficients are obvi-
ously independent of 8, z, and /. Any solution of the
equations may therefore be obtained as a super-
position of elementary solutions, an elementary solu-
tion being one in which each dependent variable is a
function of 7 only (or, in the case of sheet quantities,
a constant) multiplied by exp{émf+ikz+ wt), where
m, k, and w are constants, the characteristic constants
of the elementary solution. We may therefore restrict
ourselves to a search for the elementary solutions. To
make physical sense we must require that # be an
integer and that % be real. Without loss of generality
we may assume that # is non-negative.

We next change our notation, each symbol which
originally denoted a physical quantity now denoting
the coefficient of the exponential in the representation
of the perturbation of that quantity. Our equations
become linear homogeneous algebraic and ordinary
differential equations for these coefficients. We intro-
duce the constants

§2 = ypo/po, I = Brzl,uopo

2
£ =+,

= 1/poko,

2 = k45 +h2, (7)

w
= B+ +h2, 2 = B2+
where ¢, s, and % are the velocities of light, sound,
and hydromagnetic waves, respectively. The general
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Figure 1. Equilibrium configuration

regular solution of the equations for the plasma is
given by Eqgs. (19) of KT in terms of an arbitrary
constant p1. (Jm is the mth order Bessel function of
first kind and [’ its derivative with respect to its
argument; [, and [’ are here always evaluated for
the argument ir£y/(.)

The equations for the vacuum are (4) through (7)
of KT with j = 0 and e = 0. For the region 7>7#;
(outside the fixed conductor) the general regular
solution is given by Egs. (23) of KT in terms of
arbitrary constants By and E;. (Hy, is the mth order
Hankel function of first kind and H,,’ its derivative
with respect to its argument; H,, and H,,’ are here
always evaluated for the argument #y7.)

In the general solution for the vacuum region,
ro<7 <7y (between the plasma and the fixed conduc-
tor), we have each magnetic and electric field com-
ponent given as a sum of two expressions, one the
same as in Egs. (23) of KT except for having B; and E;
replaced by new constants Bz and Ej, and the other
again the same except that B and E; are replaced by
new constants Ba and Eg and at the same time H,,
and H,," are replaced by [, and Jx' (both evaluated
for the argument 7).

We now have the solution everywhere expressed in
terms of the seven so far arbitrary constants, 1, By,
Ej, By, Es, Bg, and E3. We obtain relations between
these from the interface and boundary conditions.
From Conditions (9) through (14) of KT we obtain
(only) three independent relations between g1, B,
and E;. From Conditions (1) through (5) we obtain
four independent relations between all the constants
except #1. Thus we have seven linear homogeneous
equations for the seven coefficient constants. The con-
dition that these equations have a non-trivial solution
(i.e., that the determinant of their coefficients vanishes)
lea.ds to the characteristic equation, which must
be satisfied by the characteristic constants of any
elementary solution.

We now make the approximation of infinite light
velocity by taking g = 0. We are interested only in
unstable solutions, i.e., solutions for which w has a
positive real part, and we assume that w is real. It
can be proved5 (at least for ¢* either zero or infinite)
that this is no restriction, i.e., that all unstable modes
have w real. Introducing the dimensionless constants
ap = BP/B(), oy = By/Bp and the functions

= (po/2D0)70w, X = (2po/po)iuoc*
] m(@y) _ Hp(ty)
m (1)) m’ (0)
Mnlyo 1) = Hm_(z—_y;)fm )’

the (approximate) characteristic equation is
[ep2y0®+ (1 +av?—~ap?) WEKn(x) = 14 (avyotm)?

L (yO) _ M'm,(yo, yl)[Km(yO) — Lm(yO)]
x { " 1—Mun(yo, Y1) + (ro/r1) }
X [(y12 4+m2) | ZWK m(y1) — Lin(¥1)]

©)
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where the plus or minus sign is to be chosen according
to whether % is positive or negative, and where

Yo = |klro, y1 = |k|r1,

2 = {ee+emm

y ap?o®+ (1 + av®—ap?) W2 }%.
ap?yo?+[1+av@+ (2—y)apdfy]W2

(10)

Numerically, [m(2y) and J»'(¢y) are monotonically
increasing functions of y, and Hx(ty) and Hy'(7y) are
monotonically decreasing functions of y. Since yg<y1
it follows that 0 <M p(ve, ¥1) < 1. Also, Kp(y) >0 and
Lm(y)<0. We thus see that the second term in the
braces on the right-hand side of Eq. (9), which term
we shall denote by U, is negative, as is the first term
Lu(yo). The left-hand side of Eq. (9) is a monotoni-
cally increasing function of W, at least for W very small,
very large, and in the neighborhood of its largest value
satisfying Eq. (9), and very likely for all values. In any
case, it can be proved easily that the largest value of W
for which the left-hand side of Eq. (9) has a prescribed
value is a monotonically non-decreasing function of
that prescribed value. Now characteristic Eq. (9)
differs from the corresponding equation for the same
equilibrium situation without the conducting sheet at
7 = 7, (namely Eq. (30) of KT) only in the presence
of the term U. It follows, consequently, that the
presence of the conducting sheet has, quite generally,
the effect of diminishing the rate of instability,
As was to be expected, U-+0 as X 0 or as
71— co. In the latter case, U — 0 very quickly since
both functions Hp'(¢y1) and 1/],'(év1) go to zero
exponentially.

As pointed out earlier, Egs. (1) through (5) are
valid if the thickness § of the shell is much less than
the penetration distance, (7/ugo)?, of the shell material,
7 being a characteristic time for the phenomena under
consideration. With the shell in the form of a cylinder
of inner radius 71, we can, under rough assumptions,
determine corresponding equations for the opposite
limiting case when 8> (7/ugo)t. We take for granted
that (r/upo)i<r1. We do not know a priori the dis-
tribution of induced eddy currents in the shell, but we
assume, for the sake of having something definite to
compute, that it is purely in the #-direction. This
current distribution turns out to have a characteristic
decay time of about {771(7/uge)~ >+. Therefore there
is no appreciable decay during lengths of time of

interest, and the shell may be treated as a perfectly .

conducting sheet, with a radius perhaps exceeding 7,
by something of the order of the penetration distance.
Thus, with appropriate values of 71 and ¢*, Egs.
(1) through (5) may still be considered to hold. The
validity of this argument is of course questionable
because of the arbitrariness in the choice of the current
distribution, but in any case the stabilizing action of
the shell must be less than it would be for a perfect
conductor, which can be treated as a sheet at
radius 7;.

APPLICATION

We now wish to apply our theory to the stellarator.
One idealization we make is to ignore the curvature
of the stellarator and to treat it instead as if it were
straightened out to form a right circular cylinder.
Since the stellarator has finite length and the present
theory deals with an infinite cylinder, one must impose
some periodicity condition, to be discussed later.

Another idealization is to treat the plasma in the
stellarator as a uniform plasma with all current on the
surface. The effect of modifying this assumption is
also discussed later.

The equilibrium situation of the theory would seem
to represent reasonably well the expected conditions
in the stellarator during ohmic heating if we take
Bp = By to represent the confining field, Za7gjo* to
represent the induced plasma current, and the sheet
at 7 = #; to represent any coaxial cylindrical con-
ductor, such as accelerating or confining field windings,
or the stainless steel discharge tube. In the stellarator
the longitudinal confining field is much larger than the
maximum field produced by the plasma current,
hence we have |a| > 1, where a = ap = ay. It is
shown in KT that in this limiting case the only in-
stability is for m = 1, to which case we now confine
our investigation.

It is not hard to show that if we are to obtain a real
positive solution W of Eq. (9) we must have yo <€ 1
(i.e.,  small), ke < 0, W not too large, and x < 1.
Since#1(0) = 1, L1(0) = —1, and (for yo and y; small)
Mi( o, ¥1) % 702712, Eq. (9) becomes asymptotically

Y2+ W2
= 1— (Y —1)2{1 +25W/[EW (a2 —1)+ 2]}, (11)

where
a = rifro. (12)

If X is finite, Eq. (11) has a positive real solution W
only for 0 < Y < 1; for Y — 0 we find W & 22Y/2,
while for Y -1 we find W ~ [2(1-Y)}5. If 2 = oo,
it has a positive real solution only for a=2 < Y < 1;
for Y—»>a2 we find W x [2(Y —22)]}, while for
Y -1 we have W x [2(1—7)]? as before. In any
case, the maximum value of W and the value of Y for
which it is attained satisfy, Eqgs. (11) and (13):

2Y = —2(Y - {1 +2ZW/[EW(a>—~1)+2a}}, (13)

Y = I“lyo;

* which is obtained from Eq. (11) by partial differen-

tiation with respect.to Y. From Eqs. (11) and (13) we

find that
Y=1-W2 (14)

and that W is determined by
W1+ 2W[[ZW(a2—1)+2a]} = % (15)

UNIMPORTANCE OF EXTERNAL CONDUCTOR

In the absence of the conducting sheet (i.e., for
a = oo or X = 0) Eq. (15) gives W = 1/vV2 or

w = (1/ro)(po/po)t (16)
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for the maximum rate of instability. In a stellarator
we might have a tube of, say, helium plasma of about
2 cm radius. If the ions and electrons were both at
temperature T in degrees Kelvin, Eq. (16) would
become

w = 3.12x 103 T% sec-1. (17)

Since the time scale for operation of the stellarator
is of the order of milliseconds, we see that for T = 108
the instability would grow extremely fast. Even for
T = 104 an instability would be serious if its W were
larger than 10-3.

For the conducting sheet to have the effect of re-
ducing the maximum W to a very small value, we see
from Eq. (15) that it is necessary both for a to be
nearly equal tounity and for X'to be large. Specifically,
it is necessary to have

a—1< W2, X3 W-s (18)

For the stellarator, this means that a conducting shell
which is to slow up the instability enough to do any
good must in the first place be extremely close to the
plasma (71—79 < 2x10-% cm for T = 104). This im-
mediately excludes all conductors except those vir-
tually in contact with the plasma, such as stainless
steel tubing. The sheet conductivities of such con-
ductors are unlikely greatly to exceed several hundred
mhos, which at T = 104 corresponds roughly to X = 4,
whereas 2 would have to be about 10? to do any good;
at higher temperatures the comparison is even less
favorable.

Indeed, it would apparently be hopeless to slow up
the instability sufficiently by external conductors even
if they were designed for that purpose and it were not
necessary to worry about inimical effects they might
have on the normal operation of the stellarator. For
instance, if one had thick walls of silver (o = 6x107
mho/meter) arbitrarily close to the plasma, the silver
could be treated as a perfectly conducting sheet at a
radius greater than the plasma radius #o by approxi-
mately the penetration distance of the silver, and com-
putation shows that, even for a plasma temperature

as low as 0.3°K., the instability would then e-fold in a
millisecond.

PERIODICITY CONDITION

Now that we have seen that external conductors
have a negligible effect on the instability, we turn to
an examination of the restrictions on perturbations
imposed by the geometry of the stellarator. We wish
to treat the stellarator tube as if it were straightened
out to a right circular cylinder. Put another way, we
wish to define coordinates #, 8, z in the tube which
locally are approximately cylindrical coordinates and
in terms of which the (inner) surface of the tube is
approximately the surface 7 = 7. It is natural to
choose the curve # = 0 to be the magnetic axis of the
stellarator (i.e., the magnetic line of force which
closes upon itself after one traversal of the length of
the tube); 7, @ to be polar coordinates in each cross

section of the tube; z to be constant on each cross
section; and z to be the arc length along the curve
7 = 0 (with the sign of dz chosen so as tomake7, 8, z
a right-handed coordinate system). It remains only to
determine the relative rotation of the polar coordin-
ates in different cross sections, i.e., to determine the
direction § = 0 (say) in each cross section. Choosing
an arbitrary vector at # = 0 lying in one cross section
to give the direction § = 0 there, we consider a parallel
vector at the point » = 0 of a neighboring cross
section. This parallel vector does not in general lie in
the neighboring cross section, but we may choose its
projection thereon as the direction 8 = 0. In this
way the direction § = 0 may be carried successively
around the length of the stellarator. That this is the
natural method of relating the values of § in different
cross sections may be seen in several ways. One way
is to observe that what we have done is equivalent to
requiring that the coordinates » and @ be invariant
when the z cross section is projected onto the z+dz
cross section in the direction of the magnetic axis; the
resultant values of » and # in the 2+dz cross section
do not exactly constitute polar coordinates, but the
deviation is of the order dz2 and is therefore negligible.
Another way is to observe that the lines of force of the
confining magnetic field approximate to curves of
constant # and 6.

The ‘“cylindrical”’ coordinates we have defined in
the tube are not single-valued functions of position
(except for #, which is the distance from the magnetic
axis). If we follow the values of 6 and z along a closed
curve which goes once around the length of the stel-
larator in the direction of positive dz, we find that
when we have returned to the starting point, z has
increased by the length L of the magnetic axis and 8
has increased by a definite angle « depending only on
the geometry of the stellarator (and not at all on the
starting point or the particular curve chosen). This is
called the rotational transform angle.

It can be shown by standard methods of the
differential geometry of space curves that —. is equal
to the integral of the torsion of the magnetic axis with
respect to its arc length, once around the stellarator.
(The torsion of a curve is the negative of the rate of
rotation, with respect to arc length, of the osculating
plane, i.e., of the plane determined by the tangent and
the radius of curvature. The positive direction of
rotation is determined by the right-hand rule from
the direction along the curve in which the arc length
is taken as increasing.) For stellarators of twisted
figure-8 shape,4 let ¢ be the angle through which each
end of a plane Figure 8 must be rotated to arrive at
that shape, the positive direction of rotation for each
end being clockwise as seen from beyond that end. It
is then easily seen that

L= —4g. (19)

Now (7, 6, 2) and (7, 9+, z+ L) represent the same
point in the tube, so in our perturbation theory we can
allow only elementary solutions for which mu+AL is
an integral multiple of 2. We recall that the unstable
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perturbations we are concerned with have m = 1,
ke <0, 0 <Y < 1. Since Y = |ak|ro, we see that
there is one such allowable perturbation for each
{positive or negative) integer % satisfying

0 < (aro/L)(u+2mh) < 1. (20)

Thus the condition that no instability be allowable is
that

a(t+2mh) = L, (21)

where 4 is that integer which gives the left-hand side
of Eq. (21) its smallest positive value.

It is clear that the stability criterion (21) depends
not only on the magnitude of « but also upon its sign,
unless ¢ happens to be an integral muitiple of =. We
note that « is positive or negative accordingly as the
induced longitudinal plasma heating current has the
same or the opposite direction as the longitudinal
confining magnetic field.

Condition (21) is more conveniently expressed, for
application, in terms of the plasma current I =
277'7’ojo* = 271’7’030/[40. Since a =Bleo, Eq. (21) may
be written

(Bv/I) e+ 277'}}) > ,u.oL/27ﬂ’02. (22)

CURRENT DISTRIBUTION EFFECTS

Some longitudinal current distributions more
general than the purely surface current case first con-
sidered above are treated elsewhere® by means of the
energy principle.’ We quote the results without the
negligible complications of an external conductor. The
fluid pressure p is taken to be zero, B, is again taken
to be much larger than B, and the condition for
cylindrically symmetric equilibrium,

10

2or

is satisfied for By any function of # by choosing B, to

be the appropriate nearly constant function. The con-

clusion then is that there is one allowable mode of

instability for each (positive or negative) integer %
satisfying

1/Z < (org/L)(mu+2mh) < m, (24)

where Z > 0 depends on the function By, i.e., on the
distribution of current 4, and on . This is the general-
ization of Eq. (20).

For m = 0, there is clearly no instability. Form = 1,
Z becomes infinite, independently of the current
distribution, and thus Eq. (24) reduces to Eq. (20).

For m > 1, Z is given as a function of a positive
exponent » in Fig. 2 for j, proportional to 1— (#/ro)
and also to (7/rg)*. The first type of distribution with
v = oo and the second with » = 0 are identical, both
representing uniform current, and have Z = 1/(m—1).

For both types of distribution Z is greater than
1/m and increases monotonically with ». We see that
for each m > 1 there are thus always ranges of values
for a for which there is instability. These ranges
increase with ».

(Bo?+ B,%) + B?fr = 0, (23)

As v — oo the second type of distribution approaches
the sheet current case considered earlier (and Z
approaches (m+1)/(m—1)m). The non-vanishing of
the ranges of instability in the limit seems somewhat
paradoxical because the limiting sheet current case is
stable for # > 1. The resolution is probably that the
unstable perturbations become stabilized by non-
linear effects at smaller and smaller amplitudes as one
goes to the limit.

These results have applied when the plasma is sur-
rounded by vacuum. If, instead, it is surrounded by
pressureless plasma, but the equilibrium fields are the
same, then the results for m = 0 and » = 1 are the
same, but for m > 2 there is now complete stability.
It seems uncertain whether vacuum or pressureless
plasma is the better approximation to conditions in
the region between the main plasma and the tube wall
in a stellarator.

EXPERIMENTAL RESULTS

It has been shown in the previous sections that a
figure-8 shaped stellarator should exhibit an m = 1
instability for currents greater than a critical value
determined by Eq. (22). The magnitude of this
critical current depends on the geometry of the
system (through ¢, the rotational transform angle, and
L, the axial length), the plasma cross-sectional area
(through 7o, the radius), By the magnitude of the longi-
tudinal confining magnetic field, and on whether the
current direction is along or opposite to the magnetic
field. It is interesting to note that the critical current
in either of the two directions is just sufficient to
cause a resultant rotation of either zero or 2 in the
magnetic lines of force just outside the plasma (i.e., to
make the lines of force close on themselves once
around the machine). This result is independent of
the form of current distribution.

The quantities ¢, I, By and L are all easily measur-
able. If all the lines of force were exactly parallel to
the walls of the discharge tube, then 7 would simply
be the discharge tube radius. If this is not the case, 7o
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Figure 2. Limit of range of instability for axial current
distributions j ~ 1—(r/R)2 and j ~ (r/R)?
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Figure 3. Plasma current and applied electric field as functions
of time in B-1

is then the radius of the innermost magnetic surface
which anywhere touches the discharge tube walls. By
means of a collimated electron beam, it is experiment-
ally possible to determine 7o under low-field, steady-
state conditions to an accuracy of about 109,. These
values are confirmed by measurements of the plasma
inductance. In various stellarators the effective radius
(called the radius of the aperture) is from 50%, to 90%,
of the discharge tube radius. A summary of some
pertinent quantities is given in Table 1.

Here the critical current is calculated from Eq. (22)
which becomes, on solving for I,

I = Byv2mve2y/poL, (25)

where % = 09117 and 1.089% for the two possible
directions of current and By, », L and pg are all in
MKS units.

The observational results to be expected as a con-
sequence of this instability are not entirely obvious.
The observations on the B-1 Stellarator where the
effects seem particularly apparent will first be des-
cribed in some detail, followed by a summary of
similar evidence from other devices.

Table 1. Some Stellarator Characteristics

Tube Critical

Stellarator e A (2
model N AN
B-1 196° 450 cm 2.2 cm 1.6 cm 810 or 970 amps
B-2 196°° 600 2.2 1.6 610 or 730
B-3 196° 600 2.2 2.0 950 or 1140

The ohmic heating electric field is usually applied
in the form roughly of a square wave of adjustable
amplitude by means of a transformer which links the
discharge tube. A more complete description of the
characteristics of the stellarator is given by Coor,
et al.7 The duration time is self-limited by saturation
of the transformer. The plasma current and applied
electric fields are displayed as functions of time on
oscilloscopes. Figure 3 shows these data for six different
E-fields, applied to a helium discharge at an initial
pressure of 6x 10~4 mm Hg. The oscilloscope sweep
speed is 1 millisecond per division from left to right
and the initially applied electric field in v per cm is
given in each case. The field gradually falls (because of
the partial discharge of a capacitor bank) and fluctua-
tions appear because of plasma inductance effects. As
successively higher electric fields are applied, the
current rises more rapidly and (in the first four cases)
to a higher peak value. However, for fields above
about 0.06 v/cm there is very little dependency of
peak current on applied voltage as shown in Fig. 4,
which shows peak current plotted against applied

- electric field at various gas pressures. The current

essentially reaches a plateau, the level of which is
roughly independent of the pressure. As shown in the
figure, the plateau value of current agrees with that
predicted from Eq. (25). Similar sets of data taken at
other values of confining field produce similar effects
at current levels proportional to the magnetic field in -
quantitative agreement with prediction. These are the
solid circles in Fig. 5. However, the most striking
effect is that of reversing the direction of the current
with respect to the magnetic field. These data are
plotted as open circles in Fig. 5. The ratio of slopes of
the two lines is 1.22. On the basis of the twist angle of
B-1, one would expect a ratio of 1.19. This difference
is well within experimental error.

Another point of interest is that whenever the
current rises above this critical limiting value, the
current and voltage become quite noisy as may be
seen in Fig. 3, and large amounts of impurities appear"
in the discharge.?

Further verification is offered by the fact that the
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Figure 4. Peak plasma current as a function of applied electric
field at various pressures in B-1

critical value of current is the same in a hydrogen
discharge as in a helium discharge.

In all cases it is possible to drive the current well
above the critical current if a high enough electric
field is applied. Figure 6 shows, for example, a plot
of peak current vs. ohmic heating field for 3 different
values of magnetic confining field in the B-2 Stel-
larator. There is once more a definite leveling off,
at a current consistent with prediction, but for high
ohmic heating fields the current does continue to rise.
However, in this case a slight step or irregularity
appears at approximately the critical current (shown
by the dotted lines in Fig. 6).

In the case of B-3, much more care was taken in
alignment of the field coils and the discharge tube. As
a result, the aperture area as measured by the
electron-gun is 13 cm? as compared with about 8 cm?2
in both B-1 and B-2. Correspondingly higher plateau
currents are expected and are observed in this case up
to a magnetic confining field of 53,000 gauss. The dis-
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Figure 5. Peak plasma current as a function of confining field in
B-1. The two curves are for plasma current in opposite directions
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Figure 6. Peak plasma current as a function of applied electric
field in B-2

charge tubes in all the devices previously mentioned
are stainless steel with bakable vacuum systems which
may be pumped down to pressures of the order of
10-19 mm Hg.

B-1 was formerly operated with relatively ‘“dirty”
walls of stainless steel, and later of Pyrex, for which
base pressures of only about 10~5 mm Hg were pos-
sible. The metal tube required about 4 times as much

" electric field to get initial breakdown and showed very

little evidence of the current leveling off. In both
these respects, on the other hand, the “dirty”’ glass
system was quite similar to the “clean’” metal system.

Clearly there is very satisfactory agreement be-
tween theory and experiment with regard to the
m = 1 mode of instability. However, there is no ex-
perimental indication of the existence of the higher #
modes. One possible explanation of this is that the
region between the main body of plasma and the tube
wall might contain enough charged particles to act as
a good conductor, i.e., as a pressureless plasma, in
which case the higher  modes would be stable. It is
of course quite possible that higher s modes of in-
stability are present but produce effects less easily
observable than those due to the m = 1 mode. For
instance, they might merely distort the original equili-
brium configuration into a new, not greatly shifted,
stable configuration. This would be consistent with
the proposed resolution of the paradox in the previous
section. It seems highly plausible that for long wave-
length modes with m # 1, non-linear terms become
significant when the displacement becomes compar-
able with the plasma radius, whereas for long wave-
length m = 1 modes, the linearized perturbation
theory remains valid until the displacement becomes
comparable with the wave-length.
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