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This paper deals with the long wave instability of an electroconductor fluid film, flowing down an inclined
plane at small to moderate Reynolds numbers, under the action of electromagnetic fields. A coherent second
order long wave model and two simplified versions of it, referred to as first and second reduced models (FRM
and SRM), are proposed to describe the nonlinear behavior of the flow. The modeling procedure consists of a
combination of the lubrication theory and the weighted residual approach using an appropriate projection basis.
A suitable choice of weighting functions allows a significant reduction of the dimension of the problem. The full
model is naturally unique, i.e., independent of the particular form of the trial functions. The linear stability of the
problem is investigated, and the influence of electromagnetic field on the flow stability is analyzed. Two cases
are considered: the applied magnetic field is either normal or parallel to the fluid flow direction, while the electric
field is transversal. The numerical solution of the Orr-Sommerfeld (OS) eigenvalue problem and those of the
depth averaging model are used to assess the accuracy of the reduced models. It is found that the current models
have the advantage of the Benney-like model, which is known to asymptote the exact solution near criticality.
Moreover, far from the instability threshold, the current reduced models continue to follow the OS solution up to
moderate Reynolds numbers, while the averaging model diverges rapidly. The model SRM gives better results
than FRM beyond sufficiently high Reynolds numbers.

DOI: 10.1103/PhysRevE.88.023028 PACS number(s): 47.15.gm, 47.65.−d

I. INTRODUCTION

The stability of fluid films flowing down an inclined plane
has received a lot of attention since the pioneering experiments
of Kapitza and Kapitza [1]. The instability occurs when the
Reynolds number is raised above some critical value which
depends on the flow conditions. Then, the flow undergoes a
Hopf bifurcation that leads to periodic nonlinear waves which
evolve into a variety of patterns, among them the solitary
wave structures that play a central role specifically in the
long time behavior. Much of the interest in the fluid film flow
problem stems from their occurrence in nature and biology;
examples include lava flows and eyes’ tears. Thin film fluid
flows are also encountered in a wide variety of industrial
applications, including coating and cooling processes. In some
of these applications, the presence of surface waves may be a
desirable feature as in the case of cooling films, where they
enhance heat and mass transfer [2,3]. Conversely, they are
undesirable in the case of coating films, where smooth surfaces
are usually required; surface waves alter the finished product
and therefore must be avoided [4]. Hence, controlling the
formation of waves on film fluid flows is of capital importance,
as is their fundamental understanding.

The initial investigations of the stability of fluid film flows
began with the studies of Yih [5] and Benjamin [6]. Since
then, investigations on the subject all agree that the dominant
instability is due to inertial effects and manifests itself at low to
moderate Reynolds numbers. It involves free surface undula-
tions with wavelengths much larger than the film depth, except
for a slightly inclined plane (less than about 1◦ for water)
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or for fluids with low surface tension. In this condition,
in addition to the free surface instabilities, linear analyses
have also identified a shear mode instability of the Tollmien-
Schlichting type modified by the presence of free surface. The
shear mode instability corresponds to strong shear rates and
occurs at rather high Reynolds numbers (about 104); it may
become the primary instability at small angles of tilt. In these
extreme conditions, which are beyond the scope of the present
study, the free surface is subject to shortwave instability. For
small to moderate Reynolds numbers, the range of interest
here, the development of asymptotic models is feasible [7,8].
These models describe the initial stage of the flow development
and give rise to the so-called Benney equation (BE). Even
though the flow variables are all enslaved to the local free
surface shape, the BE contains relevant physical mechanisms
so that it is potentially capable of accounting for the nonlinear
behavior of the flow near criticality. However, the BE loses its
physical relevance when inertia becomes important. Indeed,
slightly far from the stability threshold, the solution of the
BE exhibits nonphysical finite time catastrophic behavior.
In order to correct this defect, several improvements were
proposed. For example, the regularized procedure developed
by Ooshida [9] allows us to prevent the occurrence of finite
time blowup but leads to an unrealistic solitary wave solution
at moderate Reynolds numbers.

Significant progress in modeling fluid film flow was
obtained by associating the fluid flow rate, which becomes
a genuine variable just after the wave formation, to the film
thickness. This results in two-variable formulation, introduced
by Shkadov [10], who used an integral boundary layer (IBL)
approach. In spite of its success in describing nonlinear
regimes for moderate Reynolds numbers, the IBL does not
accurately predict the flow behavior near criticality as the BE
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does. This defect is due to the fact that some first order terms are
omitted in the IBL. A first order coherence is therefore required
to correct this defect. The way to do this was proposed, using
an approach based on a weighted residual integral boundary
layer (WRIBL), by Ruyer-Quil and Manneville in a series of
papers [11–13]. This procedure was found to asymptote the BE
near criticality and to yield bounded solutions for a larger range
of Reynolds numbers. The WRIBL approach was successfully
applied to various situations in film flows, such as those
involving thermal effects [14,15], two fluid layer flow [16],
bottom topography [17], and bottom permeability [18], to
name a few.

The main purpose of the present work is to extend the
WRIBL to the problem of an electroconducting fluid film
flowing under the action of electromagnetic forces and to gain
better understanding of the complicated interplay between
electromagnetic, surface tension, and gravity forces and its
effects on the stability of the flow, which might widen the
range of the applications. The interaction of a thin layer
of electroconductor fluid, moving under the influence of
electromagnetic fields, is of practical importance in several
technological applications, such as the casting industry and
nuclear reactors. For instance, in belt strip casting magnetic
fields are used to produce braking and damping mechanisms
[19]. In fusion devices, thin film flows are employed against
erosion and thermal loads of the reactor’s walls, where the re-
liability and the efficiency of the protection depend on the flow
stability [20]. The orientation of the applied electromagnetic
field plays a prominent role in the resulting flow dynamics.
Applied alone in the case of perfectly conducting viscous fluid,
a normal electric field can destabilize the free surface through
a nonlocal force linked to the free surface shape via a Hilbert
transform [21–23]. The form of such a nonlocal term has been
derived formally in a related horizontal electric field problem
in [24–26]. Here, we are concerned with the case where the
electric field is applied in the spanwise direction while the
magnetic field is in the plane of motion. This configuration was
first examined by Korsunsky [27] to complete investigations
that were conducted by Lu and Sarma [28] under the action
of a transverse uniform magnetic field. These studies revealed
that the magnetic field acts to increase the stability and hence
can be used to control and even to suppress flow instabilities.
Employing both the long wave asymptotic approach, leading
to a Kuramoto-Sivashinsky equation, and the IBL approach,
Korsunsky [27] found that depending on its orientation, the
electric field is either stabilizing or destabilizing, whereas
the magnetic field is always stabilizing. The IBL approach
was also used in [29,30] to examine the combined effects
of spanwise electric and transverse magnetic fields. These
two studies confirmed the findings of Korsunsky [27] with
respect to the influence of electric and magnetic fields on
the flow stability. It should be noted that, as in the ordinary
film flow, neither the long wave asymptotic expansion nor the
IBL approach allows an accurate description of the stability
analysis for both small and moderate Reynolds numbers.
Introducing a more realistic velocity profile than the one
used in the IBL approach, it is expected that the WRIBL
removes the drawbacks described above, includes lower orders
of the electromagnetic force, and accordingly provides an
accurate description of the flow for small to moderate Reynolds

FIG. 1. (Color online) Schematic of the physical problem.

numbers. This is the objective of the current analysis, which is
organized as follow. In Sec. II, the problem is formulated and
expressed, up to second order, in the framework of lubrication
theory. A way to derive nonlinear evolution equations via a
weighted residual approach is outlined in Sec. III. Because
the full model has little practical use, more tractable models
of reduced dimensionality are proposed in Sec. IV. Linear
stability results are presented in Sec. V in comparison with Orr-
Sommerfeld (OS) analysis. Concluding remarks are finally
given in Sec. VI.

II. GOVERNING EQUATIONS AND BASIC FLOW

We consider the stability of a two-dimensional gravity
driven film flow down an infinitely long flat plate in the pres-
ence of an electromagnetic field. The plate is nonconducting
and inclined at an angle β with respect to the horizontal. The
liquid, of constant density ρ and kinematic viscosity ν, is
assumed to be a perfect conductor with conductivity σ and
magnetic permeability μ0, and the surrounding passive gas is
of negligible density and conductivity. The surface tension
between the liquid and the gas is γ , and the acceleration
due to gravity is denoted by g. A rectangular coordinate
system (x,y,z) is adopted, with x and y measuring distances
downstream and perpendicular to the plate, respectively, and
z being in the spanwise direction (see the physical model
depicted in Fig. 1). The film thickness is given by y = h(x,t),
where h0 is its constant value in the base state. The applied
electric field is E0 = (0,0,E0), and for the completeness of
the mathematical formulation we take the magnetic field in
the plane of motion B0 = B0(cos θ, sin θ,0).

Within the usual magnetohydrodynamics (MHD) approxi-
mations, the governing equations describing the conservation
of mass, momentum, magnetic flux, and the advection-
diffusion of the magnetic field read

∇ · v = 0, (1)

Dv

Dt
= − 1

ρ
∇

(
p + B2

2μ0

)
+ g + ν∇2v + 1

ρμ0
(B · ∇)B,

(2)

023028-2



HYDROMAGNETIC THIN FILM FLOW: LINEAR STABILITY PHYSICAL REVIEW E 88, 023028 (2013)

∇ · B = 0, (3)

DB
Dt

= (B · ∇)v + 1

μ0σ
∇2B, (4)

where D
Dt

stands for the two-dimensional material derivative,
B is the total magnetic field, and v = (u,v,0) is the velocity
field. The Lorentz force includes two parts: the irrotational
part, which acts as a pressure force (− 1

ρ
∇ B2

2μ0
), and a rotational

part [ 1
ρμ0

(B · ∇)B]. The induction equation (4) results from the
combination of the following classical Maxwell equations:

∇ × E = −∂B
∂t

, (5)

μ0 j = ∇ × B, (6)

E = j/σ − v × B, (7)

where j and E are the current density and the electric field,
respectively. These equations are subject to appropriate bound-
ary conditions. Instead of setting them in the general case, these
conditions are specified once the problem is simplified in the
framework of the lubrication approximation. For that purpose
we first introduce the following dimensionless variables: t∗ =
ε u0

h0
t, x∗ = ε x

h0
, y∗ = y

h0
, u∗ = u

u0
, v∗ = ε v

u0
, where ε is the

film parameter accounting for the smallness of the temporal
and streamwise variations compared to the transverse gradients
(∂y ∼ 1, ∂x ∼ ε, ∂t ∼ ε) and u0 = gh2

0 sin β/3ν is the depth
averaged velocity of the classical Nusselt flow. Then, dropping
the asterisks for convenience, the dimensionless coupled MHD
equations governing the film flow can be reduced up to O(ε2)
(see Appendix A for derivation):

Reε(ut + uux + vuy)

= uyy + 3 − Ha2 sin θ (δ + u sin θ )

+ ε{Whxxx − 3 cot βhx + Ha2 cos θ

× [sin θ (2v − v|h) + hx(δ + sin θu|h)]}
+ ε2

{
2uxx + (ux |h)x + Ha2 cos2 θ

×
[ ∫ y

h

vxdy − v|hhx

]}
, (8)

ux + vy = 0, (9)

which represent conservation of momentum and mass, re-
spectively. It should be noted that the magnetic and electric
fields are scaled by B0 and E0, respectively. Equations (8)
and (9) must be solved, subject to (i) impermeability and no
slip conditions on the solid wall,

u|y=0 = v|y=0 = 0, (10)

and (ii) impermeability and tangential stress balance on the
free surface,

v|h = ht + u|hhx, (11)

uy |h = ε2(4hxux |h − vx |h). (12)

As can be seen from (8), the flow dynamics is controlled by
four parameters, namely, the Reynolds number Re = u0h0/ν,
the Hartmann number Ha = B0h0

√
σ/ρν, the electric num-

ber δ = E0/u0B0, and the capillary number W = ε2ReWe,

with We = σ/ρh0u
2
0 being the classical Weber number. The

term factored by Ha2 is the Lorentz force, which contains two
parts. The first part is the one multiplied by δ; it is produced
by the magnetic field induced by the conductive current.
The second part is generated by the magnetic field induced by
the convective current. The contribution of the Lorentz force
to the flow stability depends on the orientation of the electric
field and the direction of the magnetic field. In the following,
the orientation of the electric field is considered either positive
or negative, while the orientation of the magnetic field is kept
positive. Under this condition, the work of the conductive part
of the Lorentz force depends on the orientation of the electric
field (the sign of δ). When the magnetic field is perpendicular
(sin θ = 1), the Lorentz force intervenes as gravity at order
zero with respect to ε, while it intervenes at first and second
orders when the magnetic field is parallel (sin θ = 0).

The basic velocity field is x directional and is given by

ub(y) =
{

3

Ha2 sin2 θ
− δ

sin θ

}{
1 − cosh Ha sin θ (y − 1)

cosh (Ha sin θ )

}
,

(13)

which is the solution of the basic equation resulting from (8)
by dropping terms factored by ε. The depth averaged value of
ub(y) reads

umb =
{

3

Ha2 sin2 θ
− δ

sin θ

}{
1 − tanh(Ha sin θ )

Ha sin θ

}
. (14)

In order to illustrate the influence of electromagnetic effect
on the mean flow we show in Fig. 2 umb versus Ha sin θ

for some representative values of δ/ sin θ . It is shown that,
for all positive values of δ/ sin θ , the mean velocity is a
monotonically decreasing function of Ha sin θ . Moreover, the
flow may change direction for a given δ/ sin θ if the Hartmann
number is high enough (Ha2 > 3/δ sin θ ). Hence, in the case
where the electric field is oriented in the positive z direction, the
two parts of the Lorentz force both act against gravity. When
the electric field is oriented in the negative z direction, the
associated part of the Lorentz force accelerates the mean flow.
Beyond a sufficiently high level of electric field, the combined
effects of gravity and Lorentz electric forces overcome the

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Ha sin(θ)

u m
b

δ/sin(θ)=2

δ/sin(θ)=0.5

δ/sin(θ)=1

δ/sin(θ)=−2

δ/sin(θ)=−1

δ/sin(θ)=0

FIG. 2. Mean flow velocity vs Ha sin θ for some values of the
electric parameter.
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Lorentz force generated by convection. Now, let us observe
that the kinematic condition (11) can be rewritten owing to (9)
in a global form as

qx + ht = 0, (15)

where q = ∫ h

o
u dy is the flow rate in the streamwise direction.

III. MODELING THE WAVY FILM FLOW

In the framework of shallow water theory, the streamwise
velocity is expanded in a power series of the shallowness
parameter ε. Up to O(ε2) this reads

u(x,y,t) = u∗
0 + εu∗

1 + ε2u∗
2 + O(ε3), (16)

where u∗
1 and u∗

2 are referred to as the first and second
order corrections to the leading order term u∗

0. In applying
the weighted residual method, these corrections are in turn
expanded in some complete set of trial functions which depend
on the physical problem under consideration. For the sake
of simplification, the modeling will be focused only on the
particular cases θ = π

2 and θ = 0, corresponding to normal
and longitudinal magnetic fields, respectively.

A. Perpendicular magnetic field

In this case, the basic velocity ub is deduced from (13)
by putting sin θ = 1; this gives ub = 1

Ha2 [3 − δHa2][1 −
cosh Ha(y−1)

cosh Ha ]. Similar to ub, u∗
0 is searched in the form

u∗
0 = a0(x,t)f0(ξ ), where ξ = y − h(x,t), f0(ξ ) = 1

Ha2 (1 −
cosh Haξ
cosh Hah ), and a0(x,t) is an unknown amplitude. Since the flow
rate appears in (15) as a genuine variable like the film depth,
it is quite natural to eliminate a0(x,t) in favor of these two
variables. This can be done by integrating (16) through the
film depth; one obtains

a0(x,t) = 1∫ h

0 f0dy

{
q(x,t) − ε

∫ h

0
u∗

1dy − ε2
∫ h

0
u∗

2dy

}
+ O(ε3). (17)

Expansion (16) then takes the form

u(x,y,t) = u0 + εu1 + ε2u2 + O(ε3), (18)

where

u0 = q(x,t)∫ h

0 f0dy
f0(ξ ), (19a)

u1 = u∗
1 −

∫ h

0 u∗
1dy∫ h

0 f0dy
f0(ξ ), (19b)

u2 = u∗
2 −

∫ h

0 u∗
2dy∫ h

0 f0dy
f0(ξ ). (19c)

The above formulation shows that the flow rate is entirely
contained in the leading order term u0 while

∫
u1dy =∫

u2dy = 0. Remember that the primary objective of the
present work is to attempt to lower the dimensionality of the
problem by eliminating from the calculation the second order
correction u2. This is feasible under some conditions that will
be explained below. The explicit form of u2 then would not
be useful. An exact expansion for u1 is, however, of capital

importance in order to ensure the second order coherence of
the model. It can be obtained by equating first order terms
in (8) where the above expressions for u and u0 are inserted.
The result is the following equation for u1:

u1yy − Ha2u1 = Re[u0t + u0u0x + v0u0y], (20)

subject to u1|y=0 and u1y |y=h = 0. The solution for this
boundary value problem, satisfying the global constraint∫

u1dy = 0, is

u1(x,y,t) = Re[a(x,t)f1(ξ ) + b(x,t)f2(ξ )], (21)

where a and b are unknown functions to be determined. The
trial functions f1 and f2 are found to be

f1(ξ ) = f ∗
1 (ξ ) + δ1(x,t)f0(ξ ), (22a)

f2(ξ ) = f ∗
2 (ξ ) + δ2(x,t)f0(ξ ), (22b)

where f ∗
1 , f ∗

2 , δ1(x,t), and δ2(x,t) are given in Appendix B.
Hence, provided that u2 does not participate in the calculation
as it is already emphasized, the film dynamics can be described
by only four unknown variables, namely, h, q, a, and b. It is
important to notice that the trial function f1 is fixed once for
all due to the constraint

∫
u1dy = 0, while f2 may still be

combined with f1 so as to orthogonalize the resulting function
with f0 or f1. At this stage, this operation is not necessary
since it generates a too cumbersome function; f2 is then kept
unchanged for the sake of simplification. In addition to (15),
three other equations are therefore required to describe the
space and time evolution of the fields q, h, a, and b. These
equations may be obtained by forcing the residuals to vanish in
the mean sense, i.e., by setting integrals of the residuals equal
to zero.∫ h

0
{Reε(ut + uux + vuy) − uyy + Ha2 (u + δ) − 3

− ε(Whxxx − 3 cot βhx) − ε2[2uxx + (ux |h)x]}φidy = 0,

i = 0,1,2, (23)

where φi i = 1,2,3 are some suitable functions to be specified
below. First, one can observe that the spectral coefficients of
the correction u2 would appear only through the transverse
diffusion term uyy along with the magnetic force Ha2u since
all the others are at least of order ε. Their elimination
procedure can be made clearer by rewriting the integral∫ h

0 (uyy − Ha2u)φidy in the form∫ h

0
(uyy − Ha2u)φidy = uyφi

∣∣h
0 − uφiy

∣∣h
0

+
∫ h

0
u(φiyy − Ha2φi)dy. (24)

Now, one can see that this integral can be rendered free
from u2 by properly choosing the weighting functions. In this
perspective these functions are required to first satisfy the
homogeneous boundary conditions φi |0 = φiy |h = 0 because
of the wall condition (u = 0) and since uy |h = O(ε2). In
addition to these conditions, the quantity φiyy − Ha2φi must
be either constant or orthogonal in the sense of L2(0,h) to the
projection basis of u2. The latter is not explicitly required for
the calculation up to O(ε2), but it can be derived in a similar
way as for u1, and most importantly, it can be modified to be
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orthogonal to at least two arbitrarily functions, say f0 and f1.
This property is taken advantage of to define the weighting
functions in the following way. When φ0 = f0, φ1 and φ2 are
required to satisfy the equations

φ′′
1 − Ha2φ1 = f0, (25a)

φ′′
2 − Ha2φ2 = f1; (25b)

along with the above homogeneous boundary conditions, one
obtains φ1 and φ2 in the form

φ1 = −
(

1

cosh Ha h
f ∗

1 + 1

Ha2
f0

)
, (26a)

φ2 = 1

2
f ∗

2 + δ1

Ha2
φ1 − h

2 Ha
tanh Hah (26b)

Finally, the residual equations may be cast in the form

ReA(q,a,b)t = (Q,A,B)t . (27)

The entries of the matrix A along with the components Q, A,
and B are too cumbersome to be included here.

B. Longitudinal magnetic field

When the magnetic field is oriented in the streamwise
direction, the momentum conservation equation reduces, by
setting sin θ = 0, to

Reε(ut + uux + vuy)

= uyy + 3 + ε{Whxxx + hx(δHa2 − 3 cot β)}

+ ε2

{
2uxx + (ux |h)x + Ha2

[∫ y

h

vxdy − v|hhx

]}
,

(28)

which shows that the produced Lorentz force has no effect
on the basic flow but acts when the latter is perturbed.
That action first occurs at O(ε) via the modification of the
streamwise gravitational pressure drop, which is either lowered
or augmented, depending on the orientation of the electric field.
At O(ε2), the change is caused by the convective part of the
Lorentz force and turns on the streamwise diffusive terms.
Then the basic solution is the classical Nusselt flow, which
can be deduced from (13) by taking the limit Ha2 sin θ → 0;
this yields ub = 3(y − 1

2y2). As a consequence, the wavy
film problem remains, at the procedure level, similar to the
classical case [14] which can be deduced as a limit, when
Ha2 sin θ → 0, of the general problem under consideration.

IV. REDUCED MODELS

As mentioned above the full size second order model is too
cumbersome and accordingly of little practical interest. Hence,
reduced models which, however, would contain the relevant
dynamic characteristics of the full size model are to be desired.
Those simplified models should asymptote Benney’s single
equation near criticality but without its drawbacks and should
accurately describe the flow dynamics up to at least moderate
Reynolds numbers. It can be shown that only the fields q and
h will play a pertinent role at the initial stage of the instability,
while the fields a and b follow their dynamics. First, let us
observe that due to the special choice of test functions, the
fields a and b do appear in the first residual equation only

through the second order inertial term. The latter is associated
with the advection, by the base flow, of the first order velocity
correction. Hence, one can eliminate a and b in that equation
since these fields are already known up to the first order.
Indeed, equating first order terms in (1) provides

a(x,t) = α1qx + α2hx + α3qt , (29a)

b(x,t) = β1qx + β2hx, (29b)

where the coefficients α and β are given in Appendix B. It
is worth noting that these expressions, as functionals of h

and q, are not unique because of their dependence on the
test functions. Another set of test functions would lead to
formally different expressions. The corresponding first order
correction of the velocity profile, however, remains unchanged,
irrespective of the choice of trial functions, provided that these
functions satisfy the conditions stated previously. Another
way to obtain appreciable simplifications consists of assuming
fields a and b to be at least O(ε2). Hence, their adiabatic
elimination in the first residual equation allows us to greatly
simplify the formulation, which, however, captures all the
physical mechanisms. In fact, the resulting model can be
deduced from the previous one by simply dropping the inertial
term proportional to Re2. These two reduced models, here
referred to as the first and second reduced models, respectively
(FRM and SRM), are given as Supplemental Material [31]. We
notice that in the limit Ha = 0 the two reduced models give
those obtained in [32] for n = 1.

V. LINEAR STABILITY AND APPLICATIONS

In this section, the models presented above are applied in
order to examine the influence of magnetic and electric fields
on the linear response to a sinusoidal perturbation of the film.
We assess the accuracy of these models by comparing their
linear spectrum to that corresponding to the OS numerical
analysis (see Appendix C). We first present the results of
the numerical resolution of the eigenvalue problem (C3)–(C6)
and depict the influence of electromagnetic fields on the flow
stability. For the sake of clarity the presented results are
restricted to two directions of the magnetic field with respect
to the flow direction (θ = 0 and θ = π

2 ). The electrical field
is oriented either in a positive or negative direction, while
the magnetic field is always oriented in the positive direction.
The surface tension parameter and the inclination angle of the
plane were kept constant and fixed to W = 10 and β = π

2 ,
respectively.

The marginal stability curves, which separate stable (above)
and unstable (below) regions in the α-Re space, are displayed
in Figs. 3(a)–3(d). The induced Lorentz force contains two
parts, namely, the conductive and the convective parts. The
conductive part is the one produced by the magnetic field
induced by the conductive current, while the convective part
is generated by the magnetic field induced by the convective
current. In the absence of the electrical field, the Lorentz force
reduces to its convective part, and this force opposes the cause
which has given birth, i.e., the fluid flow. The convective part
work to stabilize the flow; see Figs. 3(a) and 3(b). In fact, in the
case of perpendicular magnetic field, the Lorentz force results
from the interaction of the magnetic field with the streamwise
component of the velocity. This force, which is of order 1, is
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FIG. 3. Marginal wave number vs Reynolds number: influence of electromagnetic fields on the marginal stability of the flow for (a) and (c)
perpendicular magnetic field (θ = π/2) and (b) and (d) longitudinal magnetic field (θ = 0). β = π/2.

oriented upstream and works against the destabilizing gravity
force [Fig. 3(a)]. In the case of parallel magnetic field, the
Lorentz force results from the interaction of the magnetic field
and the vertical component of the perturbed velocity field. This
force, which is of order ε, acts as a supplementary pressure
and opposes any free surface elevation [Fig. 3(b)]. One should
apply stronger parallel magnetic field to achieve a stabilizing
effect similar to that of perpendicular magnetic field. The
lines of the magnetic field act as elastic strings; they pull
up the streamwise flow in the case of perpendicular field and
oppose any free surface elevation in the normal direction in the
case of parallel magnetic field. As the field strength increases,
the elastic strings stiffen, and the opposition to the fluid motion
becomes stronger.

When the electric field is applied, a conductive part of the
Lorentz force adds to the convective part. In the case where the
magnetic field is perpendicular and the electric field is oriented
in the positive z direction, the conductive part of the Lorentz
force is oriented upstream. It works, like the convective part,
to oppose the destabilization of the flow by the gravity force;
see Fig. 3(c). Conversely, when the orientation of the electric
field is in the negative z direction, the conductive part of the

Lorentz force is aligned downstream. It works now in the
sense of the acceleration and the destabilization of the fluid
flow [Fig. 3(c)]. The portrait is opposite when the magnetic
field is parallel. In fact, when the electric field is oriented in the
negative z direction, the conductive part of the Lorentz forces
acts, as a pressure, in the direction perpendicular to the fluid
flow. Its effect is added to that of the convective part to oppose
any free surface elevation [Fig. 3(d)]. In contrast, when the
orientation of the electric field is in the positive z direction,
the conductive part of the Lorentz force works against a
pressure and the convective part to promote deformation of the
free surface; see Fig. 3(d). Therefore, the electrical field can
have either a stabilizing or destabilizing role. This depends
on its orientation, and the direction of the magnetic field
considered here is always positive.

The influence of the electromagnetic fields on the growth
rate of the flow perturbation is depicted in Figs. 4(a)–4(d).
These results are in accordance with those in Figs. 3(a)–3(d);
i.e., they confirm the stabilizing effect of the magnetic field and
the dependence of the role of the electric field (destabilizing
or stabilizing) on its orientation. The first striking observation
is that the wave number corresponding to the fast growing
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FIG. 4. Growth rate vs wave number: influence of electromagnetic fields on the instability growth rate for (a) and (c) perpendicular magnetic
field (θ = π/2) and (b) and (d) and longitudinal magnetic field (θ = 0). Ha = 1, β = π/2, and Re = 15.

perturbation remains almost constant (α ≈ 0.15). The second
observation is that even if it is intense, a parallel magnetic field
has a weak influence on the growth rate of the perturbation;
its influence on the fast growing perturbation is quasinull
[Fig. 4(b)].

The results from the numerical solution of the OS problem
are used as a benchmark case to assess the accuracy, at the
linear stage, of the reduced models presented in Sec. III. The
results of the linear stability of the basic flow obtained via
FRM are compared to those provided by the solution of the OS
eigenvalue problem, SRM, and integral (IM) models. The latter
model results from the application of the Karman-Polhausen
IBL theory, while the SRM is obtained by simply omitting
the first correction u1 in the second order equation (A24).
Figure 5 compares the marginal stability curves provided by
FRM to the numerical solution of the OS problem in both
situations, perpendicular(θ = π

2 ) and parallel magnetic fields
(θ = 0). Figure 5 show that the prediction of FRM agrees well

with the numerical results of the OS eigenvalue problem up
to Reynolds number Re ≈ 20. After that the reduced model
experiences a rapid divergence from the exact neutral curve
OS. Figure 5 shows also that SRM predicts fairly well the
exact neutral curve OS up to Re ≈ 13. Beyond this value the
SRM starts to diverge slowly while remaining asymptotic and
following the same trend as the OS solution. Figure 5 also
indicates that the neutral stability curves predicted by the depth
IM proposed by Korsunsky [27] and Mukhopadhyay et al. [29]
fail to depicted the neutral stability curve OS. In fact, this
result was expected because the depth integral model reduces
to the Shkadov model [10] and it is a well known drawback of
Shkadov’s model. The second well known drawback of depth
IM is the prediction of the correct stability threshold (critical
Reynolds number). The evolution of the critical Reynolds
number with the Hartmann number for different value of the
parameter δ obtained with FRM and IM is shown in Fig. 6.
Figure 6 indicates that the critical Reynolds number, predicted
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FIG. 5. Comparison of the models’ predictions with the Orr-
Sommerfeld solution: (a) the magnetic field is perpendicular;
(b) the magnetic field is parallel. In (a) and (b) β = π/2 and δ = 0.

FIG. 6. (Color online) Comparison of the FRM and IM pre-
dictions for the critical Reynolds number. The magnetic field is
perpendicular. Thin lines are from the IM model, while thick lines are
from the FRM model. Solid line, δ = 0; dotted line, δ = −1; dashed
line, δ = −3; dot-dashed line, δ = −5.

by FRM for the onset of instability, reduces to the correct
critical value Rec = 5

6 cot β of the hydrodynamic case, while
the IM model predicts Rec = cot β.

VI. CONCLUSIONS

In this study we have derived models of reduced dimension-
ality to investigate the stability of an electroconductor fluid film
flowing down an inclined plane. The OS eigenvalue problem
is also formulated and solved. Due to the little practical use
of the second order coherent analysis, two reduced models
are proposed; they both predict, with a fairly good accuracy,
the exact solution of OS equations up to about Re = 20.
Beyond this value of Re the model FRM diverges rapidly,
while the model SRM continues to be in agreement with the
exact solution up to Reynolds numbers of order 100. These
results confirm the stabilizing role of the magnetic field and
the either stabilizing or destabilizing role of the electric field,
depending on its orientation in the spanwise direction. They
can be considered an improvement of those obtained by the
averaged model used in the previous related works.

APPENDIX A

Setting the total field B as the sum of B0 and the in-
duced field, namely, B = B0 + Remb, where Rem = μ0σu0h0

(Rem 
 1) denotes the magnetic Reynolds number, and setting
b = (b1,εb2,0)t , the coupled dimensionless MHD equations
read, up to O(ε2,Rm),

b1yy + sin θuy + ε cos θux + ε2b1xx = 0, (A1)

b2yy + sin θvy + ε cos θvx + ε2b2xx = 0, (A2)

b1x + b2y = 0, (A3)

ux + vy = 0, (A4)

Reε(ut + uux + vuy) = −(p + εHa2 B̃)x + uyy + 3

+ ε2uxx + Ha2By, (A5)

0 = −(p + ε Ha2B̃)y − 3ε cot β + ε2(vyy − Ha2Bx), (A6)

where the pressure is scaled by ρu2
0/Reε and B and B̃ are

defined as

B = sin θ b1 − ε cos θ b2, (A7)

B̃ = cos θ b1 + ε sin θ b2. (A8)

Equations (A1)–(A6) are subject to appropriate boundary con-
ditions, which will be specified below; they are complemented
by the dimensionless version of Eqs. (5)–(7),

j = ∇ × b, (A9)

δE = j − v × B, (A10)

∇ × E = −εRem

δ

∂b
∂t

. (A11)

First, observing that ∇ · E = 0 (since ∇ · j = 0 and B · ∇ ×
v = 0) and ∇ × E = O(εRem), the induced electric field
is O(εRem) and therefore can be neglected. So E remains
unchanged up to our approximation.
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Now, eliminating the total pressure by cross differentiation
of (A5) and (A6), one obtains

Reε(ut + uux + vuy)y

= uyyy + 2 ε2 uxxy + Ha2(Byy + ε2 Bxx), (A12)

where the magnetic part can be eliminated in favor of the
velocity. Indeed, by combining (A1) and (A2), we are led to

Byy + ε2 Bxx = ε sin 2θ vy + ε2 cos2 θ vx − sin2 θ uy.

(A13)

So (A12) takes the form

Reε(ut + uux + vuy)y = uyyy + 2 ε2 uxxy + Ha2(ε sin 2θ vy

+ ε2 cos2 θ vx − sin2θ uy). (A14)

Equations (A4) and (A14) must be solved, subject to imperme-
ability and no slip conditions at the wall, u|y=0 = v|y=0 = 0,
the kinematic free surface condition, which can be written in
its global form

qx + ht = 0, (A15)

and normal and tangential stress balances at the free surface,

uy = ε2(4uxhx − vx), (A16)

p = 2 ε2vy − Wε hxx. (A17)

We observe that the magnetic and electric fields do not occur
in the free surface stress balances since Rem is small and due
to the continuity of the normal magnetic and electric field
components. Integrating (A14) with respect to y and using

wall conditions give

Reε(ut + uux + vuy)

= uyy − uyy |y=0 + 2 ε2 uxx

+ Ha2

(
ε v sin 2θ − u sin2 θ + ε2 cos2 θ

∫ y

0
vxdy

)
.

(A18)

The integration constant uyy |y=0 can be deduced from the
projection of the x-momentum equation (A5) on y = 0; we
get

uyy |y=0 = px |y=0 − 3 − Ha2 sin θb1y |y=0. (A19)

Equation (A9) shows that b1y |y=0 is, up to a sign, nothing more
than the z component of the current density. So, from (A10),
one obtains b1y |y=0 = −δ and therefore

uyy |y=0 = px |y=0 − 3 + δHa2 sin θ, (A20)

where the pressure gradient along the plate can be calculated
from the pressure distribution across the fluid layer. For this,
let us first observe that the normal pressure gradient can be
cast in the form

py = ε2vyy − 3ε cot β − εHa2 cos θb1y, (A21)

where b1y is obtained by integrating (A1) with respect to y,
namely,

b1y = −δ + εv cos θ − u sin θ. (A22)

Now, integrating (A21) through the film depth and using the
normal stress balance at the free surface yield the pressure
distribution

p(x,y,t) = ε2(vy + vy |h) − Wεhxx + 3ε cot β(h − y) − ε Ha2 cos θ

{
ε cos θ

∫ y

h

vdy − sin θ

∫ y

h

udy − δ(y − h)

}
. (A23)

Then, expressing the streamwise pressure gradient at the wall allows us to transform (A18) into

Reε(ut + uux + vuy) = uyy + 3 − Ha2 sin θ (δ + u sin θ ) + ε{Whxxx − 3 cot βhx + Ha2 cos θ [sin θ (2v − v|h)

+hx(δ + sin θu|h)]} + ε2

{
2uxx + (ux |h)x + Ha2 cos2 θ

[∫ y

h

vxdy − v|hhx

]}
. (A24)

APPENDIX B

Expressions of the coefficients of the trial functions and the first order correction of the velocity profile.

f ∗
1 (ξ ) = 1

2Ha3
(ξ sinh Haξ − h

tanh Hah

cosh Hah
cosh Haξ ),

f ∗
2 (ξ ) = 1

4Ha4

{
(ξ 2 + 5

h

Ha
tanh Hah − h2) cosh Haξ − 5

Ha
ξ sinh Haξ

}
,

δ1(x,t) = 1

4Ha2

(1 + 4Hah) cosh Hah + (4Hah − 1) sinh Hah − (cosh 3Hah + sinh 3Hah)

cosh 2Hah + sinh 2Hah + Hah(cosh 2Hah − sinh 2Hah − 1) − 1
,

δ2(x,t) = 2Hah(sinh 3Hah + 11 sinh Hah) + (2Hah − 7) cosh 3 Hah + (26 Hah + 7) cosh Hah

8Ha4(Ha h − 1)(cosh 2Hah + sinh 2Hah) + 8Ha4(1 + Hah)
.

α1(x,t) = Ha5qh(cosh2 Hah − Hah sinh Ha h cosh Hah + 1)

sinh Hah[1 − cosh2 Hah(1 + 3h2Ha2)] + Hah cosh Hah[cosh2 Hah(3 + h2Ha2) − 3]
,
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α2(x,t) = Ha5q2(1 − cosh2 Hah + Hah sinh Hah cosh Hah)

sinh Hah[1 − cosh2 Hah(1 + 3h2Ha2)] + Hah cosh Hah[cosh2 Hah(3 + h2Ha2) − 3]
,

α3(x,t) = [1 − cosh2 Hah − h2Ha2 cosh (Hah)2 + 2hHa cosh Hah sinh Hah]Ha3

sinh Hah[1 − cosh2 Hah(1 + 3h2Ha2)] + Hah cosh Hah[cosh2 Hah(3 + h2Ha2) − 3]
,

β1(x,t) = Ha6q cosh Hah(sinh Hah − Hah cosh Hah)

sinh Hah[1 − cosh2 Hah(1 + 3h2Ha2)] + Hah cosh Hah[cosh2 Hah(3 + h2Ha2) − 3]
,

β2(x,t) = Ha7q2(cosh2 Hah − 1)

sinh Hah[1 − cosh2 Hah(1 + 3h2Ha2)] + Hah cosh Hah[cosh2 Hah(3 + h2Ha2) − 3]
.

APPENDIX C

Following common practice, we decompose the velocity and magnetic fields into the base states (ub,0) and (cos θ, sin θ ) and
two-dimensional disturbances (u,v) and (b1,b2), and the momentum OS equations read

Re[ut + ubux + vuby] = −px + ∇2u + Ha2 sin θ (b1y − b2x), (C1)

Re[vt + ubvx] = −py + ∇2v + Ha2 cos θ (b2x − b1y). (C2)

Then, introducing the stream function ψ(x,y,t) = φ(y)eiα(x−ct) and using Eqs. (A1)–(A3) to eliminate the induced magnetic
field in favor of the velocity field lead to a linear set of equations which can be put in the following compact form:

d

dt
(φ,φ′,w,p∗)t =

[
O1 O2

O3 O4

]
(φ,φ′,w,p∗)t , (C3)

with

O1 =
[

0 1
−α2 0

]
, O2 =

[
0 0
1 0

]
, O4 = iα

[
0 1
1 0

]
,

O3 =
[

iα
[

1
2 Ha2 sin 2θ − Reu′

b

]
Ha2 sin2 θ − iαRe(c − ub) + 4α2

α2Re(c − ub) + iα Ha2 cos2 θ ) 1
2 Ha2 sin 2θ

]
,

where w = φ′′ + α2φ is the stress tensor component τxy , p∗ is the modified pressure introduced for convenience through the
transformation p∗ = p + 2ux , and the primes indicate differentiation with respect to y. The system (C3) is subject to the boundary
conditions

φ|0 = φ′|0 = 0, (C4)

[w(c − ub) + u′′
bφ]y=1 = 0, (C5)

(ub − c)p∗ + (α2W + G cot β − δHa2 cos θ )φ|y=1 = 0. (C6)

In order to seek a numerical solution to the OS problem, the so-called Riccati matrixR is introduced through the transformation
(�,�′)t = R(w,p∗)t , which allows us to transform the boundary eigenvalue problem (the complex phase velocity c is regarded
as the eigenvalue parameter) into the following nonlinear initial value problem:

d

dy
R = −RO3R − RO4 + O1R + O2, (C7a)

R(0) = 0. (C7b)

This problem does not suffer from the parasitic growth problem encountered when using the shooting method. It has been
successfully applied by Davey [33] in the hydrodynamic case. On solving (C7a) and (C7b) by a fourth order Runge-Kutta
scheme, the phase velocity must be varied until the boundary conditions at y = 1 are satisfied. An eigenvalue equation is then
deduced in the form

det

⎧⎨⎩
⎛⎝ u′′

b(1)
c−ub(1) 0

δHa2 cos θ−α2W−G cot β
c−ub(1) 0

⎞⎠R +
(

1 0
0 1

)⎫⎬⎭ = 0. (C8)
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