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ABSTRACT

We present a comprehensive study of magnetohydrodynamic (MHD) waves and instabilities in

a weakly-ionized system, such as an interstellar molecular cloud. We determine all the critical

wavelengths of perturbations across which the sustainable wave modes can change radically

(and so can their decay rates), and various instabilities are present or absent. Hence, these

critical wavelengths are essential for understanding the effects of MHD waves (or turbulence)

on the structure and evolution of molecular clouds. Depending on the angle of propagation

relative to the zeroth-order magnetic field and the physical parameters of a model cloud, there

are wavelength ranges in which no wave can be sustained as such. Yet, for other directions

of propagation or different properties of a model cloud, there may always exist some wave

mode(s) at all wavelengths (smaller than the size of the model cloud). For a typical model

cloud, magnetically-driven ambipolar diffusion leads to removal of any support against gravity

that most short-wavelength waves (or turbulence) may have had, and gravitationally-driven

ambipolar diffusion sets in and leads to cloud fragmentation into stellar-size masses, as first

suggested by Mouschovias more than three decades ago – a single-stage fragmentation theory

of star formation, distinct from the then prevailing hierarchical fragmentation picture. The

phase velocities, decay times and eigenvectors (e.g. the densities and velocities of neutral

particles and the plasma, and the three components of the magnetic field) are determined

as functions of the wavelength of the disturbances in a mathematically transparent way and

are explained physically. Comparison of the results with those of nonlinear analytical or

numerical calculations is also presented where appropriate, excellent agreement is found, and

confidence in the analytical, linear approach is gained to explore phenomena difficult to study

through numerical simulations. Mode splitting (or bifurcation) and mode merging, which are

impossible in single-fluid systems for linear perturbations (hence, the term ‘normal mode’

and the principle of superposition), occur naturally in multifluid systems (as do transitions

between wave modes without bifurcation) and have profound consequences in the evolution

of such systems.
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1 IN T RO D U C T I O N – BAC K G RO U N D

A typical molecular cloud which has not yet given birth to stars is a cold (T ≃ 10 K) but complex, partially ionized system, in which

self-gravitational and magnetic forces are of comparable magnitude, with thermal-pressure forces becoming important at high densities

(�3 × 108 cm−3) or along magnetic field lines. Mouschovias (1976) showed that, barring external disturbances, if the magnetic field were

to be frozen in the matter, interstellar clouds that have not yet given birth to stars would remain in magnetohydrostatic equilibrium states.

However, ambipolar diffusion (the relative motion of neutral particles and charged particles attached to magnetic field lines) is an unavoidable

process in partially ionized media. It reveals itself in two distinct ways, depending on whether it is magnetically or gravitationally driven (see
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1752 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

discussion in Section 4). The two kinds of ambipolar diffusion acting together initiate fragmentation and star formation in molecular clouds

(Mouschovias 1987a).

In this fragmentation theory, the evolutionary (or fragmentation, or core formation) timescale is the gravitationally-driven ambipolar-

diffusion timescale, τ
AD

. This does not mean, however, that it takes a time equal to τ
AD

to form stars. The star-formation timescale can be a

fraction or a multiple of τ
AD

, depending on the mass-to-flux ratio of the parent cloud and the degree to which hydromagnetic (HM) waves

contribute to the support of the cloud: the closer to its critical value the mass-to-flux ratio is and/or the greater the contribution of HM waves

to cloud support, the faster the evolution and the shorter the star-formation timescale (e.g. see Mouschovias 1987a; Fiedler & Mouschovias

1993, fig. 9a; Ciolek & Basu 2001; Tassis & Mouschovias 2004, fig. 4).1 The collapse retardation factor, ν
ff

= τ
ff
/τni (where τ

ff
is the

free-fall time and τ ni the neutral-ion collision time), is the factor by which magnetic forces slow down the contraction relative to free-fall.

This was a new theory of fragmentation (or core formation), initiated by the decay, due to ambipolar diffusion, of relatively small-wavelength

perturbations (Mouschovias 1987a, 1991a).

Magnetic braking operates on a timescale shorter than the ambipolar-diffusion timescale and even the free-fall timescale, and keeps

a cloud (or fragment) essentially corotating with the background up to densities ≃104–106 cm−3 and thus resolves the angular momentum

problem of star formation. More specifically, the entire range of periods of binary stars from 10 h to 100 yr was shown to be accounted for

by this self-initiated mode of star formation (Mouschovias 1977). Even single stars and planetary systems become dynamically possible

(Mouschovias 1978, 1983).

Star formation, whether self-initiated or triggered (e.g. by a spiral density wave, or the expansion of an H II region or a supernova remnant;

see review by Woodward 1978) is an inherently nonlinear process. Ambipolar-diffusion–initiated star formation has been studied analytically

(Mouschovias 1979, 1991a,b) and numerically using adaptive grid techniques in axisymmetric geometry up to densities ∼1010 cm−3, by which

isothermality begins to break down (Fiedler & Mouschovias 1992, 1993; Ciolek & Mouschovias 1993, 1994, 1995; Basu & Mouschovias

1994, 1995a,b). More recently, these calculations were extended into the opaque phases of star formation (Desch & Mouschovias 2001;

Tassis & Mouschovias 2007a,b,c; Kunz & Mouschovias 2009, 2010). The key conclusions of the earlier analytical calculations have been

verified and numerous new, specific, quantitative predictions have been made, many of which have been confirmed by observations (e.g. see

Crutcher et al. 1994; Ciolek & Basu 2000; Chiang et al. 2008; reviews by Mouschovias 1995, 1996). One may nevertheless take a step back

from the relatively complicated numerical calculations and ask which results, if any, of the nonlinear simulations can be recovered with a

linear analysis. With one’s confidence increased in the validity of the linear approach (within some self-evident limits), one may then make

new predictions concerning phenomena that cannot be or have not been included yet in the nonlinear calculations.

The propagation, dissipation and growth of perturbations in a physical system depends both on the nature of the perturbations and the

properties of the system. HM waves [or magnetohydrodynamic (MHD) turbulence] seem to play a significant role in molecular clouds on

lengthscales typically greater than ∼0.1 pc. They have been shown to account quantitatively for the observed supersonic but subAlfvénic

spectral linewidths: an observational almost-scatter diagram of linewidth versus size is converted into an almost perfect straight line if plotted

in accordance with a theoretical prediction by Mouschovias (1987a), which relates the linewidth, the size and the magnetic field strength of

an observed object (see Mouschovias & Psaltis 1995, figs 1 and 2, and update by Mouschovias, Tassis & Kunz 2006, figs 1 and 2).

Using a linear analysis as a first step in understanding nonlinear phenomena is not, of course, a new idea. Jeans (1928) used it to obtain

his famous instability criterion for the collapse of a cloud against thermal-pressure forces. Hardly any astrophysical system exists whose

stability with respect to small-amplitude disturbances has not yet been studied by using at least an idealized, mathematically tractable model

of the physical system. A magnetically supported molecular cloud, however, defies a simple linear analysis. First, no realistic equilibrium

states have been obtained by analytical means. Secondly, to study the role of ambipolar diffusion in star formation, one must use at least the

two-fluid MHD equations governing the motions of the neutral particles and the plasma (ions and electrons). In fact, as shown by Ciolek &

Mouschovias (1993), charged (and even neutral) grains play a very significant role in the ambipolar-diffusion–initiated protostar formation.

One then has to use at least the four-fluid (neutral molecules, plasma, negatively-charged and neutral grains) MHD equations even for a linear

analysis to be realistic and relevant to typical molecular clouds. In this paper we use the two-fluid MHD equations to study the propagation,

dissipation and growth of HM waves in an idealized model molecular cloud. In a subsequent paper we consider the effects of the grain fluid(s).

Langer (1978) studied the stability of a model molecular cloud (infinite in extent and uniform in density and magnetic field) with respect to

small-amplitude, adiabatic perturbations in the presence of ambipolar diffusion. For propagation along the magnetic field lines, he recovered,

as one would expect intuitively, the Jeans dispersion relation and instability in the absence of the magnetic field. He then investigated the wave

1 A number of authors assume that molecular clouds are highly magnetically supercritical (e.g. Mac Low & Klessen 2004, and references therein; Lunttila

et al. 2008, 2009). Zeeman observations (e.g. Crutcher 1999) are sometimes used as the observational justification of that assumption. However, geometrical

corrections are ignored in those assumptions. The corrections are necessary because (1) only the line-of-sight component of the magnetic field is measured and

(2) the measured column density of a cloud flattened along the magnetic field lines is statistically greater than that needed for the calculation of the cloud’s

mass-to-flux ratio (e.g. see Shu et al. 1999). However, even if the Zeeman observations were to be taken at face value, without any geometrical correction at

all, they still do not reveal highly supercritical molecular clouds. In order to obtain a magnetically supercritical molecular cloud model of mass ≈1840 M⊙
and mean density ≈100 cm−3, Lunttila et al. assume a magnetic field of only 0.69 or 0.34 µG. These values are smaller by a factor of ≃10 than even the

observed strength of the magnetic field in the general interstellar medium ≈6 µG (Heiles & Crutcher 2005). There is no conceivable physical mechanism that

can possibly increase the density of a forming cloud by two to four orders of magnitude while decreasing its magnetic field strength, especially by that large

a factor (≃10). Hence, the main assumption of many turbulence simulations, i.e. that molecular clouds are highly supercritical, has neither an observational

basis nor any theoretical justification.
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MHD waves in weakly-ionized media 1753

propagation perpendicular to the field lines. He showed that the Jeans instability is still present, that the critical wavenumber for instability

is independent of the magnetic field strength, but that the growth rate depends on both the field strength and the degree of ionization. Aside

from two spurious curves in his fig. 1, which exhibits the growth rate and decay time of some modes, our results for propagation of the

low-frequency modes perpendicular to the magnetic field are in agreement with Langer’s results – he ignored the high-frequency ion modes.

Yet even in this, previously studied case, we offer new analytical expressions and new physical insight and interpretation of the results.

Moreover, we present not only the eigenvalues (frequencies or, equivalently, phase velocities) as functions of wavelength but the eigenvectors

as well (i.e. material velocities, densities, magnetic field components, etc.). We also study propagation at arbitrary angles with respect to the

magnetic field, and we offer a thorough discussion of the wave modes, not just the ambipolar-diffusion–induced instability.

Pudritz (1990) revisited Langer’s problem (with the minor difference of considering isothermal perturbations) but introduced a new

effect: he assumed that there exists a power-law spectrum of small-amplitude waves, and then he studied the effect that this spectrum has on

the ambipolar-diffusion–induced, Jeans-like instability.2 He concluded that the slope of the spectrum (considered as a function of wavelength)

has an important effect on the growth rate of the instability; the steeper the spectrum, the greater the growth rate. (The growth rate of

gravitationally-driven ambipolar diffusion, however, cannot possibly exceed the free-fall rate.)

Several other papers have appeared in print since 1990, studying different aspects of weakly-ionized systems, focusing usually on the

stability of certain MHD modes or shocks, especially as it may relate to the formation of structures in molecular clouds and/or on the

effect of the grain fluid(s) on the allowable wave modes or shocks (e.g. Wardle 1990; Balsara 1996; Zweibel 1998; Kamaya & Nishi 1998,

2000; Cramer, Sakai & Vladimirov 2001; Mamun & Shukla 2001; Falle & Hartquist 2002; Tytarenko, Williams & Falle 2002; Zweibel

2002; Ciolek, Roberge & Mouschovias 2004; Lim, Falle & Hartquist 2005; Oishi & Mac Low 2006; Roberge & Ciolek 2007; Li & Houde

2008; van Loo et al. 2008). In this paper we present a general theory of the propagation, dissipation and growth of MHD waves in partially

ionized media in three dimensions, with emphasis on mathematical transparency of the formulation and analytical solution of the problem,

the physical understanding and interpretation of all modes, including their eigenvectors, the many critical wavelengths that exist and which

separate regimes dominated by different waves or instabilities, and on specific features relevant to the evolution of molecular clouds. As

mentioned above, even when a particular result agrees with previous work, we offer new insight into its physical understanding.

In Section 2 we present the equations governing the behaviour of a weakly-ionized, magnetic, self-gravitating interstellar cloud. The

equations are linearized, Fourier-analysed and put in dimensionless form. The free parameters of the problem are identified, their physical

meaning explained and their typical values given. The different HM modes and their dependence on wavelength for different directions of

propagation relative to the magnetic field are calculated and explained physically in Section 3. Analytical expressions for the phase velocities,

damping timescales, growth timescales, including critical or cutoff wavelengths, are also obtained. A physical discussion of the eigenvectors

is an integral part of this presentation. Section 4 summarizes some of the results and their relevance to the formation of protostellar fragments

(or cores) and to other observable phenomena. It also gives in two Tables all the critical wavelengths and the ranges of wavelengths in which

different modes can exist in molecular clouds, for propagation parallel, perpendicular and at arbitrary angles with respect to the magnetic

field.

2 FO R M U L AT I O N O F TH E P RO B L E M

2.1 Basic equations

We consider a weakly-ionized medium (e.g. an interstellar molecular cloud) consisting of neutral particles (H2 with a 20 per cent helium

abundance by number; subscript n), electrons and singly-charged positive ions (subscript i). For specificity we assume that the ions are

molecular ions (such as HCO+); for the densities of interest in this paper (∼103 cm−3), this is sufficient since atomic ions (such as Na+ or

Mg+) are less abundant (a result of depletion of metals in dense clouds) and, in any case, they have masses comparable to that of HCO+ (for

more detailed treatments of the chemistry, see Ciolek & Mouschovias 1995, 1998, or the appendix of Mouschovias & Ciolek 1999). Interstellar

grains, which have been shown to have significant effects on the formation and contraction of protostellar cores (Ciolek & Mouschovias 1993,

1994, 1995) and in the opaque phase of star formation (Tassis & Mouschovias 2007a,b,c; Kunz & Mouschovias 2009, 2010), are neglected

in this analysis; they are accounted for in a subsequent paper.

The MHD equations governing the evolution of the above two-fluid system are

∂ρn

∂t
+ ∇ · (ρnvn) = 0, (1a)

∂ρi

∂t
+ ∇ · (ρivi) = miζCR

ρn

μmH

−
αdr

mi

ρ2
i , (1b)

ρn

[

d

dt

]

n

vn = −∇Pn − ρn∇ψ −
ρn

τni

(vn − vi) , (1c)

2 The plasma force equation in Pudritz’s (1990) paper (equations [2.2b], [3.4], [A4] and [A10]) and in Langer’s (1978) paper, equation (6), contains an error.

The thermal-pressure force should be multiplied by a factor of 2 to account for the presence of electrons. Although this omission does not affect Langer’s

results because he did not consider the ion modes, it does introduce errors in some of the ion modes considered by Pudritz.
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1754 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

ρi

[

d

dt

]

i

vi =
(∇ × B) × B

4π
−

ρi

τin

(vi − vn) , (1d)

kB

μmH

{

ρn

γ − 1

[

d

dt

]

n

T − T

[

d

dt

]

n

ρn

}

= Ŵn − �n, (1e)

∂B

∂t
= ∇ × (vi × B) , (1f)

Pn = ρn

kBT

μmH

, (1g)

∇2ψ = 4πGρn, (1h)

∇ · B = 0, (1i)

where ρα and vα are, respectively, the density and velocity of species α,
[

d

dt

]

α

=
∂

∂t
+ vα · ∇ (2)

is the time-derivative comoving with species α, ψ the gravitational potential, Pn the neutral pressure, B the magnetic field, T the temperature,

Ŵn and �n the heating and cooling rates (per unit volume) of the neutral gas, and

τni = 1.4
mi + mH2

mi

1

ni〈σw〉iH2

, (3a)

τin = 1.4
mi + mH2

μmH

1

nn〈σw〉iH2

, (3b)

the neutral-ion and ion-neutral mean collision (i.e. momentum-exchange) times. The quantity G is the universal gravitational constant and kB

is Boltzmann’s constant; μ is the mean mass of a neutral particle in units of the atomic-hydrogen mass and is equal to 2.33 for a H2 gas with a

20 per cent helium abundance by number. The quantities ζ
CR

and αdr in the ion mass continuity equation (1b) are, respectively, the cosmic-ray

ionization rate and the coefficient for dissociative recombination of molecular ions and electrons (in cm3 s−1). In writing equation (1b), we

have used the condition of local charge neutrality e(ni − ne) = 0, where ni and ne are, respectively, the number densities of ions and electrons.

We may use the assumption of local charge neutrality because the various HM modes of interest here have frequencies much smaller than the

electron plasma frequency ωp,e = (4πnee
2/me)

1/2 = (4πxenne
2/me)

1/2 = 5.64 × 102(xe/10−7)1/2(nn/103 cm−3)1/2 s−1 (where xe = ne/nn is

the abundance of electrons relative to the neutrals, and is equal to the degree of ionization for weakly-ionized systems); hence, any excess

charge density is quickly shielded by the mobile electrons, so that ne = ni for timescales �ω−1
p,e. Since we neglect the effects of grains in this

paper, capture of ions on to grains is not included on the right-hand side of equation (1b) as a sink term for ions.

Heat conduction and viscosity are not important for the densities and lengthscales of interest (nn ≃ 102–105 cm−3, L ≃ 10−3 to 101 pc),

and are therefore ignored as possible sources of heating/cooling in the model clouds. [Note that the left-hand side of equation (1e) is equal to

ρnT[d/dt]nS, where S is the entropy per gram of matter.]

Because ρn ≫ ρe, ρ i, we include only the neutral density as a source term in Poisson’s equation (1h). Similarly, the gravitational and

thermal-pressure forces (per unit volume) on the plasma (ions and electrons) have been neglected in the plasma force equation (1d). One can

easily show that, for the physical conditions in typical molecular clouds, they are completely negligible in comparison to the magnetic force

exerted on the plasma, except in a direction almost exactly parallel to the magnetic field. Ignoring them parallel to the magnetic field implies

that we are neglecting the ion acoustic waves and the (extremely long-wavelength) Jeans instability in the ions.

The quantity 〈σw〉iH2
in equations (3a) and (3b) is the elastic collision rate between ions and neutrals. For HCO+–H2 collisions,

〈σw〉iH2
= 1.69 × 10−9 cm3 s−1 (McDaniel & Mason 1973). The factor of 1.4 in equations (3a) and (3b) accounts for the inertial effect of He

on the motion of the neutrals (for a discussion, see section 2.1 of Mouschovias & Ciolek 1999).

2.2 Linear system

To investigate the propagation, dissipation and growth of HM waves in molecular clouds, we follow the original analysis by Jeans (1928; see

also Spitzer 1978, section 13.3a; and Binney & Tremaine 1987, section 5.1), and assume that the zeroth-order state is uniform, static (i.e.

vα = 0) and in equilibrium.3 We consider only adiabatic perturbations; therefore, the net heating rate (Ŵn − �n) on the right-hand side of

equation (1e) vanishes.

3 It is well known that the assumption that the gravitational potential is uniform in the zeroth-order state is not consistent with Poisson’s equation (1h) (e.g. see

Spitzer 1978; Binney & Tremaine 1987). However, it is not well known that, for an infinite uniform system, no such inconsistency exists; i.e. there is no net

gravitational force on any fluid element, hence this state is a true, albeit unstable, equilibrium state.
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MHD waves in weakly-ionized media 1755

We write any scalar quantity or component of a vector qtot(r, t) in the form qtot(r, t) = q0 + q(r, t), where q0 refers to the zeroth-order

state, and the first-order quantity q satisfies the condition |q| ≪ |q0|. We thus obtain from equations (1a)–(1i) the linearized system

∂ρn

∂t
= −ρn,0 (∇ · vn) , (4a)

∂ρi

∂t
= −ρi,0 (∇ · vi) +

ρi,0

μmH

xi,0αdrρn − 2
ρi,0

mi

αdrρi, (4b)

ρn,0

∂vn

∂t
= −∇Pn − ρn,0∇ψ −

ρn,0

τni,0

(vn − vi) , (4c)

ρi,0

∂vi

∂t
=

(∇ × B) × B0

4π
−

ρi,0

τin,0

(vi − vn) , (4d)

1

T0

∂T

∂t
= (γ − 1)

1

ρn,0

∂ρn

∂t
, (4e)

∂B

∂t
= ∇ × (vi × B0) , (4f)

Pn

Pn,0

=
ρn

ρn,0

+
T

T0

, (4g)

∇2ψ = 4πGρn, (4h)

∇ · B = 0. (4i)

Equation (4b) has been simplified by using the relation

ζ
CR

ρn,0

μmH

= αdr

(

ρi,0

mi

)2

, (5)

which expresses equilibrium of the ion density in the zeroth-order state, as a result of balance between the rate of creation of ions from

ionization of neutral matter by high-energy (E � 100 MeV) cosmic rays and the rate of destruction of ions by electron–molecular-ion

dissociative recombinations. This relation allowed us to replace ζ
CR

by αdr(ρ i,0/mi)
2(μmH/ρn,0) in equation (4b). The quantity xi,0 ≡ ni,0/nn,0

in equation (4b) is the degree of ionization (where ni,0 and nn,0 are the number densities of ions and neutrals in the unperturbed state). For an

ideal gas (with only translational degrees of freedom), γ = 5/3 in equation (4e).

We seek plane-wave solutions of the form q(r, t) = q exp(ik · r − iωt), where k is the propagation vector, ω the frequency and q the

amplitude (in general, complex) of the perturbation. Equations (4a)–(4i) reduce to

ωρn = ρn,0k · vn, (6a)

ωρi = ρi,0k · vi + i
ρi,0

μmH

xi,0αdrρn − i2
ρi,0

mi

αdrρi, (6b)

ωvn =

(

C2
a,0k −

1

τ 2
ff,0

k

)

ρn

ρn,0

k

k
−

i

τni,0

vn +
i

τni,0

vi, (6c)

ωvi = −
(k × B) × B0

4πρi,0

+
i

τin,0

vn −
i

τin,0

vi, (6d)

ωB = −k × (vi × B0) , (6e)

k · B = 0, (6f)

where

Ca,0 ≡
(

γPn,0

ρn,0

)1/2

=
(

γ kBT0

μmH

)1/2

(7)

is the adiabatic speed of sound in the neutrals, and

τ
ff,0

≡
(

4πGρn,0

)−1/2
(8)

is the (one-dimensional) neutral free-fall timescale. The quantities T , Pn and ψ have been eliminated by using equations (4e), (4g) and (4h),

respectively.

2.3 The dimensionless problem

We put equations (6a)–(6f) in dimensionless form by adopting ρn,0, B0, τ
ff,0

and Ca,0 as units of density, magnetic field strength, time and

speed, respectively. The implied unit of length is Ca,0τff,0
, which is proportional to the one-dimensional thermal Jeans lengthscale λJ,th (see

Section 3.1.1). For convenience, we adopt a Cartesian coordinate system such that the propagation vector k is in the x-direction and the

zeroth-order magnetic field B0 is in the (x, z)-plane at an angle θ with respect to k (see Fig. 1). Then the three unit vectors are
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1756 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

Figure 1. Coordinate system used in analysing the linearized hydromagnetic equations. The x-axis is aligned with the propagation vector k, and the magnetic

field B0 is in the (x, z)-plane at an angle θ with respect to k (see equations 9a–9c).

êx ≡
k

k
, (9a)

êy ≡
B0 × k

|B0 × k|
, (9b)

êz ≡ êx × êy . (9c)

One may write B0 = êxB0 cos θ + êzB0 sin θ , and the dimensionless form of equations (6a)–(6f) can be written in component form as

ω̃ρ̃n = k̃ṽn,x, (10a)

ω̃ρ̃i = ρ̃i,0k̃ṽi,x + iρ̃2
i,0α̃m,drρ̃n − i2ρ̃i,0α̃m,drρ̃i, (10b)

ω̃ṽn,x =
(

k̃ −
1

k̃

)

ρ̃n −
i

τ̃ni,0

ṽn,x +
i

τ̃ni,0

ṽi,x, (10c)

ω̃ṽi,x =
i

τ̃in,0

ṽn,x −
i

τ̃in,0

ṽi,x + ṽ2
A,i,0k̃B̃z sin θ, (10d)

ω̃B̃x = 0, (10e)

ω̃ṽn,y = −
i

τ̃ni,0

ṽn,y +
i

τ̃ni,0

ṽi,y, (10f)

ω̃ṽi,y =
i

τ̃in,0

ṽn,y −
i

τ̃in,0

ṽi,y − ṽ2
A,i,0k̃B̃y cos θ, (10g)

ω̃B̃y = −k̃ṽi,y cos θ, (10h)

ω̃ṽn,z = −
i

τ̃ni,0

ṽn,z +
i

τ̃ni,0

ṽi,z, (10i)

ω̃ṽi,z =
i

τ̃in,0

ṽn,z −
i

τ̃in,0

ṽi,z − ṽ2
A,i,0k̃B̃z cos θ, (10j)

ω̃B̃z = k̃ṽi,x sin θ − k̃ṽi,z cos θ, (10k)

k̃B̃x = 0. (10l)

Note that equation (10l) is redundant in that it gives the same information as equation (10e), namely, that there cannot be a nonvanishing

component of the perturbed magnetic field in the direction of propagation.

The dimensionless free parameters appearing in equations (10a)–(10l) are given by

τ̃ni,0 ≡
τni,0

τ
ff,0

= 0.506

(

10−7

xi,0

) (

103 cm−3

nn,0

)1/2

, (11a)
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MHD waves in weakly-ionized media 1757

τ̃in,0 ≡
τin,0

τ
ff,0

= 6.29 × 10−7

(

103 cm−3

nn,0

)1/2

, (11b)

ṽA,i,0 ≡
vA,i,0

Ca,0

= 5.00 × 103

(

B0

30 µG

) (

10−7

xi,0

)1/2 (

10 K

T

)1/2 (

103 cm−3

nn,0

)1/2

, (11c)

α̃m,dr ≡
αdr

mi

ρn,0τff,0
= 1.41 × 109

( αdr

10−6 cm3 s−1

) ( nn,0

103 cm−3

)1/2
(

29 amu

mi

)

; (11d)

they represent, respectively, the neutral-ion collision time, the ion-neutral collision time, the ion Alfvén speed vA,i,0 = B0/(4πρi,0)1/2, and

the electron–molecular-ion dissociative recombination rate per unit ion mass. In evaluating the numerical constants in equations (11a)–(11d)

we have used μ = 2.33 and γ = 5/3; we have also normalized the ion mass to that of HCO+ (= 29 amu). For any given ion mass mi and

mean mass per neutral particle μ (in units of mH), the ion mass fraction ρ̃i,0 and the cosmic-ray ionization rate ζ̃
CR

are not free parameters

in the problem; the former is determined by the ratio τ̃in,0/τ̃ni,0 and the latter by the product ρ̃2
i,0α̃m,dr, where α̃m,dr is the dimensionless

dissociative-recombination coefficient for molecular ions.

We note that τ̃ni,0 = 1/ν
ff,0

, where ν
ff,0

is the collapse retardation factor, which is a parameter that measures the effectiveness with which

magnetic forces are transmitted to the neutrals via neutral-ion collisions (Mouschovias 1982), and appears naturally in the timescale for the

formation of protostellar cores by ambipolar diffusion (e.g. see reviews by Mouschovias 1987a, section 2.2.5; Mouschovias 1987b, section

3.4; Mouschovias 1991b, section 2.3.1; and discussions in Fiedler & Mouschovias 1992, 1993; Ciolek & Mouschovias 1993, 1994, 1995;

Basu & Mouschovias 1994, 1995). It is essentially the factor by which ambipolar diffusion in a magnetically supported cloud retards the

formation and contraction of a protostellar fragment (or core) relative to free fall up to the stage at which the mass-to-flux ratio exceeds the

critical value for collapse. It is discussed further in Section 3.2.1.

Equations (10a)–(10k) govern the behaviour of small-amplitude disturbances in a weakly-ionized cloud; they (without equation 10e)

form a 10 × 10 homogeneous system. In general, the dispersion relation ω̃(k̃) can be obtained by setting the determinant of the coefficients

equal to zero. To each root (eigenvalue) of the dispersion relation there corresponds an eigenvector (or ‘mode’), whose components are the

dependent variables appearing in equations (10a)–(10k). (Note that, once the dependent variables in equations 10a–10k are known, one may

use equations 4e, 4g and 4h to solve for the perturbed quantities T , Pn and ψ , respectively.) Since, in general, ω̃ is complex, modes with

Im{ω̃} < 0 decay and those with Im{ω̃} > 0 grow exponentially in time. In what follows we investigate the propagation, dissipation and

growth of the allowable HM modes in typical interstellar molecular clouds.

3 SO L U T I O N , P H Y S I C A L I N T E R P R E TAT I O N A N D A P P L I C AT I O N S

For specificity, we consider a representative molecular cloud of density nn,0 = 2 × 103 cm−3, magnetic field strength B0 = 30 µG, temperature

T = 10 K, dissociative recombination rate αdr = 10−6 cm3 s−1 and cosmic-ray ionization rate ζ
CR

= 5 × 10−17 s−1, implying a degree of

ionization xi,0 = 1.58 × 10−7 (and, hence, ion mass fraction ρ̃i,0 = 1.97 × 10−6). The unit of time τ
ff,0

(see equation 8) for this model is

equal to 3.92 × 105 yr, and the unit of speed is Ca,0 = 0.243 km s−1 (see equation 7). Hence, the unit of length is Ca,0τff,0
= 9.72 × 10−2 pc.

The four (dimensionless) free parameters of the problem (see equations 11a–11d) are the ion-neutral collision time τ̃in,0 = 4.45 × 10−7,

the neutral-ion collision time τ̃ni,0 = 0.226, the Alfvén speed in the ions ṽA,i,0 = 2.81 × 103 and the dissociative-recombination coefficient

α̃m,dr = 1.99 × 109. (These imply a dimensionless cosmic-ray ionization rate ζ̃
CR

= 6.19 × 10−4.)

In the following subsections we present the solutions for propagation along (θ = 0◦), perpendicular (θ = 90◦) and at intermediate angles

(θ = 45◦, 10◦ and 80◦) with respect to the unperturbed magnetic field B0 (see Fig. 1). We use the velocity vector v in relation to k as defining

the polarization of each wave mode. Modes that have only ṽn,x , ṽi,x �= 0 are said to be longitudinally polarized; it follows from equation (10a)

that these modes are compressible, i.e. ρ̃n �= 0. Modes that have ṽn,x , ṽi,x = 0 are said to be transversely polarized; they are incompressible,

i.e. ρ̃n = 0. Note in what follows that, since the thermal pressure in the plasma has been neglected, no ion sound waves are present.

3.1 Propagation along B0 (k ‖ B0)

For θ = 0◦, equations (10a)–(10k) become uncoupled in the three mutually orthogonal directions êx , êy and êz. The modes polarized in the

x-direction are given by (see equations 10a–10d)

ω̃ρ̃n = k̃ṽn,x, (12a)

ω̃ρ̃i = ρ̃i,0k̃ṽi,x + iρ̃2
i,0α̃m,drρ̃n − i2ρ̃i,0α̃m,drρ̃i, (12b)

ω̃ṽn,x =
(

k̃ −
1

k̃

)

ρ̃n −
i

τ̃ni,0

ṽn,x +
i

τ̃ni,0

ṽi,x, (12c)

ω̃ṽi,x =
i

τ̃in,0

ṽn,x −
i

τ̃in,0

ṽi,x . (12d)
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1758 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

Equations (10f)–(10h) yield for the modes with motions in the y-direction

ω̃ṽn,y = −
i

τ̃ni,0

ṽn,y +
i

τ̃ni,0

ṽi,y, (13a)

ω̃ṽi,y =
i

τ̃in,0

ṽn,y −
i

τ̃in,0

ṽi,y − ṽ2
A,i,0k̃B̃y, (13b)

ω̃B̃y = −k̃ṽi,y, (13c)

while equations (10i)–(10k) for the modes polarized in the z-direction become

ω̃ṽn,z = −
i

τ̃ni,0

ṽn,z +
i

τ̃ni,0

ṽi,z, (14a)

ω̃ṽi,z =
i

τ̃in,0

ṽn,z −
i

τ̃in,0

ṽi,z − ṽ2
A,i,0k̃B̃z, (14b)

ω̃B̃z = −k̃ṽi,z. (14c)

3.1.1 Longitudinal modes for k ‖ B0: eigenfrequencies and eigenvectors

From equations (12a)–(12d) the dispersion relation for the longitudinal modes is

(

ω̃ + 2iρ̃i,0α̃m,dr

)

[

ω̃3 + i

(

1

τ̃in,0

+
1

τ̃ni,0

)

ω̃2 − (k̃2 − 1)ω̃ −
i

τ̃in,0

(k̃2 − 1)

]

= 0. (15)

The four eigenvalues and eigenvectors as functions of dimensionless wavelength λ̃ (=2π/k̃) are obtained from direct numerical solution

of the eigensystem (12a)–(12d) and displayed in Figs 2 and 3. Fig. 2(a) shows the absolute value of the phase velocity ṽφ (=ω̃r/k̃, where

ω̃r = Re{ω̃}). The damping (or dissipation) timescale τ̃
d

(= −1/ω̃i, ω̃i < 0, where ω̃i = Im{ω̃}) is exhibited in Fig. 2(b); growth times τ̃gr

(= 1/ω̃i, ω̃i > 0) are shown in Fig. 2(c). The absolute values of the ṽn,x-components of the eigenvectors for the various modes are shown

in Fig. 3(a), while those of ṽi,x , ρ̃n and ρ̃i are displayed in Figs 3(b)–(d), respectively. Note that, in Figs 3(a)–(d), all the eigenvectors have

been normalized to unity; i.e. they satisfy the condition
(

|ρ̃n|2 + |ρ̃i|2 + |ṽn,x |2 + |ṽi,x |2
)1/2 = 1. The first mode for this system of equations

is a nonpropagating, ion collisional-decay mode, i.e. the ions are streaming through a sea of fixed neutrals. Their motion decays because of

ion-neutral collisions. It is characterized by ṽn,x = 0 = ρ̃n. Solving equations (12a)–(12d) under these conditions (or, equivalently, solving

equation 15 in the limit |ω̃| ≫ 1/τ̃ni,0), one finds

ω̃ = −
i

τ̃in,0

. (16)

Hence, ṽφ = 0 and τ̃
d

= τ̃in,0 = 4.45 × 10−7 (see Fig. 2b, line labelled ‘i,coll’). This mode is independent of wavelength (see Figs 2b, 3a–d,

lines labelled ‘i,coll’).

The second mode is one in which density enhancements in the ions rapidly decay by dissociative recombinations of molecular ions and

electrons; because the degree of ionization is so small (xi0 = 1.58 × 10−7), this mode does not involve any motion of the neutrals and leaves

the neutral density essentially unchanged (see Figs 3a and c, lines labelled ‘i,rec’). Solving equation (12b) with ρ̃n = 0 and ṽi,x = 0, one finds

that ṽφ = 0 and

τ̃
d

=
(

2α̃m,drρ̃i,0

)−1
, (17)

which is equal to 1.28 × 10−4 for the model described here. It is again the case that this mode is independent of k̃ (see Figs 2b and 3a–d, lines

labelled ‘i,rec’).

The remaining two longitudinal modes are low-frequency modes, with |ω̃| ≪ 1/τ̃in,0. Because the inertia of the ions along the magnetic

field is small (ρ i,0 ≪ ρn,0), the neutrals are able to sweep up the ions, and, as a result, ṽi,x ≃ ṽn,x (see Figs 3a and b). For these conditions,

equation (15) yields the thermal Jeans modes

ω̃ = ±k̃[1 − (1/k̃2)]1/2 (18)

(e.g. see Chandrasekhar 1961, chapter XIII; or Spitzer 1978, section 13.3a). Therefore, for k̃ > 1,

ṽφ = ±

[

1 −
(

λ̃

2π

)2
]1/2

; (19)

i.e. the two acoustic waves have the same phase velocity, modified by gravity, but propagate in opposite directions (along the field lines).

In the limit λ̃ ≪ 1, ṽφ = ±1 and τ̃
d

= ∞; i.e. these modes are undamped sound waves (recall that the unit of speed is Ca,0). At longer

wavelengths, gravitational forces become increasingly more important and the phase velocity becomes less than unity (see Fig. 2a). The

waves are gravitationally suppressed (i.e. ṽφ = 0) at wavelengths greater than the thermal Jeans wavelength

λ̃J,th = 2π (20)
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MHD waves in weakly-ionized media 1759

Figure 2. Eigenvalues of longitudinal modes as functions of wavelength, normalized to Ca,0τff,0
= 9.72 × 10−2 pc, at an angle of propagation θ = 0◦ with

respect to B0. Because of degeneracy, there are a total of four different modes at each wavelength. Each curve is identified by a label (a mnemonic for the

mode it represents) as explained in Table 1. (a) Absolute value of the phase velocity vφ , normalized to Ca,0 = 0.243 km s−1. Also overplotted as boxes with

interior crosses (×) are values obtained from equation (19). (b) Damping timescale τ
d
, in units of τ

ff,0
= 3.92 × 105 yr. Also shown (open circles) are values

calculated from equation (21). (c) Growth timescale τgr , normalized to τ
ff,0

. Also plotted (open circles) are values calculated using equation (21).

(=2πCa,0τff,0
= 0.611 pc, dimensionally). For λ̃ > λ̃J,th (i.e. k̃ < 1), it follows from equation (18) that each of the Jeans modes splits into two

separate, conjugate modes. One is a gravitational growth (or fragmentation) mode, with timescale

τ̃gr = [1 − (λ̃J,th/λ̃)2]−1/2 (21)

(see Fig. 2c). This is the classical Jeans instability. As λ̃ → ∞, τ̃gr → 1; dimensionally, this is just the free-fall timescale, τ
ff,0

. The

corresponding eigenvector is labelled as ‘ff+’ in Figs 3(a)–(d). The other mode is one of exponential decay, with damping timescale τ̃
d

also

given by equation (21) (see equation 18); it is the curve labelled by ‘ff−’ in Fig. 2(b). The eigenvector, also labelled by ‘ff−’, is shown in

Figs 3(a)–(d). This mode is one in which an initial density enhancement causes expansive motion, opposed by gravity, at such a rate that the

density enhancement decreases to zero at the same time that the velocity vanishes. Hence, this is a monotonically decaying mode; no wave

motion is involved. It is similar to the well-known classical cosmological problem of an expanding ‘flat’ universe. Note that, as λ̃ → ∞,

τ̃
d

→ 1.

In order to better understand the neutral thermal (Jeans) modes, we examine more closely the eigenvectors (and their features shown in

Figs 3a–d). We substitute equation (18) in equation (12a), and we use the normalization condition |ρ̃n|2 + |ṽn,x |2 + |ṽi,x |2 = 1 and the fact

that |ṽn,x | = |ṽi,x | to find that

|ρ̃n|2 =
k̃2

3k̃2 − 2
(22a)

and

|ṽn,x |2 =
k̃2 − 1

3k̃2 − 2
. (22b)
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1760 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

Figure 3. Magnitudes of eigenvectors of longitudinal modes for θ = 0◦ as functions of wavelength, normalized as in Fig. 2. As in Fig. 2, there are a total

of four modes. All eigenvectors have been normalized to unity. Each curve is identified by a label (a mnemonic for the mode it represents) as explained in

Table 1. (a) Longitudinal (x-) component of the neutral velocity, |vn,x|. (b) Longitudinal (x-) component of the ion velocity, |vi,x|. (c) Neutral density |ρn|. (d)

Ion density |ρi|.

From these equations, it follows that

(a) as k̃ → ∞ (λ̃ → 0), |ρ̃n| = |ṽn,x | = |ṽi,x | → 1/
√

3 = 0.577, as seen in Figs 3(a)–(c) (curves labelled ‘acoustic’);

(b) as k̃ → 1 (λ̃ → 2π), |ρ̃n| → 1 but |ṽn,x | = |ṽi,x | → 0, as also seen in Figs 3(a)–(c);

(c) for k̃ < (2/3)1/2 [i.e. λ̃ > (3/2)1/2 2π = 7.70], ρ̃n becomes imaginary (its absolute value is shown in Fig. 3c);

(d) for (2/3)1/2 < k̃ < 1 (i.e. 2π < λ̃ < 7.70), ṽn,x = ṽi,x is imaginary (Figs 3a and b show the absolute values of these velocities).

For the convenience of the reader, Table 1 contains a list of all abbreviations (and their meaning) used to label the curves in all the figures

of this paper.

3.1.2 Transverse modes for k ‖ B0: eigenfrequencies and eigenvectors

Comparing the systems of equations for the modes with motions only in the y- and z-directions, (13a)–(13c) and (14a)–(14c), we note that

they are identical. Hence, for propagation along the field (θ = 0◦), ω̃(k̃) is degenerate for these transverse modes. Fig. 4(a) displays the

absolute value of their phase velocity, obtained by solving the dispersion relation

ω̃3 + i

(

1

τ̃ni,0

+
1

τ̃in,0

)

ω̃2 − (ṽA,i,0k̃)2ω̃ − i
(ṽA,i,0k̃)2

τ̃ni,0

= 0. (23)

(Note that, because of the degeneracy, there are six different modes.) Damping timescales are shown in Fig. 4(b) as functions of λ̃. None of

the modes is unstable. The absolute values of the eigenvectors are exhibited in Fig. 5: |ṽn,y | and |ṽn,z| in Fig. 5(a), |ṽi,y | and |ṽi,z| in Fig. 5(b)

and |B̃y | and |B̃z| in Figs 5(c) and (d). Note that the |B̃y | (and |B̃z|) axis in Fig. 5(d) is logarithmic in order to show the behaviour of the modes

at small wavelengths.
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MHD waves in weakly-ionized media 1761

Table 1. Glossary of labels in figures.

Label Meaning

acoustic Neutral acoustic wave

i,coll Ion collisional-decay mode

i,rec Ion dissociative-recombination mode

ff+ Jeans free-fall mode

ff− Conjugate Jeans (‘cosmological’) mode

i,A Ion Alfvén wave

n,A Neutral Alfvén wave

AD Magnetically-driven ambipolar-diffusion mode

n,coll Neutral collisional-decay mode

i,ms Ion magnetosonic wave

n,ms Neutral magnetosonic wave

PD Neutral pressure-driven diffusion mode

AD,fr Neutral gravitationally-driven AD fragmentation mode

i,fast Ion fast wave

n,slow Neutral slow wave

n,fast Neutral fast wave

Figure 4. Eigenvalues of transverse modes as functions of wavelength, at an angle of propagation θ = 0◦ with respect to B0. All normalizations are as in

Fig. 2. At each wavelength there are six different modes in all: three with motions in the y-direction, and three with motions in the z-direction. (a) Absolute

value of phase velocity, |vφ |. Phase velocities resulting from equations (26) and (33) are also displayed (circles with interior crosses and circles with interior

asterisks, respectively). (b) Damping timescale τ
d
. Also shown are values (downward-facing triangles) calculated from equation (29a) and values (crosses)

calculated from equation (34a).

From the dispersion relation (23) and Figs 4(a) and 5(a), it is evident that small-wavelength, high-frequency (|ω̃| � 1/τ̃in,0) ion modes

propagate with ṽn,y , ṽn,z ≃ 0. Solving equations (13a)–(13c) (or, equivalently, equations 14a–14c) in these limits yields

ω̃ = ±ṽA,i,0k̃

[

1 −
(

1

2ṽA,i,0τ̃in,0k̃

)2
]1/2

−
i

2τ̃in,0

. (24)

(In deriving equation 24 we have used the fact that 1/τ̃in,0 ≫ 1/τ̃ni,0; see equations 11a and 11b.) For λ̃ less than the ion Alfvén cutoff

wavelength

λ̃A,i ≡ 4πṽA,i,0τ̃in,0, (25)

waves propagate with

ṽφ = ±ṽA,i,0

[

1 −
(

λ̃

λ̃A,i

)2
]1/2

; (26)

λ̃A,i = 1.57 × 10−2 (i.e. λA,i = 1.53 × 10−3 pc) for the model cloud parameters specified at the beginning of Section 3. Hence, for λ̃ ≪ λ̃A,i,

the waves are Alfvén waves, with ṽφ = ±ṽA,i,0 = 2.81×103 (see Fig. 4a, curve labelled ‘i,A’). There are four waves in all. The two polarized

in the y-direction are normal, shear Alfvén waves, and the two polarized in the z-direction are modified Alfvén waves. (At θ > 0 the latter set

of waves are fast waves.) All the waves are damped on the timescale τ̃
d

= 2τ̃in,0 (see equation 24 and Fig. 4b, curve labelled ‘i,A’) because

of collisions with the neutrals. It is noteworthy that the damping time is longer by a factor of 2 than that (τ̃in,0) referring to the dissipation

(momentum exchange) of ion streaming motion relative to the neutrals. This is so because, although a typical ion indeed loses memory of the
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1762 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

Figure 5. Magnitudes of eigenvectors of transverse modes for θ = 0◦ as functions of wavelength. All labels and normalizations are as in Fig. 3 and Table 1.

As in Fig. 4, there are six modes at each wavelength. (a) Transverse (y- and z-) components of the neutral velocities, |vn,y|, and |vn,z|. (b) Transverse (y- and

z-) components of the ion velocities, |vi,y| and |vi,z|. (c, d) Transverse (y- and z-) components of the magnetic field, |By| and |Bz|, are shown on two different

vertical scales, which bring out different important features (see text).

collective (wave) motion on a timescale τ̃in,0, half of the wave energy is stored as potential energy in the magnetic field. Therefore, it takes

twice as long for collisions to damp the wave than it takes them to damp ion streaming.

At λ̃ = λ̃A,i the ion Alfvén waves are critically damped. For λ̃ ≥ λ̃A,i, the ion-neutral collision frequency 1/τ̃in,0 is greater than the wave

(angular) frequency ω̃, and the waves can no longer propagate (ṽφ = 0). At λ̃ = λ̃A,i there is a bifurcation in the ion modes (see Fig. 4b). Two

of the modes (one polarized in the y-direction and the other in the z-direction), corresponding to the negative root in equation (24), become

ion collisional-decay modes (discussed earlier in Section 3.1.1; curves labelled ‘i,coll’ in Figs 4b and 5a–d), with

τ̃
d

=
2τ̃in,0

1 + [1 − (λ̃A,i/λ̃)2]1/2
, λ̃ ≥ λ̃A,i. (27)

In the limit λ̃ ≫ λ̃A,i, B̃y , B̃z → 0 (see Figs 5c and d), and τ̃
d

→ τ̃in,0, just as in equation (16). Thus, as λ̃ increases, magnetic restoring

forces on the ions become negligible, and the motion of the ions simply decays on a timescale τ̃in,0 because of collisions with the neutrals

(see Fig. 4b, curve labelled ‘i,coll’). The remaining two ion modes (again, one polarized in the y-direction and the other in the z-direction),

corresponding to the positive roots of the dispersion relation (equation 24), are magnetically-driven ambipolar-diffusion modes (see Fig. 4b,

curve labelled ‘AD’), in which the ions (and electrons) diffuse quasistatically (i.e. with negligible acceleration; this is equivalent to having

|ω̃| ≪ 1/τ̃in,0 in equations 13b and 14b) relative to the stationary neutrals. The damping timescale for these modes is

τ̃
d

=
2τ̃in,0

1 − [1 − (λ̃A,i/λ̃)2]1/2
, (28)

which is the curve labelled as ‘AD’ in Fig. 4(b). In the limit λ̃ ≫ λ̃A,i, τ̃
d

becomes equal to the ambipolar-diffusion timescale,

τa =
λ̃2

4π2D̃a,i

, (29a)

C© 2011 The Authors, MNRAS 415, 1751–1782

Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
1
5
/2

/1
7
5
1
/1

0
4
3
2
8
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



MHD waves in weakly-ionized media 1763

where

D̃a,i ≡
λ̃2

A,i

16π2τ̃in,0

= ṽ2
A,i,0τ̃in,0 (29b)

is the ion ambipolar-diffusion coefficient. For the values of the free parameters cited at the beginning of Section 3, D̃a,i = 3.52.

In Figs 4(b) and 5 it is also evident that there exists two small-wavelength, low-frequency (|ω̃| ≪ 1/τ̃in,0) neutral modes. In these modes

the plasma and magnetic field lines are essentially stationary (i.e. ṽi,y ≃ 0, ṽi,z ≃ 0 and B̃y ≃ 0, B̃z ≃ 0). Under these constraints, equations

(13a)–(13c) (and, similarly, equations 14a–14c) yield

ω̃ = −
i

τ̃ni,0

. (30)

These modes are the neutral collisional-decay modes (see curves labelled by ‘n,coll’ in Figs 4 and 5), in which the motion of the neutrals in

the y- and z-directions decays due to collisions with ions that are held fixed in space by the magnetic field; ṽφ = 0 and τ̃
d

= τ̃ni,0 = 0.226 for

these modes (see Fig. 4b).

At longer wavelengths (∼λ̃A,n, see equation 32), collisions between the neutrals and the ions cause the two fluids to begin to move

together. Hence, magnetic forces on the ions are more readily transmitted to the neutrals. For large enough λ̃, the neutrals can sustain a HM

wave. At the point λ̃ = λ̃A,n, the ion ambipolar-diffusion modes and the neutral collisional-decay modes merge (see Fig. 4b); waves can

propagate at longer wavelengths. In the limit |ω̃| ≪ 1/τ̃in,0, the dispersion relation (23) has the solution

ω̃ = ±ṽA,i,0

(

τ̃in,0

τ̃ni,0

)1/2

k̃

[

1 −
(

ṽA,i,0τ̃in,0k̃
)2

4(τ̃in,0/τ̃ni,0)

]1/2

−
i

2
ṽ2

A,i,0τ̃in,0k̃
2, (31a)

= ±ṽA,n,0k̃

[

1 −
1

4

(

ṽA,n,0τ̃ni,0k̃
)2

]1/2

−
i

2
ṽ2

A,n,0τ̃ni,0k̃
2, (31b)

where ṽA,n,0 [=vA,n,0/Ca,0, vA,n,0 ≡ B0/
(

4πρn,0

)1/2
] is the dimensionless Alfvén speed in the neutrals. In equation (31b) we have eliminated

τ̃in,0 and ṽA,i,0 in favour of τ̃ni,0 and ṽA,n,0 (see equations 3a and 3b, and recall that ρn,0 = μmHnn,0). It follows from equation (31b) that ṽφ > 0

for all λ̃ > λ̃A,n, where

λ̃A,n = π

(

τ̃in,0

τ̃ni,0

)1/2

ṽA,i,0τ̃ni,0 = πṽA,n,0τ̃ni,0 (32)

is the neutral Alfvén cutoff wavelength. (This is referred to simply as the Alfvén lengthscale in Mouschovias 1987a, 1991a.) In the typical

model cloud, λ̃A,n = 2.80, which means that the dimensional Alfvén cutoff wavelength is λA,n = 0.273 pc. For λ̃ > λ̃A,n, equations (31b) and

(32) yield

ṽφ = ±ṽA,n,0

[

1 −
(

λ̃A,n

λ̃

)2
]1/2

. (33)

In the limit λ̃ ≫ λ̃A,n, ṽφ → ±ṽA,n,0 (= ±3.94, since |vA,n,0| = 0.957 km s−1); these modes are Alfvén waves in the neutrals (see curves

labelled ‘n,A’ in Figs 4 and 5). The two (oppositely propagating) waves polarized in the y-direction are normal Alfvén waves. The two waves

polarized in the z-direction are modified Alfvén waves; at θ > 0 they are fast waves. As seen from equation (31b), these modes damp on the

ambipolar-diffusion timescale

τ̃
d

= 2τa = 2
λ̃2

4π2D̃a,n

, (34a)

where

D̃a,n ≡
λ̃2

A,n

π2τ̃ni,0

= ṽ2
A,n,0τ̃ni,0 (34b)

is the neutral ambipolar-diffusion coefficient. Comparing equations (29b) and (34b), we note that D̃a,n = D̃a,i (=3.52 for this typical model

cloud). We may therefore denote the ambipolar-diffusion coefficient simply as D̃a, without the subscript i or n. One should bear in mind,

however, that the expression for τ̃
d

for the neutral Alfvén waves contains an extra factor of 2 compared to the expression for τ̃
d

for the ion

ambipolar-diffusion mode (compare equations 34a and 29a, and make use of equations 34b and 29b). As explained in the case of the ion

Alfvén waves, it takes twice as long to damp a wave than it takes to damp streaming motion (or diffusion). The existence of λA,n = πvA,nτni

for Alfvén waves in the neutrals was first shown by Kulsrud & Pearce (1969), who studied the excitation and propagation of HM waves in

the intercloud medium due to cosmic-ray streaming (see, also, Parker 1967). Mouschovias (1987a, 1991a, b) discussed the importance of

the lengthscale λ̃A,n and the thermal Jeans lengthscale λ̃J,th in the formation of protostellar fragments (or cores) in self-gravitating molecular

clouds. He proposed that fragmentation is initiated by the decay of HM waves due to magnetically-driven ambipolar diffusion and the almost

simultaneous onset of a Jeans-like instability, due to gravitationally-driven ambipolar diffusion (see discussion in Section 4 below).
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1764 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

3.1.3 Transverse modes for k ‖ B0: further discussion of eigenvectors

More insight in the physics of the transverse modes can be gained by understanding analytically certain key features of the eigenvectors

shown in Figs 5(a)–(d). In the case of the ion Alfvén mode, we may ignore the motion of and the dissipation due to the neutrals at short

wavelengths and we may use equations (13b), (13c), and the dispersion relation ω̃ ≃ ∓ṽA,i,0k̃ (see equation 23), to find that

ṽi,y

B̃y

≃ ∓ṽA,i,0. (35)

(The ∓ sign on the right-hand side of equation 35 refers to propagation in the ±x-direction.) Since these modes are incompressible (i.e.

ρ̃n = 0 = ρ̃i), we may use the normalization condition

|ṽi,y |2 + |B̃y |2 = 1 (36)

to find that

ṽi,y ≃
ṽA,i,0

(

ṽ2
A,i,0 + 1

)1/2
≃ 1 (37a)

and

B̃y ≃ ∓
1

(

ṽ2
A,i,0 + 1

)1/2
≃ ∓

1

ṽA,i,0

. (37b)

Since ṽA,i,0 = 2.81 × 103, it follows from the last equation that |B̃y | ≃ 3.56 × 10−4. This is in agreement with the curve labelled ‘i,A’

in Fig. 5(d), which is the same as Fig. 5(c) but with a logarithmic scale for |B̃y | so as to show this small but finite value of |B̃y | at small λ̃.

Similarly, the result ṽi,y ≃ 1 is as shown in Fig. 5(b), curve labelled ‘i,A’.

As λ̃ increases, |ṽi,y | remains large and |ṽn,y | (and |B̃y |) small even for λ̃ > λ̃A,i (see Figs 5a–d, curves labelled ‘i,A’); the ion ambipolar-

diffusion mode maintains a significant |ṽi,y | although ion Alfvén waves do not exist for λ > λ̃A,i. As λ̃ increases towards the neutral Alfvén

cutoff wavelength λ̃A,n (see equation 32), |ṽi,y | decreases and |ṽn,y | increases because the ions begin to couple to (and induce motions in) the

neutrals via collisions. At exactly λ̃ = λ̃A,n, the two velocities become equal. For λ̃ > λ̃A,n, Alfvén waves can be sustained by the neutrals, and

the magnitudes of all three quantities ṽi,y , ṽn,y and B̃y are significant. In the long-wavelength limit, the ions are well coupled to the neutrals

(ṽi,y = ṽn,y). Using the normalization condition

|ṽn,y |2 + |ṽi,y |2 + |B̃y |2 = 2|ṽn,y |2 + |B̃y |2 = 1 (38)

and equations (13b)–(13c), we now find that

ṽn,y

B̃y

= ∓ṽA,n,0, (39a)

ṽn,y = ṽi,y =
ṽA,n,0

(

1 + 2ṽ2
A,n,0

)1/2
(39b)

and

B̃y = ∓
1

(

1 + 2ṽ2
A,n,0

)1/2
. (39c)

Since for our typical model cloud ṽA,n,0 = 3.94, it follows that ṽn,y = ṽi,y = 0.696 and B̃y = 0.177, in agreement with Figs 5(a)–(d), curves

labelled ‘n,A’.

As λ̃ increases across λ̃A,i, the ion Alfvén mode disappears (damps) and bifurcates into the (ion) ambipolar-diffusion mode and the ion

collisional-decay mode, as discussed in relation to Fig. 4(b); hence the placement of the labels ‘i,A’, ‘AD’ and ‘i,coll’ on these curves in Figs

5(a)–(d).

It is also clear from Figs 5(a)–(d) that the eigenvectors for both the neutral and the ion collisional-decay modes behave exactly as

expected on the basis of our discussion of these modes in relation to Fig. 4(b).

3.2 Propagation perpendicular to B0 (k ⊥ B0)

For θ = 90◦, equations (10a)–(10k) again decouple into three independent subsystems. The subsystem involving material motions in the

x-direction is

ω̃ρ̃n = k̃ṽn,x, (40a)

ω̃ρ̃i = ρ̃i,0k̃ṽi,x + iρ̃2
i,0α̃m,drρ̃n − i2ρ̃i,0α̃m,drρ̃i, (40b)

ω̃ṽn,x =
(

k̃ −
1

k̃

)

ρ̃n −
i

τ̃ni,0

ṽn,x +
i

τ̃ni,0

ṽi,x, (40c)

ω̃ṽi,x =
i

τ̃in,0

ṽn,x −
i

τ̃in,0

ṽi,x + ṽ2
A,i,0k̃B̃z, (40d)
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MHD waves in weakly-ionized media 1765

ω̃B̃z = k̃ṽi,x . (40e)

Motions in the y-direction are governed by

ω̃ṽn,y = −
i

τ̃ni,0

ṽn,y +
i

τ̃ni,0

ṽi,y, (41a)

ω̃ṽi,y =
i

τ̃in,0

ṽn,y −
i

τ̃in,0

ṽi,y, (41b)

ω̃B̃y = 0. (41c)

Similarly, the equations for the z-components of the neutral and ion velocities are

ω̃ṽn,z = −
i

τ̃ni,0

ṽn,z +
i

τ̃ni,0

ṽi,z, (42a)

ω̃ṽi,z =
i

τ̃in,0

ṽn,z −
i

τ̃in,0

ṽi,z. (42b)

3.2.1 Longitudinal modes for k ⊥ B0: eigenfrequencies

The dispersion relation is easily obtained from equations (40a)–(40e):

(ω̃ + 2iρ̃i,0α̃m,dr)

{

ω̃4 + i

(

1

τ̃in,0

+
1

τ̃ni,0

)

ω̃3 −
[(

ṽ2
A,i,0 + 1

)

k̃2 − 1
]

ω̃2

− i

[

1

τ̃ni,0

ṽ2
A,i,0k̃

2 +
1

τ̃in,0

(k̃2 − 1)

]

ω̃ + (k̃2 − 1)ṽ2
A,i,0k̃

2

}

= 0.

(43)

Because it is a fifth-order polynomial, there are five longitudinal modes in all. The phase velocities, damping timescales and growth timescales

for the longitudinal modes are displayed in Figs 6(a)–(c), respectively; eigenvectors are shown as functions of λ̃ in Figs 7(a)–(e).

At small wavelengths there are again two high-frequency (|ω̃| ∼ 1/τ̃in,0) ion modes, with ṽn,x ≃ 0 (they are degenerate with respect to

the direction of propagation). In this limit, the solution of the dispersion relation is identical with that given by equation (24). The modes it

represents in this case are ion magnetosonic modes. Because the speed of sound of the ions (<Ca,0, since mi > μmH) is negligible compared

to the ion Alfvén speed (see equation 11c), the phase velocity of the waves for λ̃ < λ̃A,i is again given by equation (26) and the characteristic

decay time is τ̃
d

= 2τ̃in,0 (see Figs 6a and b, curves labelled ‘i,ms’). For λ̃ ≥ λ̃A,i (=1.57 × 10−2 for the typical model cloud) the ion

magnetosonic waves cannot propagate because of frequent ion-neutral collisions. Instead, each mode bifurcates (see Fig. 6b), just as in the

case of ion Alfvén waves described in Section 3.1.2. One of the two resulting modes is an ion collisional decay mode (τ̃
d

= τ̃in,0; curve labelled

‘i,coll’ in Fig. 6b) and the other is a magnetically-driven ion ambipolar-diffusion mode, curve labelled ‘AD’ in Fig. 6(b) (τ̃
d

= λ̃2/4π2D̃a for

λ̃ ≫ λ̃A,i; see discussion preceding equation 29b).

The third mode is an ion dissociative-recombination decay mode, as discussed in Section 3.1.1, in which density enhancements in

the ions decay rapidly [τ̃
d

= (2ρ̃i,0α̃m,dr)
−1 = 1.28 × 10−4 for the typical model cloud parameters] because of dissociative recombinations

between molecular ions and electrons (see Fig. 6b, curve labelled ‘i,rec’). The only nonvanishing component of the eigenvector for this mode

is ρ̃i,0 (see Figs 7e and a–d).

There also exist two small-wavelength, low-frequency (|ω̃| ≪ 1/τ̃in,0) wave modes in the neutrals. For these modes, ṽi,x ≃ 0 and B̃z ≃ 0

(curves labelled ‘acoustic’ in Figs 7b and c), i.e. the neutrals oscillate in the x-direction in an effectively fixed background of ions and magnetic

field. Under these circumstances, the solution of the dispersion relation (43) is

ω̃ = ±k̃

[

1 −
(

1 +
1

4τ̃ 2
ni,0

)

1

k̃2

]1/2

−
i

2τ̃ni,0

. (44)

The phase velocity can be written as

ṽφ = ±

[

1 −
(

λ̃

λ̃s,n

)2
]1/2

, for λ̃ < λ̃s,n, (45)

where

λ̃s,n ≡
4πτ̃ni,0

[1 + (2τ̃ni,0)2]1/2
(46)

is the acoustic-wave cutoff wavelength; λ̃s,n = 2.59 in the typical model cloud. In dimensional form, λs,n ≃ 4πCa,0τni,0/[1 + (2τ̃ni,0)2]1/2 =
0.252 pc. (Note that for 2τ̃ni,0 ≪ 1, λ̃s,n ≃ 4πτ̃ni,0; in this limit λs,n = 4πCa,0τni,0 = 0.277 pc.) These are sound waves in the neutrals modified

by gravity and neutral-ion collisions. For λ̃ ≪ λ̃s,n, ṽφ = ±1 (=±Ca,0, dimensionally), hence, the waves are pure sound waves (see Fig. 6a,

curve labelled ‘acoustic’). They decay on a timescale τ̃
d

= 2τ̃ni,0 (= 0.452; see curve labelled ‘acoustic’ in Fig. 6b). For λ̃ ≥ λ̃s,n, the waves

are damped because of collisions with the ions, and ṽφ = 0, much like the damping of the ion Alfvén and magnetosonic modes for λ̃ ≥ λ̃A,i.
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1766 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

Figure 6. Eigenvalues of longitudinal modes as functions of wavelength, at an angle of propagation θ = 90◦ with respect to B0. All normalizations are as in

Fig. 2. There are five different modes at each wavelength. (a) Absolute value of phase velocity, |vφ |. Phase speeds derived from equation (26) are displayed as

circles with interior crosses, while speeds obtained from equation (45) are displayed as diamonds with interior black circles. Phase speeds determined from

equation (55) are displayed as asterisks. (b) Damping timescales τ
d
. Also shown are values (downward-facing triangles) calculated from equation (29a), as

well as values (plus signs) from equation (34a). Results (five-pointed stars) from equation (47a) are also depicted, and so are those (boxes) calculated by

using equation (56). (c) Growth timescale τgr . Values predicted (six-pointed stars) from the ambipolar-diffusion fragmentation timescale (equation 49) are also

displayed, along with values (boxes) calculated from the magnetic Jeans instability mode, equation (57).

For λ̃ > λ̃s,n, this modified neutral sound wave bifurcates (see Fig. 6b) into a pressure-driven diffusion mode (curve labelled ‘PD’) and a

collisional-decay mode (curve labelled ‘n,coll’). We examine these modes in that order.

The pressure-driven diffusion mode corresponds to the positive root of equation (44). The neutrals are diffusing quasistatically (i.e. with

|ω̃| ≪ 1/τ̃ni,0) through a background of effectively stationary ions and magnetic field. The eigenvector for this mode is labelled ‘PD’ in Figs

7(a)–(e). For λ̃s,n ≤ λ̃ ≤ λ̃J,th, the damping timescale is

τ̃
d

=
2τ̃ni,0

1 −
{

1 − 4τ̃ 2
ni,0[(λ̃J,th/λ̃)2 − 1]

}1/2
, (47a)

≃
(λ̃/λ̃J,th)2

D̃P[1 − (λ̃/λ̃J,th)2]
, (47b)

where

D̃P ≡ τ̃ni,0 (48)

(=C2
a,0τ ni,0 dimensionally) is the neutral pressure-driven diffusion coefficient. In obtaining equation (47b) we have used the fact that τ̃ 2

ni,0 ≪ 1.

For the representative model cloud used in this paper, D̃P = 0.226 (≃D̃a/16). We note that, at λ̃ = λ̃J,th, τ̃
d

= ∞ (see Fig. 6b, curve labelled

‘PD’). At this wavelength, the restoring pressure forces in this mode are exactly balanced by self-gravitational forces, and the system is on

the verge of gravitational instability (ω̃ = 0). Thus the Jeans instability manifests itself at λ̃J,th even in the presence of a magnetic field, as

originally recognized by Langer (1978). Ambipolar diffusion allows this to happen, but, because of neutral-ion collisions, the growth time

of the instability is longer than that of the nonmagnetic Jeans instability (compare equation 49 with equation 21). For λ̃ > λ̃J,th, density
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MHD waves in weakly-ionized media 1767

perturbations in the neutrals grow exponentially in time as a result of gravitational contraction of neutrals through essentially stationary ions

attached to rigid magnetic field lines. The growth time for this instability can be obtained easily from equation (44) under the conditions

λ̃ > λ̃J,th and 4τ̃ 2
ni,0[1 − (λ̃J,th/λ̃)2] ≪ 1:

τ̃gr =
(1/τ̃ni,0)

1 − (λ̃J,th/λ̃)2
=

ν
ff,0

1 − (λ̃J,th/λ̃)2
, (49)

where ν
ff,0

= 1/τ̃ni,0 (=τ
ff,0

/τni,0 = 1/0.226 = 4.42) is the collapse retardation factor, discussed in the penultimate paragraph of Section 2.3.

It follows from equation (49) that, in the limit λ̃ ≫ λ̃J,th, τ̃gr → ν
ff,0

. The growth time of this ambipolar-diffusion–induced fragmentation is

shown in Fig. 6(c) (the part of the curve labelled by ‘AD,fr’). Dimensionally, the growth time for this mode is ν
ff,0

τ
ff,0

= τ 2

ff,0
/τni,0. It is the

same as the nonlinear solution found analytically by Mouschovias (1979; see also 1983, 1987a,b, 1989) for the timescale of formation and

evolution of protostellar cores (due to gravitationally-driven ambipolar diffusion). Numerical simulations (including the effects of grains, UV

ionization and magnetic braking) of the formation of protostellar cores in magnetically supported molecular clouds have also found that the

evolution occurs on this timescale (Fiedler & Mouschovias 1993; Basu & Mouschovias 1994, 1995a,b; Ciolek & Mouschovias 1994, 1995).

The same timescale was found in the one-dimensional similarity solution of Scott (1984). It is clear from Fig. 6(c) that, as predicted, τ̃gr

would tend to 1/τ̃ni,0 = 4.42 for λ̃ ≫ λ̃J,th; see the inflection point in the curve (labelled ‘AD,fr’). However, τ̃gr falls below this would-be

asymptotic value because, for λ̃ � λ̃J,mag, where λ̃J,mag is the magnetic Jeans wavelength (=25.6; see equation 54), gravitational forces on the

neutrals, transmitted to the ions by neutral-ion collisions, exceed the restoring magnetic forces on the ions, and the ions and magnetic field

are no longer able to remain stationary; the mode becomes a gravitational (Jeans) instability against the magnetic field, as originally found by

Chandrasekhar & Fermi (1953)4; see Fig. 6(c), part of curve beyond the inflection point, labelled ‘ff+’. The approximations ṽi,x ≃ 0, B̃z ≃ 0

(which were used in deriving equation 44) are no longer valid, and equation (49) no longer describes this mode. The proper expressions are

derived below.

The second mode resulting from the bifurcation of the modified sound waves at λ̃s,n is described by the negative root of equation (44).

This is a neutral collisional-decay mode (curve labelled ‘n,coll’ in Fig. 6b), with damping time

τ̃
d

=
2τ̃ni,0

1 +
{

1 − 4τ̃ 2
ni,0[(λ̃J,th/λ̃)2 − 1]

}1/2
(50a)

≃
τ̃ni,0

1 − τ̃ 2
ni,0[(λ̃J,th/λ̃)2 − 1]

. (50b)

In equation (50b) we have again used the fact that, for the typical model cloud, τ̃ 2
ni,0 ≪ 1.

For λ̃ ≫ λ̃J,th, τ̃
d

→ τ̃ni,0. This limit is never attained by this mode, however, because the collisional coupling between the neutrals and

the ions becomes more effective with increasing λ̃, and the ions (and, hence, the magnetic field lines) begin to move with the neutrals. As a

result, the neutral collisional-decay mode and the (ion) ambipolar-diffusion mode combine and merge to form wave modes, in a way similar

to that for the neutral Alfvén waves in Section 3.1.2 (compare Figs 4b and 6b). This mode coupling occurs at λ̃ = 2.72 (= λ̃ms,n; see below),

which is only slightly greater than the neutral acoustic-wave cutoff λ̃s,n = 2.59 for the typical model cloud (see Fig. 6b). The solution of the

dispersion relation (equation 43) for these modes in the limit |ω̃| ≪ 1/τ̃in,0 is

ω̃ = ±ṽms,n,0k̃

[

1 −
1

ṽ2
ms,n,0k̃

2
−

(

ṽ2
A,n,0τ̃ni,0k̃

)2

16ṽ2
ms,n,0

]1/2

−
i

4
ṽ2

A,n,0τ̃ni,0k̃
2, (51)

where

ṽms,n,0 =
(

ṽ2
A,n,0 + 1

)1/2
(52)

[or, in dimensional form, vms,n,0 = {v2
A,n,0 + C2

a,0}
1/2] is the magnetosonic speed in the neutrals. For the representative model cloud used in

this paper, ṽms,n,0 = 4.07 = 1.03ṽA,n,0. Examination of equation (51) reveals that ω̃r > 0 (i.e. ṽφ > 0) if λ̃ms,n < λ̃ < λ̃J,mag, where

λ̃ms,n =
πṽ2

A,n,0τ̃ni,0

ṽms,n,0

=
(

ṽA,n,0

ṽms,n,0

)

λ̃A,n (53)

is the neutral magnetosonic cutoff wavelength, and

λ̃J,mag = 2πṽms,n,0 (54)

(or, in dimensional form, λJ,mag = 2πvms,n,0τff,0
) is the magnetic Jeans wavelength. For the typical model cloud, λ̃ms,n = 2.72 and λ̃J,mag = 25.6

(hence, λms,n = 0.264 pc and λJ,mag = 2.49 pc). [Note: in deriving equations (53) and (54), we have used the fact that, for the conditions of

interest, τ̃ 2
ni,0 ≪ 1 and 1/ṽ2

ms,n,0 ≪ 1.] Inserting equations (53) and (54) in equation (51), the phase velocity for magnetosonic waves in the

4 The nonlinear equivalent of this instant in the development of the ambipolar-diffusion–induced, gravitationally-driven fragmentation is the instant at which a

fragment’s mass-to-flux ratio reaches its critical value and dynamical contraction ensues with the magnetic field essentially frozen in the matter.
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1768 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

neutrals is found to be

ṽφ = ±ṽms,n,0

[

1 −
(

λ̃

λ̃J,mag

)2

−
(

λ̃ms,n

λ̃

)2
]1/2

, λ̃ms,n ≤ λ̃ ≤ λ̃J,mag (55)

(see Fig. 6a, curve labelled ‘n,ms’). The waves are weakly damped by ambipolar diffusion (see Fig. 6b, curve labelled ‘n,ms’); τ̃
d

= 2λ̃2/4π2D̃a

(see equations 34b and 51).

For λ̃ � λ̃J,mag, gravitational forces on the neutrals overwhelm the restoring magnetic forces, and the neutral magnetosonic modes become

gravitationally suppressed (ṽφ = 0), just like the thermal Jeans modes become suppressed for λ̃ ≥ λ̃J,th (see discussion in Section 3.1.1).

For λ̃ ≃ λ̃J,mag, each (neutral) magnetosonic mode bifurcates into an ambipolar-diffusion mode (with damping timescale τ̃
d

= λ̃2/4π2D̃a for

λ̃ ≫ λ̃J,mag) and a conjugate Jeans mode (with damping timescale τ̃
d

= 1 for λ̃ ≫ λ̃J,mag); see Fig. 6(b), curves labelled ‘AD’ and ‘ff−’,

respectively.

The conjugate Jeans (or classical cosmological) mode was discussed earlier in connection with equation (18). In this mode the neutrals,

ions and magnetic field lines are well coupled, but the gravitational forces prevent them from oscillating; motions are damped monotonically.

The damping time, corresponding to the negative root of equation (51), for λ̃ ≥ λ̃J,mag, is given by

τ̃
d

=

⎧

⎨

⎩

[

1 −
(

λ̃J,mag

λ̃

)2

+
(

2π2D̃a

λ̃2

)2
]1/2

+
2π2D̃a

λ̃2

⎫

⎬

⎭

−1

. (56)

It is clear that, in the limit λ̃ → ∞, τ̃
d

→ 1 (i.e. τd = τ
ff,0

); see Fig. 6(b), curve labelled ‘ff−’.

Finally, the gravitational instability mode (see equation 49) also changes behaviour at λ̃J,mag, as discussed above. For λ̃ > λ̃J,mag, the

neutrals, plasma and magnetic field lines are well coupled and behave like a single fluid; self-gravity overwhelms restoring magnetic and

thermal-pressure forces, and the mode behaves as a classical Jeans instability, in which density perturbations grow exponentially in time with

a timescale

τ̃gr =

⎧

⎨

⎩

[

1 −
(

λ̃J,mag

λ̃

)2

+
(

2π2D̃a

λ̃2

)2
]1/2

+
2π2D̃a

λ̃2

⎫

⎬

⎭

−1

, (57)

which is equal to the damping time of the conjugate Jeans mode (see equation 56). From this equation we see that τ̃gr → 1 (i.e. τgr = τ
ff,0

)

for λ̃ → ∞, in agreement with the long-wavelength behaviour of τ̃gr exhibited in Fig. 6(c).

3.2.2 Longitudinal modes for k ⊥ B0: eigenvectors

The main features of the eigenvectors are as follows.

(a) The dominant component of the ion magnetosonic and the ion ambipolar-diffusion modes is ṽi,x (see Fig. 7b, curves labelled ‘i,ms’

and ‘AD’). It does not vanish at λ̃ = λ̃A,i; in fact, it hardly changes from 1, because the ion-AD mode maintains ṽi,x large beyond λ̃A,i. Only

when the ion-AD mode induces motions in the neutrals does ṽi,x begin to decrease, as the magnitude of ṽn,x increases as λ̃ → λ̃ms,n (see

Figs 7b and a, curves labelled ‘i,ms’ and ‘AD’). The z-component of the magnetic field B̃z in Fig. 7(c) actually does not vanish. It is equal to

ṽi,x/ṽi,ms (see equation 35), but ṽi,ms ≃ vA,i,0 = 2.81 × 103.

(b) The velocity ṽi,x is also the dominant component of the eigenvector of the ion collisional-decay mode at all wavelengths (see Fig. 7b,

curve labelled ‘i,coll’).

(c) The eigenvector of the neutral acoustic mode has significant components ṽn,x and ρ̃n. At λ̃s,n, beyond which neutral sound waves do

not exist and at which the acoustic mode bifurcates into the neutral collisional-decay mode and the pressure-diffusion mode (see Fig. 6b), the

collisional-decay mode is responsible for the increase in |ṽn,x | as |ρ̃n| decreases to zero. Because motion is induced in the ions as λ̃ approaches

λ̃s,n (see Fig. 7b, curve labelled ‘n,coll’), |ṽn,x | does not reach unity.

(d) The most significant component of the PD mode is ρ̃n (see Fig. 7d); ρ̃n increases as λ̃ increases from λ̃s,n to λ̃J,th, at which wavelength ρ̃n

reaches a maximum. Beyond λ̃J,th, ambipolar-diffusion–induced fragmentation sets in. At exactly λ̃J,th, ρ̃n is the only nonvanishing component

of the eigenvector of the AD,fr mode (see Figs 7a–d). As λ̃ increases beyond λ̃J,th, the field lines begin to be compressed as the neutrals

begin to couple to the ions, and B̃z increases (see Fig. 7c) – at the expense of ρ̃n – while ṽi,x and ṽn,x are negligible. As λ̃ approaches λ̃J,mag,

the ambipolar-diffusion–fragmentation mode induces significant velocities ṽn,x and ṽi,x , while ρ̃n remains large (see Figs 7a, b and d). As

discussed in relation to Fig. 6(c), the AD,fr mode turns into the Jeans free-fall mode (ff+) beyond λ̃ ≃ λ̃J,mag, as is clearly shown in Figs

7(a) and (b) (see curves labelled ‘AD,fr’ and ‘ff+’). The bifurcation of the neutral magnetosonic mode into the AD and conjugate Jeans (or,

cosmological, ff−) modes beyond λ̃ ≃ λ̃J,mag, discussed in relation to Fig. 6(b), is also seen clearly in Figs 7(a) and (b). [Note: If we had

plotted only the real part of the eigenvector, we would have found, for the neutral magnetosonic mode, that Re{ρ̃n} decreases discontinuously

to zero, then increases smoothly, reaches a maximum and then vanishes again as the magnetosonic waves are suppressed by gravity.]

(e) Slightly beyond λ̃ms,n, magnetosonic waves exist in the neutrals but, in addition to maintaining ṽn,x large, they cause significant motion

in the ions as well (see Figs 7a and b, curves labelled ‘n,ms’). The quantities B̃z and ρ̃n are also nonnegligible. Note that at λ̃J,th, ṽn,x and ρ̃n

decrease while ṽi,x increases.
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MHD waves in weakly-ionized media 1769

Figure 7. Magnitudes of eigenvectors of longitudinal modes for θ = 90◦ as functions of wavelength. All labels and normalizations are as in Fig. 3 and Table 1.

As in Fig. 6, there are five modes. (a) Longitudinal (x-) component of the neutral velocity, |vn,x|. (b) Longitudinal (x-) component of the ion velocity, |vi,x|. (c)

Magnetic field component |Bz|. (d) Neutral density |ρn|. (e) Ion density |ρi|.

3.2.3 Transverse modes for k ⊥ B0

Examination of equation (41c) reveals that there is one trivial mode with ω̃ = 0. The remaining equations governing the transverse modes

with motions in the y-direction (equations 41a and 41b) are identical with those in the z-direction (equations 42a and 42b). Solving this simple

system, we find that

ω̃ = 0 (58a)
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1770 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

and

ω̃ = −i

(

1

τ̃in,0

+
1

τ̃ni,0

)

≃ −
i

τ̃in,0

, (58b)

both of which are independent of wavelength. (Note: there are four modes in all, two corresponding to the first solution, and two corresponding

to the second.) In the first mode the ions and neutrals move together with ṽn,y = ṽi,y (or ṽn,z = ṽi,z); hence, there are no frictional forces

between the two species, and τ̃
d

= ∞. The second mode consists of oppositely flowing streams of ions and neutrals. The momentum of each

species decays by collisions with the other; hence, ion-neutral and neutral-ion collisions occur in parallel, and the net damping time for this

mode is the harmonic mean of τ̃in,0 and τ̃ni,0 (see equation 58b). For the typical model cloud, the ion fluid has a much smaller inertia than the

neutral fluid and, therefore, the streaming velocity of the ions is much greater than that of the neutrals. As a result, the motion of the ions is

collisionally damped on the timescale τ̃
d

≃ τ̃in,0.

3.3 Propagation at angles 0◦
< θ < 90◦ with respect to B0

Equations (10a)–(10k) reveal that, for 0◦ ≤ θ ≤ 90◦, the equations for the modes with motions in the y-direction are uncoupled from those

with motions in the (x, z)-plane. Motions in the x- and z-direction, however, are coupled. The modes with ṽn,y �= 0 �= ṽi,y (governed by

equations 10f–10h) are purely transverse; those with nonvanishing velocities in the (x, z)-plane (governed by equations 10a–10e and 10i–10k)

are neither purely longitudinal nor purely transverse.

3.3.1 Transverse modes

Figs 8(a) and (b) display the magnitude of the phase velocities and the damping timescales of the three transverse modes for propagation at an

angle θ = 45◦ with respect to B0. Because they are incompressible, none of these modes can become gravitationally unstable. Eigenvectors

are displayed in Fig. 9.

The dispersion relation for ion Alfvén waves, obtained from equations (10f) –(10h), has solutions given by equation (24), with ṽA,i,0 cos θ

replacing ṽA,i,0 in that expression. Thus, the two ion Alfvén waves propagate with

ṽφ = ±ṽA,i,0 cos θ

[

1 −
(

λ̃

λ̃A,i cos θ

)2
]1/2

(59)

(see Fig. 8a, curve labelled ‘i,A’). For λ̃/(λ̃A,i cos θ ) ≪1, ṽφ ≃ ±ṽA,i,0 cos θ = ±1.99 × 103 for the typical model cloud. The ± sign denotes

degeneracy with respect to the direction of propagation. The damping timescale for these waves is 2τ̃in,0 (see Fig. 8b, curve labelled ‘i,A’).

Collisions with the neutrals cut off the propagation of these waves for λ̃ ≥ λ̃A,i cos θ = 1.11×10−2 (see Fig. 8a). For wavelengths greater

than this value, each mode bifurcates into an ion collisional-decay mode and an (ion) ambipolar-diffusion mode. The damping timescale of

the former mode is given by equation (27) and is shown in Fig. 8(b) (curve labelled ‘i,A’); it is identical with τ̃
d

of the normal Alfvén waves

propagating along B0, except for the fact that λ̃A,i cos θ replaces λ̃A,i in that expression (see discussion following equation 24). For very large

λ̃, τ̃
d

= τ̃in,0 (see Fig. 8b, curve labelled ‘i,coll’). For the ambipolar-diffusion mode (Fig. 8b, curve labelled ‘AD’), the damping timescale is

Figure 8. Eigenvalues of transverse modes as functions of wavelength, at an angle of propagation θ = 45◦ with respect to B0. All normalizations and labels

are as in Fig. 2 and Table 1. There are three different modes. (a) Absolute value of phase velocity, |vφ |. Phase speeds (large black circles) obtained from

equation (59) are shown, in addition to those calculated from equation (61) (open circles with interior black circles). (b) Damping timescales τ
d
. Also depicted

are values [downward-facing triangles with × inside] obtained from equation (60), and values (diamonds with interior crosses) obtained from equation (62).
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MHD waves in weakly-ionized media 1771

Figure 9. Magnitudes of eigenvectors of transverse modes for θ = 45◦ as functions of wavelength. All labels and normalizations are as in Fig. 3 and Table 1.

As in Fig. 8, there are three modes. (a) Transverse (y-) component of the neutral velocity, |vn,y|. (b) Transverse (y-) component of the ion velocity, |vi,y|. (c, d)

Transverse (y-) component of the magnetic field, |By|, shown as in Figs 5(c) and (d).

the same as that given by equation (28), but again λ̃A,i cos θ replaces λ̃A,i; hence, for long wavelengths, it follows from equation (29a) that

τ̃
d

≃
λ̃2

4π2D̃a cos2 θ
. (60)

At small wavelengths the third mode is a low-frequency neutral collisional-decay mode, with ṽi,y ≃ 0 (see Fig. 9b, curve labelled

‘n,coll’). The purely imaginary frequency of this mode is given by equation (30), ω̃ = −i/τ̃ni,0; hence the damping timescale is τ̃
d

= τ̃ni,0

(=0.226 for the typical model cloud; see Fig. 8b, curve labelled ‘n,coll’). At longer wavelengths, the motions of the neutrals and the ions

become better coupled, and the neutral collisional-decay mode merges with the ion ambipolar-diffusion mode (see Fig. 8b), as discussed in

Sections 3.1.2 and 3.2.1. For longer wavelengths, Alfvén waves in the neutrals can be sustained, as seen in Fig. 8(a). The frequencies of these

modes are given by equations (31a) and (31b), but with ṽA,i,0 cos θ and ṽA,n,0 cos θ replacing ṽA,i,0 and ṽA,n,0, respectively. The lower cutoff

wavelength, below which these waves cannot propagate, is λ̃A,n cos θ = 1.98. They have phase velocity

ṽφ = ±ṽA,n,0 cos θ

[

1 −
(

λ̃A,n cos θ

λ̃

)2
]1/2

, (61)

and damping timescale

τ̃
d

=
2λ̃2

4π2D̃a cos2 θ
. (62)

As λ̃ → ∞, |ṽφ | → ṽA,n,0 cos θ = 2.79.

The components of the eigenvectors of these modes displayed in Figs 9(a)–(d) are qualitatively similar to those shown in Figs 5(a)–(d)

(for transverse modes propagating along B0), but with (small) quantitative decrease in the values of the critical wavelengths. We therefore do

not discuss them further for economy of space.

In Figs 10(a) and (b) we display |ṽφ | and τ̃
d
, respectively, for the three transverse modes propagating at an angle θ = 10◦ with respect

to the magnetic field. The qualitative solutions of the dispersion relations for these modes are the same as for those described above for
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1772 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

Figure 10. Eigenvalues of transverse modes as functions of wavelength, at an angle of propagation θ = 10◦ with respect to B0. All normalizations, labels and

symbols are as in Fig. 8 and Table 1. There are three different modes. (a) Absolute value of phase velocity, |vφ |. (b) Damping timescales τ
d
.

Figure 11. Eigenvalues of transverse modes as functions of wavelength, at an angle of propagation θ = 80◦ with respect to B0. All normalizations, labels and

symbols are as in Fig. 8 and Table 1. There are three different modes. (a) Absolute value of phase velocity, |vφ |. (b) Damping timescales τ
d
.

propagation at an angle θ = 45◦. Quantitatively, the differences in Figs 10(a)–(b) and 8(a)–(b) stem from the different values of the numerical

factors cos θ and sin θ . Similarly, the magnitude of the phase velocities and the damping timescales for the transverse modes propagating at

an angle θ = 80◦ with respect to B0 are shown in Figs 11(a) and (b). They again differ from those for θ = 45◦ because of the factors cos θ

and sin θ . Although qualitatively the modes at θ = 10◦ and 80◦ are the same, comparison of Figs 10 and 11 reveals that the quantitative

differences in the magnitude of the phase velocities and the cutoff wavelengths are substantial. Thus the critical wavelengths that determine

which modes can or cannot propagate in molecular clouds are expected to be very different depending on their direction of propagation with

respect to the mean magnetic field B0.

3.3.2 Modes with motions in the (x, z)-plane

Figs 12(a)–(c) exhibit, respectively, the magnitude of the phase velocity ṽφ , the damping timescale τ̃
d

and the growth time τ̃gr as functions of

λ̃ for the specific case of propagation at θ = 45◦ with respect to B0 for modes with motions in the (x, z)-plane. Eigenvectors are displayed in

Figs 13(a)–(g). There are seven modes in all displayed in these figures.

As in the preceding sections, one of the ion modes is a collisional-decay mode (see Figs 12 and 13, curves labelled ‘i,coll’), with the

ions streaming through a fixed background of neutral particles (ṽn,x = ṽn,z = 0); for this case B̃z = 0, and the ions move with ṽi,x = ṽi,z.

The frequency is given by equation (16); hence, the damping timescale is τ̃
d

= τ̃in,0 (=4.45 × 10−7 for the typical model cloud). This is the

horizontal line labelled by ‘i,coll’ in Fig. 12(b).

There also exist two high-frequency ion wave modes. These waves are ion fast modes. For these modes, ṽi,x/ṽi,z = − sin θ/ cos θ = −1

at θ = 45◦ (see Figs 13c and d, curves labelled ‘i,fast’; in these figures the ‘i,fast’ curves coincide with the ‘i,coll’ curves). Since the ion

Alfvén speed and the magnetosonic speed (in this typical case) are essentially the same, the dispersion relation describing them is the same

as equation (24); it is again the case that the waves are cut off at λ̃ ≥ λ̃A,i (=1.57 × 10−2 ; see Fig. 12a). For wavelengths > λ̃A,i, each ion
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MHD waves in weakly-ionized media 1773

Figure 12. Eigenvalues of longitudinal modes as functions of wavelength, at an angle of propagation θ = 45◦ with respect to B0. All normalizations and labels

are as in Fig. 2 and Table 1. There are seven different modes. (a) Absolute value of phase velocity, |vφ |. Boxes with interior six-pointed stars denote phase

velocity values derived from equation (66). Phase speeds calculated by using equation (70) are shown as left-facing triangles, and phase speeds obtained from

equation (77) are shown as boxes with interior crosses. (b) Damping timescales τ
d
. Also displayed are values obtained from equation (29a) (downward-facing

triangles) and from equation (71) (left-facing triangles with interior black circles). Values obtained from equation (34a) are also displayed as crosses. (c)

Growth timescale τgr .

mode bifurcates into an ion collisional-decay mode and an ion ambipolar-diffusion mode (see Fig. 12b). The decay timescales for these two

modes are the same as those previously discussed for the cases θ = 0◦ and 90◦ (see Sections 3.1.2 and 3.2.1).

The fourth mode is the ion dissociative-decay mode, discussed previously in Sections 3.1.1 and 3.2.1. In this mode, nonpropagating

density perturbations in the ions decay by dissociative recombinations of molecular ions and electrons. The decay time is τ̃
d

= (2ρ̃i,0α̃m,dr)
−1

(=1.28 × 10−4 for the typical model cloud); this is the horizontal line labelled by ‘i,rec’ in Fig. 12(b).

At small wavelengths there are two low-frequency acoustic-wave modes in the neutrals and one neutral collisional-decay mode. The

dispersion relation for the acoustic modes, which are predominantly polarized in the x-direction, is most easily found by first finding ṽi,x in

terms of ṽn,x and ω̃. In the limit |ω̃| ≪ 1/τ̃in,0 and ω̃B̃z ≃ 0, one finds from equations (10i), (10j), (10k) and (10d) that

ṽi,x ≃ ṽn,x cos2 θ

[

ω̃ + (i/τ̃ni,0)

ω̃ + (i cos2 θ/τ̃ni,0)

]

. (63)

For |ω̃| � 1/τ̃ni,0, the term in brackets in equation (63) is essentially unity, and ṽi,x ≃ ṽn,x cos2θ . The factor cos 2θ is a measure of the

opposition presented to the neutrals by the ions, which are attached to magnetic field lines. If θ = 0◦ the ions are effectively inertialess, and

the neutrals sweep them up easily, so that ṽi,x = ṽn,x . However, if θ = 90◦, ṽi,x ≃ 0, i.e. the ions are held in place by the magnetic field

as the neutrals move through them. In this case, the ions present the stiffest opposition to the neutral motion. For |ω̃| � 1/τ̃ni,0, we insert

equation (63) in equation (10c) to find the solution

ω̃ = ±k̃

{

1 −
1

k̃2

[

1 +
(

sin2 θ

2τ̃ni,0

)2
]}1/2

− i
sin2 θ

2τ̃ni,0

. (64)
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1774 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

Figure 13. Magnitudes of eigenvectors of modes with motions in the (x, z)-plane for θ = 45◦ as functions of wavelength. All labels and normalizations are the

same as in Fig. 3 and Table 1. As in Fig. 12, there are seven modes. (a) Longitudinal (x-) component of the neutral velocity, |vn,x|; (b) |vn,z|. (c) Longitudinal

(x-) component of the ion velocity, |vi,x|; (d) |vi,z|. (e) Neutral density |ρn|. (f) Ion density |ρi|. (g) Magnetic field component |Bz|.

[Note that for θ = 0◦ or 90◦, equation (64) reduces to equations (18) or (44), respectively.] For

λ̃ �
λ̃s,n

As,n(θ )
, (65a)

where

As,n(θ ) ≡
[

sin4 θ + (2τ̃ni,0)2

1 + (2τ̃ni,0)2

]1/2

, (65b)

these modes are sound waves, with

ṽφ = ±

[

1 −
(

λ̃As,n(θ )

λ̃s,n

)2
]1/2

(66)

(see Fig. 12a) and τ̃
d

= 2τ̃ni,0/ sin2 θ = 0.904 for θ = 45◦ (see horizontal line labelled ‘acoustic’ in Fig. 12b). As,n(θ ) is the acoustic-wave

angular (or stiffness) parameter: for θ = 90◦ equations (65a) and (66) yield our earlier result that sound waves propagate only for λ̃ ≤ λ̃s,n,

while for θ = 0◦ we recover our other earlier result that λ̃J,th is the upper cutoff wavelength for these waves.

The sound-wave upper cutoff wavelength (65a) is relevant only if the waves do not transition into neutral slow modes at larger wavelengths

(see discussion below). It turns out that this depends on the angle θ of propagation: the upper cutoff equation is applicable only to sound

waves propagating at θ > θmax (for the typical model cloud, θmax = 62.◦9 – see below). For sound waves propagating at such angles, there is a

mode bifurcation at the cutoff (65a). The dispersion relation (64) reveals that at larger λ̃ one of the modes becomes a neutral collisional-decay

mode, with damping timescale τ̃
d

→ τ̃ni,0/ sin2 θ , and the other mode becomes a pressure-driven diffusion mode with damping timescale

τ̃
d

=
(λ̃/λ̃J,th)2 sin2 θ

D̃P[1 − (λ̃/λ̃J,th)2]
for λ̃ ≤ λ̃J,th. (67)

This diffusion timescale is the same as that of equation (47a), except that it is multiplied by sin 2θ , which reflects the reduced effectiveness

of neutral-ion collisions in slowing down the neutrals at angles θ < 90◦ with respect to the magnetic field. At λ̃ = λ̃J,th the timescale (67)
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MHD waves in weakly-ionized media 1775

Figure 13 – continued

becomes infinite. For λ̃ > λ̃J,th there is a neutral ambipolar-diffusion–induced gravitational fragmentation mode at the angle θ (>θmax),

having a growth time

τgr =
sin2 θ/τ̃ni,0

1 −
(

λ̃J,th/λ̃
)2

=
ν

ff
sin2 θ

1 −
(

λ̃J,th/λ̃
)2

. (68)

The fragmentation time (68) is equal to the growth time (49) multiplied by sin 2θ , again reflecting the reduced collisional resistance on

the neutrals by magnetically-coupled ions when the angle of propagation is less than 90◦ with respect to the field direction. For λ̃ ≫ λ̃J,th,

equation (68) yields τ̃gr → sin2 θ/τ̃ni,0 = ν
ff

sin2 θ . However, similar to what occurs in the case for θ = 90◦ (see Section 3.2.1 and Fig. 5c),

this limit will not be attained because the approximation of stationary field lines breaks down when λ̃ becomes � λ̃J,mag. When this happens,

magnetic forces are overwhelmed by self-gravitational forces and τgr → 1 at these larger wavelengths.

From equation (64) one finds that collisional damping of the motion of the neutrals by ions causes |ṽφ | to become less than unity for

λ̃ near the value given by the right-hand side of equation (65a). However, for 0 < θ < 90◦, the sound waves are not always cut off at this

wavelength. This is due to the fact that the bracketed term in the expression for the x-component of the ion velocity (equation 63) is no longer

essentially unity (because |ω̃| ∼ 1/τ̃ni,0) at these wavelengths; thus, the dispersion relation (64) is no longer valid. Physically, this is a result

of the fact that the ions move readily with the neutrals in the x-direction at these frequencies; this means that the waves suffer less damping,

because the frictional force on the neutrals is reduced when the ions and the neutrals move together. (We note that, for θ < 90◦, equation 63

yields ṽi,x ≃ ṽn,x in the limit |ω̃| ≪ 1/τ̃ni,0.)

For λ̃ sufficiently large, such that |ω̃| � cos2 θ/τ̃ni,0, the frequency of the neutral waves is

ω̃ ≃ ±k̃ cos θ

{

(

1 −
1

k̃2

)

[

1 −
(

τ̃ni,0k̃ sin θ tan θ

2

)2 (

1 −
1

k̃2

)

]}1/2

−
i

2
τ̃ni,0

(

k̃2 − 1
)

sin2 θ. (69)

Hence, for these conditions, the phase velocity is

ṽφ = ± cos θ

{

(

1 −
λ̃2

λ̃2
J,th

)

[

1 −
(

λ̃s,n sin θ tan θ

4λ̃

)2
(

1 + 4τ̃ 2
ni,0

)

(

1 −
λ̃2

λ̃2
J,th

)

]}1/2

, (70)
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1776 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

Figure 14. Eigenvalues of longitudinal modes as functions of wavelength, at an angle of propagation θ = 10◦ with respect to B0. All normalizations, labels

and symbols are as in Fig. 12 and Table 1. There are seven different modes. (a) Absolute value of phase velocity, |vφ |. (b) Damping timescales τ
d
. (c) Growth

timescale τgr .

and

τ̃
d

=
2(λ̃/λ̃J,th)2

D̃P

[

1 −
(

λ̃/λ̃J,th

)2
]

sin2 θ
. (71)

These waves are neutral slow modes, modified by gravity, and cannot propagate at wavelengths λ̃ ≥ λ̃J,th (=2π for the typical model cloud); at

θ = 0◦ the slow mode dispersion relation (69) is identical to the relation for the Jeans mode (equation 18). From the low-frequency condition

used to derive equation (69) it is found that slow modes exist only for wavelengths

λ̃ � λ̃s,nSn(θ ), (72a)

where

Sn(θ ) ≡
[1 + (2τ̃ni,0)2]1/2

2| cos θ |
, (72b)

provided that

As,n(θ )Sn(θ ) � 1. (73)

The quantity Sn(θ ) is the angular slow-mode factor. The relation (73) is derived from the requirement that the slow modes arise from the

acoustic wave modes. For this mode conversion to occur, the minimum slow mode wavelength (72a) must be less than or equal to the

acoustic-wave upper cutoff wavelength (65a); thus, the inequality (73) follows. This is equivalent to having θ ≤ θmax, where θmax is defined

by the condition

cos2 θmax

sin4 θmax + (2τ̃ni,0)2
=

1

4
. (74)
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MHD waves in weakly-ionized media 1777

Figure 15. Eigenvalues of longitudinal modes as functions of wavelength, at an angle of propagation θ = 80◦ with respect to B0. All normalizations, labels

and symbols are as in Fig. 12 and Table 1. There are seven different modes. (a) Absolute value of phase velocity, |vφ |. (b) Damping timescales τ
d
. Five-pointed

stars with interior black circles represent values calculated by using equation (67). (c) Growth timescale τgr . Values obtained from equation (68) are depicted

as six-pointed stars with interior black circles.

If θ ≤ θmax, slow modes emerge from the acoustic modes (without a bifurcation) and propagate for λ̃s,nSn(θ ) � λ̃ ≤ λ̃J,th. Otherwise, when

θ > θmax, the acoustic waves have an upper cutoff and mode bifurcation occurs at the wavelength (65a); in that case, there are no slow modes.5

For the typical model cloud, with τ̃ni,0 = 0.226, θmax = 62.◦9. At θ = 45◦ the slow mode minimum wavelength λ̃s,nSn(45◦) = 2.01, and

the transition from sound waves to slow modes can be seen in Figs 12(a) and (b) (curves labelled ‘n,slow’) to occur at this wavelength; Figs

13(a) and (c) show that, for these modes, ṽn,x ≃ ṽi,x at wavelengths greater than or equal to the transition wavelength.

Note that, as λ̃ → λ̃J,th from below, equation (71) shows that the slow mode damping timescale τ̃
d

→ ∞ (see curve labelled by ‘n,slow’

in Fig. 12b). For λ̃ > λ̃J,th there are again the two conjugate modes: the gravitational instability (or Jeans) mode (see Fig. 12c, curve labelled

‘ff+’) and the ‘cosmological’ mode (see curve labelled ‘ff−’ in Fig. 12b; although this curve ‘crosses’ the curve labelled ‘n,fast’ in Fig. 12b,

the two modes do not actually interact); as λ̃ → ∞, both the growth timescale of the unstable mode and the damping timescale of the

cosmological mode go to unity (i.e. in dimensional form, τgr = τd = τ
ff,0

), as seen in Figs 12(b) and (c), respectively.

The other mode affecting the neutrals at short wavelengths is a neutral collisional-decay mode (‘n,coll’). The velocity of the neutrals at

small λ̃ is predominantly in the z-direction for this mode (see Figs 13a and b); the frequency is purely imaginary and given by

ω̃ = −i
cos2 θ

τ̃ni,0

. (75)

Thus, τ̃
d

= τ̃ni,0/ cos2 θ = 0.452 (see Fig. 12b, curve labelled ‘n,coll’). For λ̃ greater than the value given by the right-hand side of

equation (65a), it is again the case that the motion of the ions and magnetic field becomes better coupled to that of the neutrals. In this

wavelength regime |ṽn,x | ≃ |ṽn,z| ≃ |ṽi,x | ≃ |ṽi,z| (see Figs 13a–d). This mode merges with the ion ambipolar-diffusion mode at λ̃ = λ̃ms,n

(see Fig. 12b), and, for λ̃ > λ̃ms,n, fast modes are excited in the neutrals (curves labelled ‘n,fast’ in Figs 12a, b and 13a–d), degenerate with

respect to the direction of propagation. In these modes, the polarization is given by ṽn,x/ṽn,z = − sin θ/ cos θ (= −1 for θ = 45◦). Hence,

5 For clouds with perfect neutral-ion collisional coupling, i.e. τ̃ni,0 = 0, equation (74) yields θmax = 65.◦5.
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1778 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

ṽn · B0 = 0, i.e. the fast modes are polarized perpendicular to the magnetic field. The dispersion relation for these modes is essentially the

same as equation (51) because of the fact that ṽ2
A,n,0 ≫ 1. They decay, as they propagate, on the ambipolar-diffusion timescale (see Fig. 12b).

For λ̃ ≥ λ̃J,mag, these waves tend to get suppressed by gravity.

For λ̃ > λ̃J,mag thermal and magnetic restoring forces in the x-direction are overwhelmed by gravitational forces, making ṽn,x ≃ 0 (see

Fig. 13a). Hence the modes become essentially incompressible. Waves are still able to propagate for longer wavelengths, however, because of

the transverse restoring magnetic tension force (i.e. B̃z �= 0; see Fig. 13g). Solving equations (10a)–(10d) and (10i)–(10k) with the conditions

ṽn,x = 0 = ρ̃n in the limit |ω̃| ≪ 1/τ̃in,0, we find

ω̃ = ±ṽA,n,0k̃ cos θ

[

1 −
(

ṽA,n,0τ̃ni,0k̃

2 cos θ

)2
]1/2

−
i

2
ṽ2

A,n,0τ̃ni,0k̃
2. (76)

Hence, these modes are modified Alfvén waves in the neutrals, with

ṽφ = ±ṽA,n,0 cos θ

[

1 −
(

λ̃A,n

λ̃ cos θ

)2
]1/2

(77)

and τ̃
d

= 2λ̃2/4π2D̃a. In the limit λ̃ → ∞, |ṽφ | ≃ ṽA,n,0 cos θ = 2.79, in agreement with the long-wavelength behaviour of these modes

shown in Fig. 12(a) (curves labelled ‘n,fast’ and ‘n,A’). This is yet another example of a transition between wave modes without bifurcation.

Figs 14(a)–(c) show |ṽφ |, τ̃
d

and τ̃gr as functions of λ̃ for the seven different modes with motions in the (x, z)-plane propagating at an

angle θ = 10◦ with respect to B0. Comparison with Figs 12(a)–(c) reveals that the qualitative behaviour of the various modes as functions of

wavelength is the same as in the case of propagation at θ = 45◦. The quantitative differences stem from the numerical factors cos θ and sin θ ,

which become substantial for θ approaching 0◦ or 90◦. As Fig. 14(a) shows clearly, wave modes in the neutrals exist at all wavelengths and

their decay times are very long (see Fig. 14b, curves labelled ‘acoustic’, ‘n,slow’ and ‘n,fast’). Figs 15(a)–(c) show the same quantities as

Figs 14(a)–(c) but for propagation at θ = 80◦ with respect to the unperturbed magnetic field B0. There are no slow modes in Fig. 15 (unlike

the cases in Figs 12 and 14) because θ > θmax for that angle of propagation in the typical model. Instead, the sound waves are cut off at the

maximum wavelength λ̃ = λ̃s,n/As,n(80◦) = 2.66, where there is a bifurcation. At wavelengths greater than this maximum, the modes are a

pressure-driven diffusion mode (‘PD’ curve) and a neutral collisional-decay mode (‘n,coll’). There is also an ambipolar-diffusion–induced

fragmentation mode seen in Fig. 15(c) (‘AD,fr’ curve), which approaches the predicted limiting value (see equation 68) of sin2 80◦/τ̃ni,0 = 4.29

at λ̃ just below λ̃J,mag (= 25.6 in the typical model cloud).

4 SU M M A RY AND DISCUSSION

We have obtained and analysed the dispersion relations for MHD wave modes and instabilities for different directions of propagation with

respect to the zeroth-order magnetic field B0 in a two-fluid weakly-ionized system, and we have applied the results to a typical interstellar

molecular cloud. The system of equations has four dimensionless free parameters, τ̃ni,0, τ̃in,0, ṽA,i,0 and α̃m,dr. They represent, respectively,

the neutral-ion (momentum-exchange) collision time and the ion-neutral collision time in units of the free-fall time of the zeroth-order state,

the Alfvén speed in the ions in units of the adiabatic speed of sound in the neutrals, and the dissociative recombination coefficient (see

equation 11d). (Because of ionization equilibrium in the zeroth-order state, the dimensionless cosmic-ray ionization rate ζ̃
CR

is expressible in

terms of α̃m,dr, τ̃in,0 and τ̃ni,0.)

There are two distinct kinds of ambipolar diffusion, whose combined effect is unavoidable in typical molecular clouds and has crucial

consequences on their evolution:

(a) In the presence of HM waves or turbulence, the tension of field lines (or the outward pressure due to compressed field lines) drives the

motion of charged particles relative to the neutrals, with the tendency/consequence to straighten out the bent or tangled magnetic field lines

(or to move compressed field lines apart, towards a more uniform configuration). The timescale of this process is proportional to the square

of the wavelength of the HM waves (or the characteristic length of the field-line tangling or the inverse of the magnitude of the field gradient)

– see equations (34a) and (80). For lengthscales typical of molecular cloud cores (�0.1 pc), it is much smaller than the free-fall time. This is

the magnetically-driven ambipolar diffusion. It is this kind of ambipolar diffusion which is responsible for the observed large-scale ordering

of polarization vectors, indicating large-scale ordering of the magnetic field lines in molecular clouds.

(b) Gravitationally-driven ambipolar diffusion sets in with a short enough timescale, but longer than the free-fall time, in the deep interiors

of self-gravitating clouds, where the degree of ionization is xi � 10−7. Its onset can be spontaneous or initiated as a result of magnetically-

driven ambipolar diffusion depriving a self-gravitating cloud of any support that most short-wavelength HM waves (or turbulence) may have

provided against the cloud’s self-gravity (Mouschovias 1987a). It (i) allows the clouds to fragment as neutral particles contract through almost

stationary field lines (and the attached charged particles); and, consequently, (ii) increases the mass-to-flux ratio of the forming fragments

(or cores). Once the critical mass-to-flux ratio (Mouschovias & Spitzer 1976) of fragments is exceeded, dynamical contraction ensues, while

the cloud envelopes remain magnetically supported, as found by numerical simulations starting with Fiedler & Mouschovias (1993) and

confirmed by numerous observations.
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MHD waves in weakly-ionized media 1779

HM waves with phase velocity

|vφ | ≃ vA,n,0 = 0.96

(

B0

30 µG

) (

2 × 103 cm−3

nn,0

)1/2

km s−1 (78)

can propagate in all directions with respect to B0, provided that λ � λA,n, where

λA,n = πvA,n,0τni,0 = 0.22

(

B0

30 µG

) (

2 × 103 cm−3

nn,0

)3/2 (

2 × 10−7

xi,0

)

pc. (79)

The long-wavelength waves are long-lived; the decay time is the magnetically-driven ambipolar-diffusion timescale

τd ≃
λ2

2π2v2
A,n,0τni,0

= 7.5 × 105

(

λ

1 pc

)2 (

30 µG

B0

)2 (

nn,0

2 × 103 cm−3

)2 (

xi,0

2 × 10−7

)

yr, (80)

which is to be distinguished from the growth time of gravitationally-driven ambipolar diffusion, relevant to fragmentation of molecular clouds

into self-gravitating cores; namely,

τAD,fr =
τ

ff,0

2

τni,0

≃ 1.1 × 106
( xi,0

10−7

)

yr. (81)

The (one-dimensional) free-fall timescale at the density nn,0 = 2 × 103 cm−3 as λ → ∞ is τ
ff,0

= (4πGρn,0)−1/2 = 3.9 × 105 yr. The

nonlinear counterparts of these modes have been shown to explain quantitatively the observed highly supersonic but subAlfvénic linewidths

in molecular clouds, their cores and even in OH and H2O masers in which the strength of the magnetic field has been measured (Mouschovias

& Psaltis 1995; Mouschovias et al. 2006).

Most HM waves with λ < λA,n cannot propagate in the neutrals because they are damped rapidly by ambipolar diffusion. This means

that there cannot be any contribution from this wavelength regime to the spectrum of HM ‘turbulence’ in molecular clouds (Mouschovias

& Psaltis, in preparation), which may provide clouds with a source of nonthermal pressure. This led Mouschovias (1987a) to argue that the

decay of HM waves by ambipolar diffusion on wavelength scales �0.1 − 0.3 pc can initiate the formation of protostellar cores in otherwise

magnetically supported clouds (see also Mouschovias 1991a). Damping of short-wavelength HM waves by ambipolar diffusion has also

been proposed (Mouschovias 1987a, section 2.2.5) as the cause of the observed narrowing and thermalization of linewidths with increasing

column density, as observed, for example, by Baudry et al. (1981) in the cloud TMC 2. Depending on the angle of propagation with respect

to the unperturbed magnetic field B0, however, we find that certain long-lived modes in the neutrals exist at all wavelengths, while ion modes

usually damp very rapidly even at short wavelengths. This may explain the observations by Li & Houde (2008) in the M17 molecular cloud,

which show neutral motions at small lengthscales but much smaller ion motions on the same scales.

Gravitational instability is found to set in at λ = λJ,th (the thermal Jeans wavelength) for all θ , in agreement with Chandrasekhar & Fermi

(1953). For θ ≃ 90◦, though, the timescale for the instability is ≃ ν
ff
τ

ff,0
= τ 2

ff,0
/τni,0, which is the gravitationally-driven ambipolar-diffusion

timescale. This is in agreement with the result for the ambipolar-diffusion–initiated formation and contraction of protostellar fragments (or

cores) obtained from nonlinear calculations analytically by Mouschovias (1979, 1989) and Mouschovias & Paleologou (1986), and numerically

by Fiedler & Mouschovias (1993) for a two-fluid system (neutral molecules and plasma), Ciolek & Mouschovias (1994) for a four-fluid

system (i.e. neutral molecules, plasma, negatively-charged and neutral grains) and Basu & Mouschovias (1994, 1995a,b) for a two-fluid

system including rotation and magnetic braking. It is also in agreement with the results of simulations by Tassis & Mouschovias (2007a,b,c)

and Kunz & Mouschovias (2009, 2010) for a six-fluid system (neutral molecules, atomic and molecular ions, electrons, negatively-charged,

positively-charged and neutral grains).

Another recent success of the linear theory (applied to model molecular clouds flattened along the magnetic field) in predicting inherently

nonlinear phenomena was demonstrated by Kunz & Mouschovias (2010). They obtained analytically the core mass function (CMF) resulting

from gravitationally-driven ambipolar-diffusion–induced fragmentation of molecular clouds. The predicted CMF is in excellent agreement

with observations of more than 300 cores in Orion (Nutter & Ward-Thompson 2007), not only at the high-mass end (for which many alternative

models can obtain such agreement), but also at the turnover mass and low-mass end.

Table 2 lists all the critical wavelengths present in a two-fluid system, such as a typical molecular cloud. The name of each critical

wavelength, its defining dimensionless expression and typical value and the corresponding dimensional expression are listed in columns 1–4,

Table 2. Critical wavelengths.

Dimensionless expression Model valuea Dimensional expression

Ion Alfvén-wave upper cutoff λ̃A,i = 4πṽA,i,0τ̃in,0 0.0157 λA,i = 4πvA,i,0τin,0

Ion magnetosonic-wave upper cutoff λ̃A,i 0.0157 λA,i

Acoustic-wave upper cutoff λ̃s,n = 4πτ̃ni,0/[1 + (2τ̃ni,0)2]1/2 2.59 λs,n = 4πCa,0τni,0/[1 + (2τ̃ni,0)2]1/2

Neutral Alfvén-wave lower cutoff λ̃A,n = πṽA,n,0τ̃ni,0 2.80 λA,n = πvA,n,0τni,0

Neutral magnetosonic-wave lower cutoff λ̃ms,n = (ṽA,n,0/ṽms,n,0)λ̃A,n 2.72 λms,n = (vA,n,0/vms,n,0)λA,n

Thermal Jeans λ̃J,th = 2π 2π λJ,th = 2πCa,0τff,0

Magnetic Jeans λ̃J,mag = 2πṽms,n,0 25.6 λJ,mag = 2πvms,n,0τff,0

aTo convert to parsecs, multiply by the unit of length for the typical model cloud, Ca,0τ ff,0 = 9.72 × 10−2 pc.
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1780 T. Ch. Mouschovias, G. E. Ciolek and S. A. Morton

Table 3. Modes and wavelength ranges in which they exist.

Wavelength range

Propagation parallel to B0 (θ = 0◦)

Ion recombination mode All λ

Ion collisional-decay mode All λ

Ion Alfvén waves λ ≤ λA,i

Neutral collisional-decay mode λ ≤ λA,n

Acoustic waves λ ≤ λJ,th

Ambipolar-diffusion mode λA,i ≤ λ ≤ λA,n

Gravitational (Jeans) instability mode λ > λJ,th

Conjugate (‘cosmological’) Jeans mode λ > λJ,th

Neutral Alfvén waves λ > λA,n

Propagation perpendicular to B0 (θ = 90◦)

Ion recombination mode All λ

Transverse ion-neutral comoving mode All λ

Transverse ion-neutral counterstreaming mode All λ

Ion magnetosonic waves λ ≤ λA,i

Ion collisional-decay mode λ > λA,i

Ambipolar-diffusion mode λA,i ≤ λ ≤ λms,n, and λ > λJ,mag

Acoustic waves λ ≤ λs,n

Pressure-driven diffusion mode λs,n < λ ≤ λJ,th

Neutral ambipolar-diffusion–induced gravitational fragmentation mode λJ,th < λ ≤ λJ,mag

Neutral magnetosonic waves λms,n ≤ λ ≤ λJ,mag

Gravitational (magnetic Jeans) instability mode λ > λJ,mag

Conjugate (‘cosmological’) magnetic Jeans mode λ > λJ,mag

Propagation at intermediate angles with respect to B0 (0◦ < θ < 90◦)

Ion recombination mode All λ

Ion collisional-decay mode All λ

Ion Alfvén waves λ ≤ λA,icos θ

Transverse ambipolar-diffusion modes λA,icos θ < λ ≤ λA,ncos θ

Ion fast waves λ ≤ λA,i

Longitudinal ambipolar-diffusion modes λA,i < λ ≤ λms,n

Transverse neutral collisional-decay mode λ ≤ λA,n cos θ

Longitudinal neutral collisional-decay mode λ ≤ λms,n

Acoustic waves λ ≤ λs,nSn(θ ) if θ ≤ θmax
a

λ ≤ λs,n/As,n(θ ) if θ > θmax
a

Neutral slow waves λs,nSn(θ ) < λ ≤ λJ,th only if θ ≤ θmax

Pressure-driven diffusion mode λ > λs,n/As,n(θ ) only if θ > θmax

Neutral Alfvén waves λ > λA,ncos θ

Neutral ambipolar-diffusion–induced gravitational fragmentation mode λJ,th < λ ≤ λJ,mag only if θ > θmax

Neutral fast waves λms,n < λ ≤ λJ,mag

Neutral modified Alfvén waves λ > λJ,mag

Gravitational instability mode λ > λJ,th if θ ≤ θmax

λ > λJ,mag if θ > θmax

Conjugate (‘cosmological’) Jeans mode λ > λJ,th if θ ≤ θmax

λ > λJ,mag if θ > θmax

aAs,n(θ ), Sn(θ ) and θmax are defined in equations (65b), (72b) and (74), respectively.

respectively. Table 3 summarizes conveniently all the modes that can exist in a two-fluid system (typical molecular cloud) for propagation

parallel, perpendicular and at an arbitrary angle with respect to the unperturbed magnetic field. The name of each mode is shown in the first

column, and the wavelength range in which the mode exists is shown in the second column.

Although in a single-fluid system linear modes are independent of one another, in a multifluid system (such as a molecular cloud)

this is not the case. A mode in one fluid can bifurcate due to interaction with the other fluid and give rise to two distinct daughter modes.

Such interaction is also responsible for the reverse phenomenon of mode merging. Moreover, in a multifluid system, a wave mode in one

fluid/species (e.g. a sound wave in the neutrals) can transition into another wave mode (e.g. a slow MHD wave in the neutrals) without

bifurcation. In other words, linear waves in a multifluid system exhibit behaviour that only nonlinear waves exhibit in a single-fluid system.

In a following paper we present a study of the free parameters, spanning the range of observationally allowed values, to examine their

effect on HM waves and instabilities in molecular clouds.
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