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The present study furthcr explores the fundamental singular solutions for Stokes 
flow that can be useful £or constructing solutions over a wide range of free-stream 
profiles and body shapes. The primary singularity is the Stokeslet, which is 
associatedwith a singular point force embedded in a Stokes flow. From its deriva- 
tives other fundamental singularities can be obtained, including rotlets, strcsslets, 
potential doublets and higher-order poles derived from them. For treating 

interior Stokes-flow problems new fundamental solutions are introduced; they 
include the Stokeson and its derivatives, called the roton and stresson. 

These fundamental singularities are employed here to construct exact solutions 
to a number of cxterior and interior Stokes-flow problems for several specific 
body shapes translating and rotating in a viscous fluid which may itself be 
providing a primary ilow. The different primary flows considered here include 
the uniform strcam, shear flows, parabolic profiles and extensional flows (hyper- 

bolic profiles), while the body shapcs cover prolate spheroids, spheres and circular 
cylinders. The salient features of these exact solutions (all obtained in closed form) 
regarding the types of singularities required for tlhe construction of a solution in 
each specific case, their distribution densities and the rangc of validity of the 

solution, which may depend on the characteristic Reynolds numbers and 
governing geometrical parameters, arc discussed. 

1. Introduction 

The hydromechanics of low-Reynolds-number flows play an important role 
in the study of rheology, lubrication theory, micro-organism locomotion and 
many arcas of biophysical and geophysical interest. I n  the case when the inertial 
effects arc negligible compared w-ith the viscous forces, t'he Navier-Stokes 
equations are usually simplified to  tho Stokes equations as a first approximation. 
Determination of the solutions for the Stokes flows, however, is stilI recognized 
to be difficult in general for arbitrary body shapes. As a consequence, not many 

exact solutions are known. 
Of the few analytical methods available for solving Stokes-flow problems, one 

is the boundary-value method, which is based on the choice of an appropriate 
co-ordinate system to facilitate separation of the variables for the body geometry 
in question. Another is the singularity method, whose accuracy depends largely 
on whether the correct types of singularity are used and how thcir spatial distribu- 
tions are chosen. The boundary-value method seems to have been widely adopted 
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in practice, more so than the singularity method. In  the literature, the most 
important exact solutions of Stokes-flow problems are those found by using the 

classical treatment of the motion of ellipsoids by Oberbeck (1876), Edwardes 
(1892) and Jeffery (1922) (see also Lamb 1932, p. 604); a.11 these studies are based 
on the use of ellipsoidal co-ordinates and on some rather sophisticated analysis 
of ellipsoidal harmonics. In  contrast, these solutions have not been derived before 

by means of the singularity method. 
Actually the singularity method has been known since the pioneering work of 

Lorentz (1897), Oseen (1927) and Burgers (1938). It has been further developed 
and applied in the recent studies of slender-body theory for low-Reynolds- 

number flows by Hancock (1953), Broersma (1960), Tuck (1964, 1970), Taylor 
(1969), Batchelor (1970a, b) ,  Tillett (1970), Cox (1970, 1971), Blake & Chwang 
(1974) and others. Through these investigations the relative simplicity and 
effectiveness of the method have gradually become more recognized. Neverthe- 
less, it is felt that the potential power of the singularity method has not been 
fully explored for the general case of arbitrary body shapes as well as for the 
special case of slender bodies. The primary difficulty is the lack of general 

knowledge about the types of singularity required and their distribution densities, 
which are dictated by the specific body shape and different free-stream velocity 
profiles. It is thought that further development of the method can be greatly 
enhanced by accumulating a number of exact solutions for several representative 
cases, since useful information could be extracted from these solutions to guide 
more general theories. 

Following this objective, the first part (Chwang & Wu 1974a) of this series has 
been devoted to a study of the purely rotational flow generated by the rotation 
of axisymmetric prolate bodies of various shapes about their longitudinal axes. 
In the present part we shall investigate the translational and rotational motion 
of prolate spheroids, spheres and circular cylinders in Stokes flow for several 
different free-stream velocity profiles. In  $2 we begin with a discussion of the 
fundamental singular solutions of Stokes flow, including a Stokeslet and its 
derivatives known as rotlets, stresslets, potential doublets and higher-order 
poles derived from them. Also introduced here are new fundamental solutions 

called Stokesons, rotons and stressons; they are useful for constructing solutions 
of interior flow problems as well as for representing a local free stream having 
a shear or an 'extensional flow' field. These fundamental solutions are then 
employed to construct the exact solutions to a number of problems described by 
the titles of $33-14. From these examples we note that the singularity method 
may have further advantages once the basic properties of different singularities 
are clarified. The method can be effectively executed with a set of Cartesian 
co-ordinates in general. Derivation of the net force and torque on the body is 
especially simple, as they can be determined by a direct integration of the 
distributed Stokeslets and rotlets, not requiring an integration of the surface 
stresses as in the boundary-value method. The important features of these exact 
solutions are discussed, especially with respect to the types of singularity 
required for the construction of a solution in different situations, and to the 
distribution density of these singularities. 
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Further attempts are made here to use these exact solutions, all being 
expressed in closed form, to provide an estimate of their range of validity, which 
may be affected by the characteristic Reynolds numbers and the body geometry. 
The latter effect, as has been noted, has not been thoroughly explored for low- 
Reynolds-number flows in general. Possible improvements to the solution beyond 
the range of validity of the Stokes approximation will be discussed in a future 

paper. 

2. Fundamental solutions of the Stokes equations 

The starting point of the singularity method is the inhomogeneous Stokes 

equations 
V.u=O, Vp=,UV2u+f, (1 a, b) 

where u is the velocity vector, p the pressure, ,U the constant viscosity coefficient, 
and f(x) the external force per unit volume, x being the position vector in a three- 
dimensional Euclidean space. The class of incompressible viscous flows considered 
here is assumed to have negligible inertial effects when the Reynolds number is 
sufficiently low. (Consistent with this assumption, the external force f may also 
depend on the time t, as a parameter, provided that i t  varies sufficiently slowly 
with t.) The solutions of (1) corresponding to forces having a certain singular 

behaviour in an unbounded flow will be called the fundamental solutions, and 
such forces, the fundamental singularities. We discuss below the important cases 
with the purpose of compiling a set of necessary 'building blocks ' for the eventual 
construction of solutions of various general boundary-value problems. 

The primary fundamental solution is associated with a singular point force 

located, say, a t  the origin, 
fs = 8npu&(x), ( 2 )  

a being a constant vector and d(x) the three-dimensional Dirac delta-function. 

It is called a Xtokeslet, after Hancock (1953), and u characterizes its strength (in 
magnitude and direction). The solution of (1) with f = fs can be derived in a quite 
straightforward manner. (As a direct approach, p can be readily found from the 
equation obtained by taking the divergence of (1 b), the vorticity vector from 
the curl of ( I  b), and the velocity can be determined upon integration of either 
the vorticity or (1 b) under condition (I  a).) Thus the velocity Us, pressure Ps 
and vorticity <, = V x Us of a Stokeslet of strength u are 

Here the pressure is measured, for simplicity, relative to the pressure p, at 
injinity. It is noted that the velocity field of a Stokeslet has a long-range effect, 
falling off like R-l a t  large distances, while the pressure Ps and vorticity rs both 
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decrease like R-2. The total force exerted by a Stokeslet on the fluid outside 

a control surface S, enclosing the Stokeslet is given by 

(pn - m) d s  = 1 (V P, - pv2uS) d v = f, d v = I r rp ,  (4) 
vc 

where n is the unit outward normal a t  S, and T is the viscous stress tensor. The 

second step indicates an application of the divergence theorem to the volume 
within S,, and the last two steps follow from (1 b) and (2). 

Obviously, a derivative of any order of U, and Ps is also a solution of (I), the 
corresponding f being the derivative of the same order off,. These derivatives 
are readily obtained from the 'formal' multipole expansion of a Stokeslet at 
x = $ in a Taylor series about x: 

together with similar expansions for P, and rs. With an appropriate interpreta- 
tion of the multipole moments, as is generally practised in potential theory, we 
may introduce the Stokes doublet, Stokes quadrupole, etc., as 

where a, f3 and y are constant vectors constituting the pole moments. The 
velocities of these Stokes multipoles, while vector functions of x, may be regarded 
as tensorial quantities in terms of the (Cartesian) components ai, pi and y, of _ 

a, @ and y. Although each of these tensorial components of (U, P) is itself a solu- 

tion of the Stokes equations, it is often useful, for the interpretation of their 
physical sigdcance, to group them in certain combinations. 

For instance, the antisymmetric component (with respect to an interchange 
of a and P) of a Stokes doublet [see (6 a)] is itself a physical entity; it is a rotlet 
(also called a couplet by Batchelor 1970a) and its velocity, pressure and vorticity 
are given by 

UR@; y) = +[USD(X; P, a) - USD(X; a, @)I = &V x y) 

PR(x; Y) = &[Pi&; P, 4 - PsD(x; a,  P)] = 0, (7 b) 

Z;,(X; y) = V x U, = V x (V x (y/R)) = V(V. (y/R)) + 4n-yS(x). (7c) 

The singular forcing function of a rotlet is clearly 
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The above solution (7) can also be derived directly from (1) with f = f, (see 
part 1). Physically, a rotlet flow may be regarded as that due to a singular point 
torque a t  the origin, since the moment exerted on the fluid by a rotlet of strength 

for any closed control surface S, containing the rotlet. On the other hand, the 
net force on the fluid due to a rotlet is zero. 

The symmetric component of a Stokes doublet gives a fundamental singularity 
called a stresslet, after Batchelor (1970a). Its velocity, pressure and vorticity 

[see (Ba, b) ]  are 

The stresslet velocity Uss can also be expressed in a tensorial form with its 
strength characterized by a symmetric second-rank tensor (Batchelor 1970~).  
Physically, a stresslet represents straining motion of the fluid symmetric about 
the a,  p plane with the principal axes of strain lying in the a + P, a - P and a x P 
directions. In  virtue of this symmetry, a stresslet contributes no net force or 
moment to the fluid. 

A potential doublet is well known to possess the velocity field 

S being the doublet strength. It is of interest, however, to note that a potential 
doublet is related to a Stokeslet by 

In  accordance with this relationship, the corresponding pressure, now under the 
assumption of negligible inertial effects, is therefore 

since Ps(x) is a harmonic function of x. Thus we see that, while the potential 
doublet retains its kinematic identity with a doublet in potential flow, its 
dynamic effect now diminishes as the inertial effects become negligible. Further, 
since the potential doublet is a derivative of a Stokeslet, hence so are all the 
higher-order poles of potential flow derived from them. Regarding its utility for 
constructing solutions, the potential doublet plays a fundamental role in potential 

theory as well as in low-Reynolds-number flow problems. Various potential 
problems can be solved by employing an appropriate spatial distribution of 

doublets only (see, for example, Chwang & Wu 19743). These potential-flow 
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solutions have provided valuable suggestions about the basic structure of the 
singularity solutions of analogous Stokes-flow problems to be presented later. 

For interior Stokes-flow problems it is useful to seek solutions of (1) that are 
singular a t  infinity but regular everywhere else. Such a fundamental solution 
which has a quadrupole a t  infinity will be called a 'Stokeson' and, more 
specifically, is given by 

Us,(x; a) = 2R2a - (a. x)  x, (13 a) 

A 'Stokeson dipole' is a derivative of a Stokeson; it has a velocity linear in x 
and a uniform vorticity and is given by 

A particular solution of this class useful for representing rotational flows a t  10% 
Reynolds numbers is the antisymmetric component of Urn, which we shall 
call a 'roton ' : 

U R N = y x x ,  Pm= 0, rRN = 2y. (15) 

Thus a roton represents a rigid-body rotation, in which the pressure due to the 
centrifugal inertia effect is neglected in accordance with the basic assumption. 
Another particular solution which is useful for describing local straining motion 
is the symmetric part of a Stokeson dipole, which we shall call a 'stresson'. It has 
the velocity 

USSN = (a.P)x-;[(a.x)13+(p.x)al, (16) 

which is irrotational, and carries no pressure variation. A stresson is seen t o  
consist of a shear-strain component (in Cartesian form) 

and a principal straining motion 

The latter is known as an 'extensional $ow' in rheology. It becomes an exact 
solution of the Navier-Stokes equations if it is associated with the pressure 

p = - gp(a2x2 + b2y2 + c2z2) and constant density p. When the pressure variation 
is neglected, the extensional flow can serve as a useful approximation of the local 
free stream in certain low-Reynolds-number flows. 

The corresponding fundamental solutions of the two-dimensional (plane-fl~w) 

problems can be derived in a similar way. For a two-dimensional Stokeslet , 

fs = 4n-pa &4, (18) 
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a being a two-dimensional vector in the y, z plane, we have 

Us@; a) = or log r-l+ (a. x) x/r2 (x = (y, z), r2 = y2 + z2), (19 a) 

PS(x; a) = 2p(a. x )  r 2 ,  (19 b )  

&(x; a) = 2(a x x) r2. ( 1 9 ~ )  

The total force exerted on the fluid per unit breadth (in the x direction) by a 

two-dimensional Stokeslet is 

where V ,  is a control volume containing the Stokeslet. 
Similarly, the other fundamental solutions for external flows can be readily 

converted from the three-dimensional to the two-dimensional form by simply 

replacing R-l by log (llr), R-% (n 2 2) by r-"+l, and 4n in the coefficients by 27r. 

The two-dimensional Stokeson has the same dependence on x and r as a three- 
dimensional one has on x and R as shown in (13), except that the factor 2 in (13a) 
must be replaced by $ and the factor 10 in (13b) and the factor 5 in (13c) both 

by 4. The two-dimensional versions of (15) and (16) are exactly the same expres- 

sions but with a ,  and y designating two-dimensional vectors. 

We now proceed to demonstrate the singularity method by presenting exact 
solutions to a number of Stokes-flow problems. Some of these have been 
previously obtained by different methods, the others are believed to be new. 

3. Uniform flow past a prolate spheroid 

We first consider the Stokes flow for a uniform free stream past a prolate 
spheroid x2/a2 + r2/b2 = 1 (r2 = y2 + z2, a 2 b), (21 4 
where the focal length 2c and eccentricity e are, as usual, related by 

c = (a2-b2)*= ea (0 < e < 1). (21 b )  

With no loss of generality, the free-stream velocity may be taken as 

U = Ulex+&e,, (21 c) 

ex, e, and e, being the base vectors. This problem is chosen as a primary example 
since the body geometry is among the simplest exhibiting the effects of arbitrary 
body slenderness in low-Reynolds-number flow theory, and since its exact 
solution by the singularity method is relatively simple. 

Partly guided by the known solution for potential flow past a prolate spheroid 

based on the singularity method (Chwang & Wu 1974b), we try to construct the 
requisite solution by employing a line distribution of Stokeslets and potential 

doublets between the foci x = - c and c given by 
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where, here and below, g = <ex. The first integral in (22 a) represents a line distri. 
bution of Stokeslets, of constant strength a, and a,, oriented in the negative-x 
and negative-y directions, respectively. The second integral denotes a line distri- 

bution of doublets, each of parabolic density and pointing in the x and y directions 
respectively, their parabolic density being suggested by the corresponding 
potential-flow solution. Obviously, (22 a)  and (22 b) satisfy the (homogeneous) 
Stokes equations (1 a) and (1 b) in the flow field, and also satisfy the boundary 
conditions on u and p a t  iniinity. To verify the no-slip condition on the spheroid 

surface, we make use of the integrated form of u, which can be written as 

where er = (ye, + ze,)/r is the unit radial vector in the y, z plane and 

R, = [(x + G ) ~  + r2]t, R2 = [(x - c ) ~  + r2]4, (24 a) 

1 X + G  X-C ( )  B 3 , 1 = ( i - & ) + ~ ~ 3 , 0 .  

As the function Bm,,(x) appears frequently in the analysis, we give here its 
recurrence formula for future convenience: 

Now, on the spheroid surface (21), designated by S,  

r2=(1-e2)(a2-x2), R,=a+ex, R2=a-ex, (25 a) 

Hence the surface velocity becomes, after some simple manipulation, 

The no-slip condition on S is clearly satisfied if 

a, = 2/3,e2/(1 - e2) = U,e2[ - 2e + (1 + e2) L,]-l, (27 a) 

as = 2P2e2/(l - e2) = 2U2e2[2e + (3e2 - 1) LJ-l. (27 b) 

This completes the required solution. 
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The force experienced by the spheroid, by superposition of (4), is 

F = - 8np ( - a ,  ex - a, e,) dx = 6n,ua[Ul Gl e, + U, CB7, e,], LC 
wit,h the force coefficients given by 

This result for the force is in agreement with that given by Oberbeck (1876) and 
Jeffery (1922). The present solution also facilitates the determination of other 
physical quantities, such as the pressure forces. 

The pressure, upon carrying out the integration in (22 b), is given by 

which assumes on the spheroid surface S the value 

Noting that the unit outward normal n on X is 

we find the pressure contribution to the total force to be 

C 

F P =-J  pndS = 6nparU,CPl ex + U2CP2 e,], 
5' 

where 

This result gives the relative magnitudes Cpl/CBIl and Cp2/C,, for prolate 
spheroids of arbitrary eccentricity e. The remaining contribution to the force is 

due to the viscous skin friction. 
In  the limiting case of a sphere (as a+ b, or e+ O ) ,  (26) reduces to 

and by (28) and (31), 

cF1 = cF2 = 1, cpl/cFl = Cp2/CBT2 = 4, (32 b, 

all being well-known results. 
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FIGURE 1. The longitudinal and transverse force coefficients C,, and C,, [C& = Fs/6npUia, 
i = 1 ,2 ,  see (28)] of a prolate spheroid of axis ratio bla immersed in a Stokes flow with 
a uniform free stream. C,, and C,, are the pressure contributions to the respective force 
coefficients. 

I n  the other extreme of very slender spheroids, or for a slenderness parameter 

the force coefficients have the following asymptotic behaviour: 

2 cF1 N - 
1 4 

[I + 0(€2)], CF2 N - 
I 

3 log (2alb) - 4 3 log (2a/b) + i [I + 0(s2)], (34 a) 

which agrees with Tillett's (1970) result based on slender-body theory. Further, 
from the expansion 

C,,/C,, +{1 + [log (2/s)]-I +O(log s)-~} (34 b) 

we note that the ratio CF1/Cp2 tends to 4 as E-+ 0, but that this asymptotic limit 

is approached logarithmically since d(CFl/CF2)/de 2: +[slog2 (2/s)]-l, which is 
unbounded as E:+ 0. The corresponding Cpl and $, are 

Cpl s2[10g (2/€) - 11 c,,, cp2 11 *[I -e2 log (2/€)] CF2, (34 4 

indicating that Cpl becomes insignificant for the longitudinal translation of an 
elongated spheroid, whereas Cp2 is nearly +C,, and is rather insensitive to varia- 
tions in e when E: is small. These salient features of the force coefficients are clearly 
exhibited in figure 1, which is a plot of C,,, C,,, Cp, and Cp2 over the range 
O <  b/a < 1. 

Other important quantities are the local cross-sectional force coefficients since 
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they form the basis of slender-body theory. The local force acting on a unit 
cross-section of a spheroid a t  a station x can be determined from 

where V is the contour around r = r(x) and 0 is the cylindrical polar angle. We 
remark that dS = r(x) dOdx/(n. e,) is a surface element of the spheroid, so that 
the differential force Fl(x) and the total force F [see (28 a)] are related by 

The above definition of Cs(x) and Cn(x) is conventional in the literature of slender- 
body theory (see Gray & Hancock 1955). By making use of the present exact 
solution (26) and (29), the line integral in (35a) can be evaluated, which is not 
tedious, and we find that 

from which i t  follows that 

Cs(x) = 8npea,/U,, Cn(x) = 8rpea2/U2 (-a  < x 6 a), (364  

where a, and a, are given by (27). This result, which would hardly be expected 
intuitively, shows that the cross-sectional force coefficients Cs and Cn are both 
constant, independent of x, for a prolate spheroid of arbitrary eccentricity, 
including the sphere ! Further, by (28) and (36a), 

the values of Cs/Cn for different eccentricities e can therefore be read from the 
curve of C,,/C,, in figure I. For very slender spheroids, it follows from (34) and 
(36 b) that 

cs = 2n;u cn = 
log (2alb) - 9' 4np (b /a<l ) .  

log (2alb) + 4 

This result should be compared with slender-body theory, which provides, for 
an elongated rod of radius b and length 2a, the formula 

c, = 2 w  
log (2alb) - 4' c n  = yes, 

y being a constant. According to Gray & Hancock (1955), y = 2, whereas Cox 
(1970) has recommended that y be the ratio Cn/Cs determined by using (37), 
which is a function of a/b, and is always less than 2. 

Regarding the structure of the present solution we further note that only 
Stokeslets and doublets are required for a prolate spheroid in translation and 
their line distributions all terminate a t  the two foci. The distance between one 
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FIGURE 2. The orientations of the distributed Stokeslets and doublets for 
uniform flow past a prolate spheroid. 

focus and the nearer end of the body is related to the radius of curvature 2, at 
the nose by 

2, = (1 +e) (a-c). (39) 

For elongated spheroids, this becomes a - c = 42, as e + I. This asymptotic end 
property has been generally recognized for potential flows (Landweber 1951) and 

has also been conjectured for the low-Reynolds-number case (Tuck 1970; Tillett 
1970). 

Another point of interest is that, since al/a, = P1/j3, by (27 a, b), the resultant 
Stokeslet and the resultant doublet subtend the same angle 

at  the x axis. This angle is related, in virtue of (28 b, c), to the incidence angle 
a = t a r 1  (U,/Ul) by (see figure 2) 

tan 6 = a,/al = (C,,/CF1) tan a. (40 a) 

For elongated spheroids this relationship becomes, according to (34 b), 

tan S 2: 2 tan a + O(1og e)-l. (40 b) 

In the same limit, however, the doublets P1 and P, become increasingly weaker 
than the Stokeslets, since by (27 a, b), 

P1 2: $Ax1, P2 2: !#a, (e = b/a 4 1). (41) 

The approximation of the solution by leaving doublets out when evaluating Stokes 
flows involving slender bodies has been practised beforein the literature. While this 
is valid for elongated spheroids, to attach a general validity to this approximation, 
for arbitrary slender bodies, may be premature. A counter-example is the two- 
dimensional circular cylinder (its effective slenderness parameter being s = O), 
for which a doublet is still required for constructing the near-field solution. 
Another example appears in $14. 
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Finally, it is of importance to estimate the range of validity of the present 
solution by assessing the magnitude of the neglected inertial forces rela$ive to 
the terms retained. It is convenient to separate the longitudinal and transverse 
motions and to evaluate the flow quantities on a spheroidal control surface, which ' is taken to be confocal with the body surface, namely on 1 = r,(x), where 

r t  = (1 - eg) (a: -x2) (e, a, = ea, e, < e). (42) 

' For the longitudinal motion (with U. = 0) ,  a typical leading term of the inertial 
force is uaulax, while for the transverse motion such a term is vau/ay, where 
u = (u, v, w). The estimate of the viscous force may be taken as IpV2u 1 or I Vp I 
since they are equal according to the Stokes approximation. We find the ratio 
of the local inertial effects to the local viscous effects (evaluated at r = r,) to be 

(longitudinal motion), 

1'' a u / a ~ l  2 o (transverse motion), 
IVPI ("V) 

where v = p/p. Since u and v tend to zero as the body surface is approached and 
u + U, and v -+ U, at infinity, the above ratios will remain small in a neighbour- 

hood of the body if 

I R b < R a <  1 (R,= Ua/v,R,= Ublv, U =  IUI), (44 a) 

no matter how small the parameter E = b/a = RJR, is. Under this condition, the 
justification for the present results (for the force a t  least) as a valid first approxi- 
mation for a small longitudinal Reynolds number R, is entirely parallel to the 
classical argument for the sphere. However, the situation becomes very different 

when 

I R, < 1, R, not necessarily small. (44 b)  

In  this case the 'local' Reynolds number in (43) may be recast as 
I 

If this ratio is required to be small in order to justify the Stokes approximation, 
, r,/a may be very much restricted by this requirement, especially when R, 1. 

In  fact, the upper bound on r,/a could be so small that the local velocity u, 
would still deviate appreciably from the free-stream value U. Under such circum- 
stances the present solution would no doubt break down. This class of problems 

will be discussed in a future paper. 

4. Longitudinal shear flow past a prolate spheroid 

We next consider the shear flow U = Q3 ye, past a prolate spheroid specified 
by (21). The fact that the y derivative of U is a constant vector suggests, in view 
of the previous example, that the required singularities include a line distribution 

of Stokes doublets associated with the base vectors e, and e,, which can be 
assembled more conveniently in terms of a stresslet, a rotlet (whose direction is 
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opposite to the vorticity of the primary flow), and a potential quadrupole (which 
is generally associated with a stresslet much like a doublet is associated with 
a Stokeslet). On this basis we find the solution to be of the form 

where a,, /3, and y, are constants and the fundamental solutions Us,, U,, etc. are 

given in $2. These integrals can all be expressed in terms of the function B,, ,(x) 

defined by (24); the final result reads 

U = Q ~ Y ~ Z + ~ ~ Y C ( ~ A ,  +A,) e, + 2%B, 11 

+ ~ 3 [ ~ ~ $ 1 ,  1 - %yA31 + 4/33V[~ ( ~ ~ ~ 3 ,  1 -I%, ,)I, (46 a) 

where = ~ ~ 3 ~ 1 -  B3, 2, = ~ ~ ~ 3 ~ 0 -  B3, ,. (46 b) 

From this result we find, after some calculation, that the no-slip condition 
(u = 0 on S) is satisfied if 

- 2e + (1 + e2) log - 

The net moment on the spheroid is contributed by the rotlet only; it can be 

determined by superposition of (9), giving 

or in coefficient form, 

The resultant moment acts on the spheroid in the direction of the vorticity 
vector of the primary flow. There is no net force on a spheroid immersed in this 
shear flow since the solution contains no Stokeslet; this is because the shear flow 
is centred about the longitudinal axis of the spheroid. 

In the limiting case of a sphere (a+b, or e-+O), we deduce from the above 
result that, as e -+ 0, 
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where the subscripts on Q have been omitted. Consequently, the corresponding 
limiting values of u and M are 

This result agrees with the known solution of Burgers (1938) for a sphere in 
a shear flow. The present solution for the spheroid also agrees with that in 
Jeffery's (1922) general treatment of ellipsoids based on an analysis involving 

ellipsoidal harmonics. This problem has been further discussed recently by Cox 
(1971) using the singularity method, but only approximately for the case of a 

small shear rate in the free stream. 

5. Cross-flow with a longitudinal rate of shear past a prolate spheroid 

In  the case of a free stream U = !2ixe, flowing past the same spheroid as 
before, the structure of the solution is entirely analogous to the preceding case, 

namely 

u = 4 x e , - K c  (c2- P)  [ a i u s s ( x -  5 ;  ex,  e,) + y ; u , ( x -  5;  e,) ldt  

In  fact, since aUD(x;  e,)/ax = aUD(x;  e,)/ay, the perturbation flow field has 
exactly the same functional expression as in (45) .  The three new coefficients 
a;, Pi and yi can be determined upon invoking the no-slip condition u = 0 on 

the body surface S specified by (21) ,  which gives 

4e2 =-p' = eX [ - 2 e + ( l - e 2 )  log- 2e(2e2 - 3) + 3(1-  e2) log 
1-e2 1 - e  

y3 being given by (47) .  The corresponding moment on the spheroid is 

on account of (52b) and (48 b) .  We may note that, as a rule, the moment exerted 
by a shear flow on an axisymmetric body acts in the direction of the vorticity 
vector of the primary flow. Through this rule, the present result covers all the 
cross-flows having a longitudinal rate of shear. 

5 1 FLM 67 
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If  the uniform shear flows of this section and 5 4 are superimposed, the resultant 
moment (by superposition of (48) and (53)) will vanish when y3 = y;, or after 

making use of (52 b), when 
Q,/Q; = a2/b2. (54) 

Therefore, a spheroid experiences no moment when the vorticity vectors of the 
longitudinal and transverse flows are in opposite directions and have the ratio of 

their magnitudes equal to the square of the axis ratio re = a/b. 

6. Cross-flow with a transverse rate of shear past a prolate spheroid 

I n  this case a prolate spheroid is held fixed in a flow which is in the y direction 

and shearedin the2 directionwith, for example, the free stream U = Q1ze,. Again, 
on the basis of the symmetry properties relating the singularities to the primary 
flow as explained in the previous two cases, the solution can be expressed in 

the form 
P.. 

These integrals can all be expressed in terms of the function B,, ,(x) defined b; 
(24e), whose value at  the spheroid surface can be evaluated straightforwardly 

with the aid of (25). Curtailing the details, we find that the no-slip condition st 
the body surface is satisfied by (55 a) if 

y4 = +Ql(l - e2) 2e - (1 - e2) log- [ 
The resuItant moment is obtained by integrating the rotlet distribution, giving 

If the spheroid is released in this particular shear flow, the applied moment 
will clearly make the spheroid rotate about its longitudinal axis until it reaches 
a steady angular velocity, say - Q, e,. But if this steady rotation took place in 

a viscous fluid otherwise at  rest, it would exert a moment on the fluid given by 
(see equations (43) and (44) of part 1) 

M, = ~ ~ T , u c ~ Q , ( I  - e2) 2e - (1 - e2) log- [ l+e]-le,, 1-e (58 4 
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FIGURE 3. Various moment coefficients of a prolate spheroid of eccentricity e and axis ratio 
b/a = (1 - e2)*. Cml, = M,,/SnpCl,aba is the moment coefficient due to a longitudinal shear 
flow with shear rate Cl,, C,,, that due to a cross-flow with longitudinal shear, C,,, that due 
to a cross-flow with transverse shear, C,, that due to rotation about a minor axis and 
Cxo that due to rotation about, the major axis. 

or using the coefficient form and comparing i t  with (57), 

Since the action and reaction must balance for a free spheroid rotating in a steady 
state, we must have, in view of the linearity of Stokes flows, M, +Mo = 0, from 

which it follows that 
Q 0 - 2  -LQ 1, (58 c) 

which states that the steady angular velocity Qo of a freely rotating spheroid is 
half the basic flow vorticity, as might be expected. 

The four moment coefficients CM12 of (48), CM2, of (53), CMZ3 of (57) and C,, 
of (58 b) are shown in figure 3 over the range 0 < b/a < 1. These results are valid 
if Qa21v < 1 for the first two cases and if Qb2/v < I for the third, while the last 

has already been discussed in part 1. 

7. Rotation of a prolate spheroid about a minor axis 

The problem of the rotation of a prolate spheroid about a minor axis, with 
angular velocity 8 = Qe, say, can be readily resolved by appropriate super- 
position of the solutions of the preceding shear-flow problems. This possibility 
is realized upon observing that the flow velocity relative to the body has a t  large 

51-2 
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distances the form U = (Sly, - Qx, 0), each component being a shear flow aheady 

discussed. In  drawing this analogy we note that the inertial effect arising from 

the transformation from an absolute frame to the body frame may be neglected, 
together with other inertia forces, in accordance with the basic assumption for 
low-Reynolds-number flow, which here requires that Qa2/v 4 1. Therefore, the 

solution, expressed in the body frame, can be written as 

where (ul,pl) and (u,,p2) are given by (45) and (51), respectively, with Q3 = !J 

and Q; = - Q. 
Consequently, the resultant moment on the rotating spheroid, by superposition 

of (48 a) and (53 a), is 

where y3 is given by (47b) (with Q3 = Q), or in coefficient form, 

which agrees with the result obtained by Gans (1928). The moment coefficient 
CMR is also shown in figure 3 for comparison with the other cases. 

8. Extensional flow past a prolate spheroid 

The simplest case of an extensional flow [also called 'hyperbolic flow', se_e 
(17b)l past the present spheroid is the one with an axisymmetric free stream 

It corresponds to a radial inflow and a longitudinal outflow. From the axial 
symmetry it is obvious that no rotlet is required for constructing the solution. 

In fact, the form of the gradient of U suggests that we adopt stresslets and 
potential quadrupoles in a diagonal combination of the form 
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In (62 a), U assumes the expression (61), and in (62 b, c), the last expressions are 
obtained by some rearrangement and using the equation V2(R-I) = 0. Carrying 

out the integrations, we obtain 

in which the notation follows (24). By using (25), we find that u assumes at the 

spheroid surface the value 

u, = 2xeJQ - 2a5(3e -he) - 12P5(2e - 3Le)] -re, Q + 2a5Le - 12P5 

From this expression we find that u, = 0 if the coefficients of all three terms in 
(63 b) vanish simultaneously, this being the case if 

which completes our solution. Since the solution involves no Stokeslet and no 
rotlet, the spheroid experiences in this case neither a net force nor a net moment, 
as should be expected on the grounds of flow symmetry. This exact solution may 
be useful in the study of the dynamic stability of a spheroid immersed in an 
extensional flow, The general case of an extensional flow without axial symmetry 
can be treated in a similar manner, and incorporation of shear-flow components 
is possible. Construction of the solution in such a general case is however a little 

cpmplicated. 
In  the limit b -t a (or e -t 0), we have 

and we deduce that for a sphere of radius a centred in the extensional flow (61) 

u/Q = 2xez - ye, - zeZ (5 +z) - 4 a 5 ~  ($1. (66 a)  
ax R R3 

The stream function $(x, r ) ,  defined by 

of the extensional flow past a sphere is easily obtained by integration from (66a) : 

The streamlines of the flow in the plane z = 0 are shown in figure 4 for several 

values of $/Qa3. 
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FIGURE 4. (a) Streamlines of an extensional flow past a circular cylinder of radius b.  
(b )  Streamlines in a meridian plane of an axisymmetric extensional flow past a sphere of - 
radius a. 

9. Flow with a paraboloidal profile past a sphere 

As a further variation of the free stream, we consider a flow with a paraboloidal 
velocity profile U = K(y2 + z2) ex past a sphere of radius a, centred a t  the origin. 
(An off-centred paraboloidal profile is equivalent to a centred one superimposed 
on a uniform flow plus a shear flow.) By the singularity method we find that the 
solution consists of, apart from the primary flow, a Stokeslet (required to produce 
a drag), a potential doublet (associated with the Stokeslet to account for the 
body-thickness effect), an axial Stokes quadrupole (as suggested by the variable 
velocity gradient) and a potential octupole (associated with the Stokes quadru- 

pole to balance the power-law variations of the solution in R). Thus we obtain 
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FIGURE 5. Streamlines in a meridian plane of a paraboloidal flow U = Kfy2 + 9) e, 
past a sphere of radius a. 

which is found to vanish a t  R = a if 

Cl = 4Ka3, C2 = &Ka5, C3 = &Ka5, C4 = &Ka7, (68 b) 

as may be easily verified. The corresponding pressure is given by 

in which the first term on the right-hand side is the dominant pressure due to 
the primary flow. The resultant flow has a stream function [defined by (67)] 

given by 
@ 1---+-- --- I-- 

4 4. ( ; ;5 ; i7) ;; ( $ 
in which the R and r on the right-hand side have been non-dimensionalized with 
respect to the sphere radius a. Several streamlines in the plane z = 0 are shown 
in figure 5. The present solution agrees with the result of Simha (1936). 

To compute the sphere drag in this case we first note that although the primary 
flow has a pressure gradient, hence producing a 'buoyancy' effect (in the 

negative-x direction) on the sphere, this buoyancy force must be balanced by 
the net effect of the viscous stress of the primary flow, as must be the case for 
an arbitrary fluid bulk moving with the primary flow. The drag on the sphere 
therefore comes solely from the contribution of the Stokeslet: 

D = 8m,uC1 ex = 4n-,uKa3ex. (69) 

This drag may be regarded as associated with that on the same sphere in a 
uniform flow of an equivalent velocity 
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It is of interest to note that this U, is precisely the surface average of the primary 
flow velocity U = Kr2 over a spherical surface R = a. This rule may perhaps have 

a general validity for arbitrary non-uniform flows. 

10. Centred shear flow past a circular cylinder 

We proceed to discuss some solutions that can exist in the case of unbounded 

two-dimensional Stokes flows. In  contrast with the well-known 'Stokes paradox' 
for a cylinder placed in a uniform flow, we observe here that, if an unbounded 
primary flow, which is necessarily non-uniform, and the body geometry are 
fitted together in such a way as to produce no net force on the body, then a 
solution, in the strict sense of the Stokes approximation, may be possible. 

A simple example of such a situation is the shear flow U = Qze, past a circular 
cylinder (of radius b say) iixed a t  the origin with its axis perpendicular to the 

stream. In  virtue of the flow antisymmetry, we realize that the solution can 
admit no Stokeslet since there cannot be a net force on the cylinder, but may 
require a rotlet (in response to the primary vorticity), a stresslet (for counter- 
balancing the transverse gradient of the shear flow velocity) and a potential 
quadrupole (which is generally associated with a stresslet). Thus, as a trial 
solution, we write 

where x = ye, + ze,, r = 1x1 = (y2 + z2)*, and a, /3 and y are the strengths of the 
rotlet, stresslet and potential quadrupole, in that order. In  fact, this expression 
for u is found to  satisfy the no-slip condition a t  r = b if 

The corresponding stream function $(y, z) ,  defined by u = a$/& and w = - a$/@, 
is given by 

r 
(71 4 

As shown in figure 6, the flow has two 'backflow' regions, which are symmetric 
about the z axis and bounded by streamlines that separate from the circular 
cylinder a t  

r = b and tan-I (zly) = + 30' 

(at which four points a2$/ay2 = a2$/az2 = 0). This strong upstream and down- 
stream ' blocking effect ' is characteristic of the two-dimensional flow; buch a: 
backflow feature is absent, for instance, in the shear flow past a sphere given 

by (49)- 
The moment on the cylinder (per unit breadth in the x direction), by (9) and 

If  the circular cylinder so located in the shear flow is allowed to rotate freely, its 
steady angular velocity will be - Qoex, where 
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FIGURE 6. Streamlines of a centred shear flow (U = aye,) past a circular cylinder of 
radius b. There exist two 'backfiow' regions, which are bounded by separation streamlines 
intersecting the cylinder at angular positions of + 30" as shown. These separation positions 
are independent of the shear rate of the primary flow. 

since the moment on the cylinder when rotating a t  angular velocity Q, in a 

viscous fluid otherwise a t  rest is M, = 4n-pQob2e, and we must have M +M, = 0 

for a freely rotating cylinder. 
It is essential to note that the present solution exists primarily owing to the 

particular feature that no Stokeslet is involved in the solution. This feature is 

violated, for instance, when U(z) is off-centre, so that U $. 0 along the streamline 
passing through the centre of the cylinder. 

11. Two-dimensional extensional flow past a circular cylinder 

As another example of possible two-dimensional Stokes flows we consider an 

extensional flow U = Q(yey - ze,) past a circular cylinder of radius b centred a t  
the origin. Construction of the solution is analogous to the three-dimensional 

case already discussed in 5 8. It is easily verified that the required solution is 

with A = 2Qb2, B = 4Qb4. (73 b) 

Here $A is the strength of the two original stresslets and &B that of the two 
original potential quadrupoles, before they are combined to yield the above 
simplified expression. The two-dimensional stream function $(y, z )  of the flow 

is given by 

the corresponding streamlines being shown in figure 4 together with the sphere 
case for comparison. 
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12. Flow between two confocal prolate spheroids in axial rotation 

The singularity method can be further extended to consider interior flow 
problems by admitting also the fundamental solutions for interior flows, such as 

rotons, Stokesons, and so forth. 
As the first example of this category we consider the flow between two confocal 

prolate spheroids 
xZ/a: +r2/bq = 1 (i = 1,2, ai 2 bi, a, > al) (74 a) 

with a common focal length 2c and eccentricities el and e,, 

c2 = a: - b: = a2, - bi, c = elal = e2a2 (el > e,), (74b) 

which are kept rotating about their major axes with angular velocities 

respectively. The no-slip condition now requires that 

where Sl and 8, designate the inner and outer body surfaces. 
We find that the velocity has the following representation: I 

J - c  

The roton, of undetermined strength a,, is required since the interior flow must 
reduce to a solid-body rotation when the inner spheroid vanishes. The line distri- 

bution of rotlets, with a parabolic density between the two foci, is retained from 
the single-spheroid case (see part I), to which the present solution must reduce 
as the outer spheroid recedes to  infinity. Now, on S1 and S,, (77) becomes 

where 

Hence the no-slip conditions (76) are satisfied if 

The moment acting on the inner spheroid, according to (9), is 

which is equal and opposite to the moment on the outer spheroid since there 

exists no other extraneous moment. 
We note here that the rotlet strength, and hence also the moment M, will 

vanish either when Q1 = Q, or when the inner spheroid shrinks to a line 
(b,+O, el+ 1), for in either case the flow is reduced to a solid-body rotation. 

When the outer spheroid recedes to infinity (a, -+ oo, e, -t O), the present solution 

reduces to the single-spheroid case already treated in part 1. 
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In  the limiting case of two concentric spheres (el+ 0 and e,+ 0 for fixed a, 

and a,), (78) reduces to the known solution (e.g. Landau & Lifshitz 1959, p. 69), 

while (80a) becomes 
M = - 8np(LR1 - LR2) (cc-~ - a ~ 7 - l  ex. (80 b) 

13. Flow between two concentric spheres in relative translation 

As another example of interior Stokes flow we consider the relative translation 

of two spheres at  the instant when the two centres coincide. Under the Stokes 
approximation, we may choose, with no loss of generality, the inner sphere to be 
fixed while the outer moves with velocity U = Ue, (which may be regarded as the 
relative velocity when both spheres are in translation). The no-slip condition 

then requires that 

u = 0 (R = a,), u = Uex (R = a,), (81) 

a, and a2 being the radii of the two spheres (al < a,). 
The velocity is found to consist of a uniform flow, a Stokeslet, a potential 

doublet and a Stokeson and is of the form 

the corresponding pressure being 

in which the last term represents the prevalent Stokeson pressure. In  fact, the 
above expression for u satisfies the no-slip conditions (81), and hence is the 
solution sought, if, as can be readily verified, 

U, = Ua(1 +ghs-$A5), B, = 2Uala(l - h5), . (83 a) 

B, = $Ua?cr(l- h3), B3 = $U%- cr h3 ( 1-A,), (83 b)  

where h=a,/a, ( < I ) ,  a -1=(1-h)4( l+~h+h2) .  (83 el 

This solution has been obtained previously (for the references see Happel & 

Brenner 1965, p. 130) by the stream-function method. The drag on the inner 

sphere is simply 
F = 87rpB1 ex = 6npUala(l - h5) ex, (844  

which is of course equal and opposite to the force on the outer sphere according 
to the principle of action and reaction. As shown in figqre 7, the drag recovers 
the single-sphere value as h + 0, and increases rapidly as h = al/a,-+ 1 like 

F/6npUal = *(I - [I- (1 -A) + O(1 -A)%]. (84b) 

Although the present solution applies only to the instant when the two spheres 
become concentric, it nevertheless provides a valuable guideline as to the import- 
ance of wall effects and provides an estimate of results for particle interactions 

in rheology. It can further be applied to the problem of small oscillations of two 

concentric spheres. 
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FIGURE 7. Variations of the forces on two concentric cylinders (of radii 6, and b,) qnd two 
concentric spheres (of radii a, and a,) vs. their radius ratio h (A = b,/b, = a,/a,). 

14. Flow between two concentric cylinders in relative translation 

Regarding still another aspect of the Stokes paradox, we observe that the 
solution for two-dimensional Stokes flow involving a translating cylinder may 
exist if the flow is bounded in all transverse directions. The simplest problem in 
this category is the relative translation of two concentric cylinders. In  complete 
analogy with the concentric-spheres problem, we let the inner cylinder (r = b,, 
r2 - - y 2 +z2) be fixed while the outer cylinder (r  = b,) moves with velocity 

U = Ue,. The velocity and pressure can be written as 

in which the fundamental singularities, as well as x, all assume their two- 
dimensional forms in the y, z plane. The no-slip boundary conditions (u = 0 at 
r = b,, u = Ue,  a t  r = b,) are satisfied if 

U2 = &U(r(l+ 3h2), C, = Ucr(1+ h2), (86 a) 
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where h = bl/b2, a-l = (1 + h2) log (l/h) - (1 -As). 

The stream function of the flow can be deduced from (85a) as 

The force on the inner cylinder, by (20), is 

F =  4n,uCle, = 4npUa(l +h2) ey. 

As shown in figure 7, the drag increases drastically as h = bl/b, approaches 
unity, like 

F/4npU = 3(1 -h)-3[1 -$(I -h)+0(1 -h)2]. (87 b )  

Of particular interest is the limiting case when the outer cylinder is very large 

compared with the inner one (A = bl/b2 < I), in which case the drag becomes 

This result seems to suggest that P would diminish logarithmically as b2/bl+ co. 
It should be emphasized, however, that the present solution based on the Stokes- 
flow approximation can be valid only when Ubl/v < 1 as well as Ub,/v < 1. 

15. Conclusions 

We have presented here the exact solutions to a number of exterior and interior 
Stokes-flow problems involving prolate spheroids, spheres and circular cylinders 
and a variety of primary flows. Although some of these solutions were known, as 
cited in the text in specific cases, their representations in terms of distributed 

singularities are believed to be new. They further demonstrate the effectiveness 
of the method and begin to provide a physical picture of various singularities 
pertaining to body geometries and flows. This physical feeling has led us to 
construct simply new solutions to a few more challenging problems here. 

A primary objective of the present study is to throw light on further develop- 

ment of the singularity method for bodies of arbitrary shape, which may depend 
on the time as in micro-organism locomotion, and for arbitrary primary flows, 
which may appear under various circumstances. It is in this respect useful to 
expound upon the mathematical technique for ascertaining 'suitable singu- 
larities ' as well as their distributions. For this purpose we summarize in table 1 
the salient features of the singularities and the physical roles they play in the 
exact solutions for a prolate spheroid immersed in different primary flows. (In 
table 1, U denotes the primary-flow velocity, '5, its vorticity, e, (i = 1, 2, 3) the 

base vectors along the spheroid's principal axes, el coinciding with the longi- 
tudinal axis of revolution, eSjk is the alternating tensor and a,, /3, and y, are 

constants.) 
In  general, these exact solutions seem to suggest the following rules for other 

axisymmetric bodies in arbitrary flows. 
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- 

Distribution 
Primary flow Singularities (151 G C )  

Uniform - u s @ - p ;  ei) "i 

U = e, UD(X - S ; e,) PAc2 - t2) 
Centred shear rotlet UR(X - 5 ;  ek) Y K ( C ~ - % )  

Uss(x - 5; ei, ej)  uk(c2 - 5 2 )  

Q = -ekei, + quad.rupole ~ U D ( X  - p ;  e,)/axi A(c2 - %P 
Extensional 

U = 2xlel-x2e2-x3e3 Uss(x-F; el, el) a(c2 - 5 2 )  

Q = o aun(x - p ; e1)/axl brca - ~ 2 ) ~  

Paraboloidal flow Stokeslet - U s k ,  el) 
bast a sphere) + doublet UD(X,  el) 

U = ( x :+ x i )  el +Stokes quadrupole a2Us(x, el)/ax: 
To = 2 ( x 3 e 2 - x 2 e 3 )  + octupole - a2Uo(x, e1)/ax; 

of sphere 

(i) A Stokeslet is required when the primary-flow velocity has a non-zero 

average over the body surface. 
(ii) -A rotlet is required when the primary-flow vorticity has a non-zero average 

over the body surface. 
(iii) A stresslet may be required when the primary flow has a velocity gradient 

with a non-zero average over the body surface. (A stresslet Uss associated with 
ei and ej is suggested for each non-zero surface average of alI@x,.) 

(iv) A doublet is associated, as a rule, with a Stokeslet, a potential quadrupole 
with a stresslet, and likewise for higher-order poles, such that in each case the 

congruent pair have the same dependence on the base vectors ei, ej and ek. 
(v) For interior Stokes flows, a Stokeson is generally associated with a 

Stokeslet, a roton with a rotlet, and a stresson with a stresslet. 
These rules should be regarded, a t  this stage, merely as a useful guideline. 

A precise statement of the necessary and sufficient conditions for their validity, 

and hence the converse to these rules, will require a mathematical proof, which 
is under investigation. 

With suitable singularities ascertained for an arbitrary (axisymmetric) body 
in a certain designated flow, the problem becomes one of determining the 
singularity distribution, both in magnitude and spatial range, from a set of three 
coupled functional equations of the first kind as a result of the no-slip boundary 
condition on the velocity components a t  the body surface. Since the distribution 
range is unknown a priori, these integral equations are nonlinear equations, 
about which little theoretical information is available (except for the special case 
of slender bodies). This general problem will be discussed in a future study. 

This work was partially sponsored by the National Science Foundation, under 
Grant GK3116lX, and by the Office of Naval Research, under Contract 
NOOOl4-67-A-0094-0012. 



Hydromechanics  of low-Reynolds-number $ow. Part 2 815 

REFERENCES 

BATCHELOR, G. K. 1970a The stress system in a suspension of force-free particles. 
J .  Fluid Mech. 41, 545-570. 

BATCHELOR, G. H. 1970b Slender-body theory for particles of arbitrary cross-section in 
Stokes flow. J. Fluid Mech. 44, 419-440. 

BLAKE, J. R. & CHWANG, A. T. 1974 Fundamental singularities of viscous flow. Part I. 
The image system in the vicinity of a stationary no-slip boundary. J. Engng Math. 8, 

23-29. 

BROERSMA, S. 1960 Viscous force constant for a dosed cylinder. J. Chem. Phys. 32, 
1632-1635. 

BURGERS, J. M. 1938 On the motion of small particles of elongated form suspended in a 
viscous liquid. Chap. I11 of Second Report on Viscosity and Plasticity. Kon.  Ned. Akad. 

Wet., Verhand. 16, 113-184. 

CHWANO, A. T. & WU, T. Y. 1974a Hydromechanics of low-Reynolds-number flow. 
Part 1. Rotation of axisymmetric prolate bodies. J. Fluid Mech. 63, 607-622. 

CHWANG, A. T. & WU, T. Y. 1974b A note of potential flow involving prolate spheroids. 
Schiffstech. 21, 19-31. 

Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General 
theory. J. Fluid Mech. 44, 791-810. 

Cox, R. G. 1971 The motion of long slender bodies in a viscous fluid. Part 2. Shear flow. 
J .  Fluid Mech. 45, 625-657. 

EDWARDES, D. 1892 Steady motion of a viscous liquid in which an ellipsoid is constrained 
to rotate about a principal axis. Quart. J. Math. 26, 70-78. 

GANS, R. 1928 Zur Theorie der Brownschen Molekularbewegung. Ann. Phys. 86, 628-656. 

GRAY, J. & HANCOCK, G. J. 1955 The propulsion of sea-urchin spermatozoa. J. Exp.  Biol. 

32, 802-814. 

HANCOCK, G. J. 1953 The self-propulsion of microscopic organisms through liquids. Proc. 

Roy. Soc. A. 217, 96-121. 

HAPPEL, J. & BRENNER, H. 1965 Low Reynolds Number H y d r o d y m i c s .  Prentice-Hall. 

JEFFERY, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. 
Proc. Roy. Soc. A 102, 161-179. 

LAMB, H. 1932 Hydrcdynamics. Cambridge University Press. 

LANDAU, L. D. & LIFSHITZ, E. M. 1959 Flzcid Mechanics. Pergamon. 

LANDWEBER, L. 1951 The axially symmetric potential flow about elongated bodies of 
revolution. Rep. Taylor Model Basin, no. 761. 

LORENTZ, H. A. 1897 A general theorem concerning the motion of a viscous fluid and a 
few consequences derived from it. Versl. Kon. Akad. Wet. Amst. 5, 168-175. 

OBERBECK, A. 1876 Ueber stationiire Fliissigkeitsbewegungen mit Beriicksichtigung der 
inneren Reibung. J. reine angew. Math. 81, 62-80. 

OSEEN, C. W. 1927 Hydrodynamik. Leipzig: Akad. Verlagsgesellschaft. 

SIMHA, R. 1936 Untersuchungen iiber die Viskositat von Suspensionen und Losungen. 
Kolloid 2. 76, 16-19. 

TAYLOR, G. I. 1969 Motion of axisymmetric bodies in viscous fluids. In Problems of Hydro- 

dynamics and Continuum Mechanics, pp. 718-724. S.I.A.M. Publ. 

TILLETT, J. P. K. 1970 Axial and transverse Stokes flow past slender axisymmetric 
bodies. J. Fluid Mech. 44, 401-417. 

TUCK, E. 0. 1964 Some methods for flows past blunt slender bodies. J. Fluid Mech. 18, 
619-635. 

TUCK, E. 0 .  1970 Toward the calculation and minimization of Stokes drag on bodies of 
arbitrary shape. Proc. 3rd Austr. Conf. on Hydraulics & Fluid Mech. pp. 2 S 3 2 .  


