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The most effective movements of swimming aquatic animals of almost all sizes 
appear to have the form of a transverse wave progressing along the body from head 
to tail. The main features of this undulatory mode of propulsion are discussed for 
the case of large Reynolds number, based on the principle of energy conservation. 

The general problem of a two-dimensional flexible plate, swimming at arbitrary, 
unsteady forward speeds, is solved by applying the linearized inviscid flow theory. 
The large-time asymptotic behaviour of an initial-value harmonic motion shows 
the decay of the transient terms. For a flexible plate starting with a constant 

acceleration from at rest, the small-time solution is evaluated and the initial 
optimum shape is determined for the maximum thrust under conditions of fixed 
power and negligible body recoil. 

1. Introduction 

Aquatic animals propelling themselves in water, or in other liquid media, 
span a wide range in their sizes and speeds. Large cetaceans, such as porpoises 

and whales, may have lengths from 2 to 30 m, and can swim at cruising speeds of 
from 6 to 10 m/s (Lang & Pryor 1966). Microscopic organisms such as paramecia 

and spermatozoa, ranging from 300pm down to 50pm in length with length- 
diameter ratio from 20 to 100, canswimat speeds from 1000 to 80pmls. Inbetween 
these two extremities there are many species of fishes and aquatic animals of 
various sizes. Based on the characteristic length I of a body moving at velocity 
U in a liquid of kinematic viscosity v, the Reynolds number, R = w/v, measures 

the relative magnitude of the time average of inertial stress to viscous stress. 
The value of R is of order 108 for the most rapid cetaceans, lo6 for migrating 
fishes, lo5-lo3 for a great variety of fishes, about lo2 for tadpoles, down to about 
1 for Turbatrix, 10V or less for paramecia and spermatozoa (Gray 1968, p. 437), 
and to the extreme of 10-6 or less for bacteria. Thus, the Reynolds number R 
covers practically the entire range of interest known to hydrodynamicists. 
Lighthill (1969) has given an excellent survey of the hydromechanics of aquatic 
animal propulsion, which has elucidated both the zoological and hydromechanical 

aspects of the subject. 
Although R may vary greatly from case to case, the most effective movements 
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of swimming propulsion employed by a large number of aquatic animals of 
drastically different sizes have been observed to differ very little from an 
undulatory motion of the body, in the form of a transverse wave propagating 
along the body from head to tail. A great majority of many species of fishes can 
be singled out as a pre-eminent class of this mode of propulsion. The remarkable 
performance of some cetaceans (dolphin, porpoises, whales, etc.) and some well- 
known game fish families (tuna, wahoo, marlin, swordfish, etc.), using strong 

tails of large aspect ratio, is only a variation of this basic undulatory mode. 
In  the world of micro-organisms, an enormous variety of creatures, ranging 
from minute bacteria, larger but still primitive protozoa, to higher level sperma- 
tozoa, have been observed to employ either uniformly propagating transverse 
waves, or whip-like waves, or helical waves along slender flagella as principal 

, means of propulsion. The basic transverse wave mode thus seems to be little 

affected by the Reynolds number over such a wide range. However, the funda- 
mental principles underlying the hydromechanics of swimming propulsion do 
become very different for large or small values of the Reynolds number. 

For Reynolds number large, the swimming propulsion depends primarily on 
the inertial effect, since the flow outside a thin boundary layer next to the body 
surface is irrotational. Viscosity of the fluid is unimportant except in its role of 
generating the vorticity shed into the wake, and of producing a thin boundary 

layer, and hence a skin friction at the body surface. As the body performs an 
undulatory wave motion and attains a forward momentum, the propulsive 
force pushes the fluid backward with a net total momentum equal and opposite 
to that of the action, while the frictional resistance of the body gives rise to a 
forward momentum of the fluid by entraining some of the fluid surrounding the 
body. The momentum of reaction to the inertial forces is concentrated in the 

vortex wake due to the small thickness and amplitude of the undulatory trailing 
vortex sheet; this backward jet of fluid expelled from the body can, however, be 
counterbalanced by the momentum in response to the viscous drag. When a self- 
propelled body is cruisingat a constant speed, the forwardand backward momenta 
exactly balance; they can nevertheless be evaluated separately. This mechanism 
of swimming motion at large Reynolds numbers has been elucidated by von 

K&rm&n & Burgers (1943) for the simple case of a rigid plate in transverse oscilla- 
tion. Swimming of slender fish has been treated byLighthill(1960); and the waving 
motion of a two-dimensional flexible pIa,te has been calculated by Wu (1961). 

In  the other extremity, movements of microscopic bodies always correspond 
to small Reynolds numbers. The propulsion in this range depends almost entirely 

on the viscous stresses, since the inertial forces are then extremely small, except 
possibly for the motions at  very high frequencies. Oscillatory motions in a 

viscous fluid were discussed as early as 1851 by Stokes. Various studies of the 
swimming of microscopic organisms have been led by Taylor (1951, 1952a, b) ,  
who discussed the propulsion of a propagating, monochromatic, transverse 
wave along a sheet immersed in a very viscous fluid, and later evaluated the 
action of waving cylindrical tails of microscopic organisms. Further studies in 
this field have been contributed by Hancock (1953), Gray & Hancock (1955)~ 
Reynolds (1965) and Tuck (1968). 



Hydromechanics of swimming propulsion. Part 1 339 

Aside from the mode of propagating transverse waves, Ohere are still other 
kinds of body motions, such as (a) actual ejecting of liquid as employed by 

and octopus, (b) progressive waves along fringe belts as used by some 
flat fishes, and waving motion produced by bending a large number of dense 
bassels underneath a star fish, (c) squirming motion by changing the body shape 
ofa tail~less object in slow motion through a viscous fluid, (d) ciliated propulsion 
of numerous micro-organisms by waving movements of a large number of cilia 

attached to the body surface. Problem (a) has been discussed by Siekmann 
(1963), and (c) has been analysed by Lighthill (1952). Close resemblance between 

the movements of cilia and flagella has been contended by some investigators. 
The problem of self-propulsion of a deformable body in a perfect fluid, having 

no viscosity, has been discussed by Saffman (1967). 
Hydrodynamics of swimming is only a part of the whole problem. From the 

viewpoint of bioengineering, the entire process begins with the biochemical 

energy stored in the swimming being, which can be converted, with efficiency 
q,, into mechanical energy for maintaining the body motion; the latter is in 

turn transformed, with efficiency y,, into hydrodynamic energy for swimming. 
A part (fraction y, say) of the hydrodynamic energy is spent as the useful work 

done by the thrust, which balances the work done by frictional drag, and the 
remaining part becomes the energy lost, or dissipated, in the flow wake. It is 

in the effort of keeping a self-contained balance of energy that some apparently 
astonishing observations have been reported. For example, Johannessen & 

Harder (1960) reported several impressively high speeds (about 20 to 22 knots) 

attained by porpoises, killer whales and black whales. The boundary layer 
over a rigid, smooth surface of a similar body in this Reynolds number range is 
definitely turbulent. If the skin friction is evaluated on this basis, then the power 
required to maintain such high speeds would violate by severalfold the rule of 
thumb in biology that a pound of strong muscle can deliver only up to 0.01 
horsepower. More recently, the speed of porpoises has been investigated care- 
fully, under well-controlled conditions, by Lang et al. (1963, 1966). Another 
interesting study is that of migratory salmon by Osborne (1960). According t o  
this careful investigation, a detailed estimate again led to one of two conclusions: 
either (a) these creatures have a much smaller drag than could be achieved with 

similar, rigid bodies, or (b) the power ouOput per gram of muscle is much larger 
than that observed from physiological experiments on warm-blooded animals. 
This is known as the paradox of Gray (1948, 1949). These puzzling alternatives 
have stimulated fluid mechanists to explore various other possibilities, such as 

the effect of compliant skin, and the effects of mucous surface and additives on 
frictional drag, studies of the former being so far inconclusive. The subject of 
drag reduction by long-polymer additives has been under active development. 
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Also, the recent study of Lang & Daybell (1963) has given partial explanation 
to Gray's dilemma. 

The present study is devoted to several hydromechanical problems of swim- 
ming propulsion. In part 1, the main features and advantages of the undulatory 
mode with a transverse wave progressing along a planar or slender body are 
discussed from the principle of energy conservation. The two-dimensional 
oscillating-airfoil theory appears to be of value in fish hydromechanics as a 
first approximation to the propulsion of lunate tail (percomorph fish, fast 
sharks, cetacean mammals and variants: Lighthill 1969) with caudal fins of 

high aspect ratio. If this type of theory is applied to the flapping flight of birds, 
it; is more realistic to consider the forward velocity of the wing to be non- 
uniform, since it is known that the wing movements, in up-and-down strokes, 
have very large backward-and-forward components (Gray 1968). Furthermore, 
such a general theory may also have applications to artificial propulsive devices, 
such as the vertical-axis propeller (Voith-Schneider type, whose blades move 
relative to fluid with variable velociby and pitch), and may be particularly useful 
in the control theory for hydrofoils and other devices when the transient be- 

haviour is of importance. With these future applications in view, the general 
problem of a two-dimensional flexible plate moving with a variable forward 
velocity is solved based on the linearized wing theory. The small-time solution of 

a flexible plate starting with a constant acceleration from a t  rest is evaluated, 
and the optimum shape in the initial stage is determined for the maximum thrust 
under the condition of fixed power and small body recoil. The problem of opti- 
mum movement of a rigid wing and the general optimum shape of a flexible 
plate in harmonic time motion will be treated in part 2 of Chis study. In part 3 

the effect of a vortex sheet shed by side fins of a slender fish in swimming will be 
discussed Cogether with the optimum movement. 

2. Thrust; energy balance 

In order bo understand why the motion of a transverse wave progressing along 
the body is desirable for swimming propulsion, we consider the energy balance 
for the typical case of a flexible planar body of negligible thickness, performing 
an arbitrary unsteady motion of small amplitude, achieving in time t a rectilinear 

forward velocity U(t) through a fluid which is otherwise at  rest. We choose a 
Cartesian co-ordinate system (x, y, z )  fixed at the mean position of the body, 
with the stretched plan form of the body lying in the y = 0 plane and with the 
free-stream velocity U(t)  pointing in the positive x direction. The body motion 
can be written generally as 

Y = h(x, 2, t) (x, 2 E 4 ,  (1)  

where S is the stretched plan form of the body (when h vanishes identically), h 
is an arbitrary function of x, z, and t, with lah/atl and swimming velocity U 
assumed to be sufficiently small for the flow to be regarded as incompressible, 
and with [ahlax/ and [ah/a~[  assumed also small enough to justify the linear 
theory. 
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The Reynolds number R = Ullv, based on the velocity U and body length I 
(in the streamwise direction), is taken to be so large that the boundary layer is 
thin and the inertial effects can be evaluated under Dhe inviscid flow assumption. 
Then the boundary condition requiring the normal component of velocity 

to the solid surface to vanish prescribes the y component of the flow 

velocity a t  the planar surface as 

The planar body may admit sharp leading and trailing edges. When the latter 
kind is present, we shall impose, as usual, the Kutta condition that the flow speed 
and pressure are required to be continuous at sharp trailing edges. The following 
discussion is also applicable to plane flows, say in the x, y plane, in which case 
the dependence on x simply drops out, and all the quantities will then refer to a 

unit span in the x direction. 
The thrust (positive when directed in the negative x direction) acting on the 

body, based on the inviscid linear theory, is given by the integration of the 
pressure component in the forward direction, 

where (Ap) denotes the pressure difference across the flexible plate, 

&is thesingular force per unit arc length along the leading edge due to the leading- 
edge suction, and the last integral is evaluated along the leading edge x = b(x). 
The power required to maintain the motion is equal to the time rate of work done 
by the plate against the reaction of the fluid in the direction of the transverse 

plate motion, 

The third quantity of interest is the mechanical energy imparted to the fluid in 
unit time, which in this inviscid flow is equal to the time rate of work done by 

the pressure over the body surface, or 

(Ap) V(x,z,t)dS-T,U. (5) 

The above three quantities satisfy the principle of conservation of energy which 

asserts that the power input P is equal to the rate of work done by the thrust, 
TU, plus the kinetic energy E lost to the fluid in unit time, 

If the viscous effects are further taken into account, then the thrust T must 
include the viscous drag due to skin friction and the energy loss must contain 

the viscous dissipation. 



On physical grounds it can be inferred that the energy loss E is non-negative 
in several cases of broad interest. One such case is the periodic body movement 

with constant forward velocity, 

U = const., h(x, z, t) = hl(x, z) exp (jut) (x, z E S), (7) 

where j = 4 - 1 is the imaginary unit for the period time motion, h,(x, z) may 
generally be complex with respect to j, and h is to be interpreted by its real part. 
After the transient stage is over, the kinetic energy imparted to the fluid will 
be largely confined in the wake which contains the trailing vortex sheet and is 

lengthening at the rate U. Therefore E, or at  least its time average, cannot be 

negative. (A mathematical proof of this statement has been given for slender 
bodies by Lighthill (1960) and for waving plates in plane flows by Wu (1961).) 
Another example is when the body starts to swim from a state of rest: 

while U, h, and the components of the perturbation velocity (u, v, w) all vanish 
for t < 0. In this case any disturbance generated in the flow must correspond to 

a gain of kinetic energy of the fluid (see 5 6). 
The following discussion will be based on the presumption E 2 0. Under this 

condition we have, by (6), 
P > T U  if E 2 0 .  (9) 

P ,  however, need not be positive definite. When P is negative, energy is trans- 
ferred out of the fluid (like a turbine) ; then T < 0 according Co (9), indicating 
that there must be an inertial drag acting on the body. Forward swimming is 
possible only when the thrust T > 0, large enough to overcome the viscous drag; 
then P > 0, and hence a power is required to maintain the motion. Now, from 
(3) it is seen that a sufficient condition for producing a positive thrust is satisfied 

if Ap and ahlax are everywhere of the same sign, for the suction force $ in 
forward movement is never negative. In view of the inequality (9) and the 
expression (4) for P ,  Ap and ah/at cannot have also the same sign everywhere 

on S. Suppose, as a qualitative picture, ahlax and ah/at are everywhere opposite 
in sign, then clearly h represents a transverse wave propagating towards the 
tail (see figure 1). 

To investigate further the qualitative features of such periodic waving 
motions it suffices to consider the case of simple harmonic form (7), since, for 
arbitrary time dependence, all linear effects (such as the pressure, lift, moment) 
can be obtained by the Fourier synthesis; and, as for the quadratic effects such 

as T, P ,  and E, it can be seen that, in their time averages, the components with 
different multiple-frequencies are not coupled. In fact, consider two functions: 

where Re denotes the real part, the time average of gh is 

- 1 = '  
gh = lim So g(x, t) h(x, t) dt = +Re [C gn (x) h$ (x)] , 

T+m n 
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where h* is the complex conjugate of h (with respect to j). This result is readily 
,=tended to the integral form when g, h are expressed by integrals over a con- 
tinuous spectrum. 

Returning to the waving motion, we consider the fundamental form 

h = Re [h, (x, z) exp (j(wt - kx))] (x, z E S), (12) 

I ?h/?x < 0  I i'hlux- > 0  

I I 
I 

I 4p>O I 4 p i O  
I 

I 
I 

I I 
I a11p,> 0  
I I ahlat < o I 

I I I 
I I I 

FIGURE 1. Consideration of energy conservation indicates that, in forward swimming, 
transverse movements of body wave propagate not only backward (from head to tail) 
with velocity c, but also backward relative to the fluid, since c 2 U .  

which represents a simple wave propagating along the planar body in the 
streamwise direction with phase velocity c = w/k and amplitude 1 h, (x, x )  1 .  
Substituting (12) in (3) and (4), and taking the time average, we obtain 

k 1 ah; Fp = -Re (Ap,) jht + - - exp (jkx) dS, 
2 1s ( k a x )  

P = - Re (Ap,) (jh?) exp (jkx) dS, 
Js 

where (Ap,) = (Ap) exp (-jut), is independent of t as a result of the linearized 
theory. Since the thrust %due to the leading-edge suction is alwaysnon-negative, 
it follows from inequality (9) that 

P 2 UF 2 uTP, (14) 
provided E 2 0. Consequently, if ah,/ax = 0, or if 1 ahll 8x1 4 I1chll, then from 

(13) and (14) we immediately have 

c = wllc 2 U. (15) 
This result shows that not only is a progressive transverse wave desirable, but 

also its phase velocity must be greater than U (under the stated conditions), in 
order to achieve a given swimming velocity U. This qualitative feature remains 

true for a wide class of amplitude function h1 (x, 2). 



3. Swimming of a waving plate with variable forward velocity in 
plane flow 

Though the flow around swimming fish is certainly three-dimensional, the 
theory of two-dimensional swimming motion is still of considerable interest, 
since it can be applied to estimate the propulsion of a tail of large aspect ratio 

of some species of cetaceans and also various fishes such as scombroids and the 
faster sharks, or even the propulsion of wing flappings of migrating birds. We 
derive in the following the main features of swimming with arbitrary forward 

velocity in plane flows. 
Here we consider the incompressible plane flow of an inviscid fluid past a 

flexible plate of zero thickness, spanning from x = - 1 to x = 1, and performing 
a waving motion of the general form 

h being again an arbitrary, continuous function of x, t, and assumed to be 
always small. (The effect of small thickness of a planar body of this type is 
regarded as secondary, and can be estimated separately.) The motion starts at 
t = 0 from a uniform state; the free-stream velocity U(t) may depend on t. Let 
u and v again denote respectively the x and y component of the perturbation 

velocity. We introduce the Prandtl acceleration potential, 

where pa is the pressure at  infinity and p is the fluid density. In  the linear 
theory of this incompressible irrotational flow, p,  and hence also $, is a harmonic 
function of x, y for all t. A harmonic function $(x, y, t) conjugate to $ may be 

defined by $, = $,, $, = - $x, where the subscripts x and y denote differentia- 
tions. Hence the complex acceleration potential f = $+i$ and the complex 
velocity w = u- i v  are analytic functions of the complex variable x = x+iy for 

all real t. (We borrow the notation w and x for this different purpose in this 
section). f and w are related by the linearized Euler's equation of motion, 

The linearized boundary conditions are 

Here, condition (19) follows from the imaginary part of (17) and condition (18); 
condition (20) follows from the fact that $ is even, and hence $ is odd in y; (21) 
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is the Kutta condition fo'r the flow at the trailing edge x  = 1. Condition (22)  for 

w may also be specified as 1x1 +a, larg zl > 0,  i.e. as a +cc in the region exclud- 
ing the trailing vortex sheet. 

Integration of (17) to obtain the boundary value of @ on the plate can be 

done by using the method of characteristics. However, with variable U( t ) ,  it is 
more convenient to make use of the Laplace transform method. We first introduce 

the variable 
U(t)dt  ( t  > O ) ,  (23)  

and assume its inverse function t  = t ( r )  is unique so that U = U( t  (7)) is a one- 
valued function of r ,  this being the case so long as the swimming proceeds in 
one direction. Regarding w and f as functions of x  and T ,  (17) becomes 

I(,, s )  = /:exP ( - S T )  B(x ,  T )  d~ (Re s  > 0 )  (26)  

to (24),  under zero initial conditions, yields 

Integrating this equation from x  = - co, using conditions (22),  and expressing 

in terms of @, and vice versa, we obtain its imaginary part as 

On the plate, with y  = 0 + and 1x1 < 1, G(x, 0  + , s )  = v ( x ,  s ) ,  which is the 
Laplace transform of (18).  Application of this condition to (28a)  yields 

* 

where KC&.)= - ( & + s ) / ~  Y(x1,s)dxl  (1x1 < 1),  
- 1 

(29 b)  

- 1 
and A, ( s )  = - s  q x ,  o + , s )  dx = s /  exp ( s ( x  + 1))  P ( x ,  0,  s )  dx. (29c)  

-m 

The last equality in (29c) is obtained readily by comparing (28b) with (28a)  a t  

x = - 1, y = 0. Thus is known except for an additive constank term AO(s ) .  

Furthermore, from (20)  and (25) it follows that 
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This Riemann-Hilbert problem, specified by (29), (30), and conditions (21), (22), 
can be readily solved (for the general method, see, e.g., Muskhelishvili 1953, 

pp. 235-8), giving 

in which the function (z - l)* (x + 1)-* is defined with a branch cut from z = - 1 

to x = 1, so that this function tends to 1 as 1x1 +co. The leading-edge singularity 
can be separated out in the above solution by suitable integrations while using 
(29 a), giving 

i 
P(x, S) = iA, (s) - -6, (s) 

2 dE, (31a) 

Now, substituting the value of T(x, 0,s) for x < - 1, which can be readily 

deduced from (31a), into the second integral representation of (29c), then, 
after some appropriate integrations by parts, using (29 b) and the identity 

we determine the coefficient 6, (s), and hence also A,(s) from (31 b), as 

where B(s) = K1(s) 
K, (s) + K, 6)' 

KO, Kl being the modified Beseel functions of the second kind. 

After the inverse transform of (31), the solution off becomes 

ao (7) = - J o [bo (7') + bl (r')] ~ ( r  - r') dr' + b1 (T), (34) 

and A, (7) is given by the inverse transform of (31 b). In particular, the value of 

$ on the body surface is $+(x, t )  = $(x, 0 + , t) = - $(x, 0 - , t) = - $-(x, t), 
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in wllich C over the integral sign denotes its Cauchy principal value. The first 
term in (38) gives the leading-edge singularity, whereas the integral term is 
regular wherever is continuous. Furthermore, a, (T) is the only quantity in the 
solution that is influenced by the history (see (34) and (37)) and requires expres- 
sion in terms of T. The pressure difference across the plate is, by (16), 

Ap E p-(x, t) -p+(x, t) = 2pq5+(x, t) (1x1 < 1). (39) 

The lift L acting on the plabe and the moment of force, M, about the mid- 
cord (positive in the nose-up sense) are readily obtained by straightforward 
integrations as 

In calculating the thrust T and energy loss E we note that the complex 
velocity, which can be deduced from (24) by integration to give 

has the same singularity strength at  the leading edge as that of F ,  namely 

This singularity of w is known in the aerodynamic theory to give rise to a leading- 
edge suction (directed upstream), 

in which a$ stands for the complex conjugate of a,. 
Finally, the thrust T, power P and energy loss E can be determined in terms 

of h(x, t) by substituting (38), (39) and (43) in (3)-(5), with q5, h,, and hz in (3)-(5) 
all assuming their real values with respect to t. The final result, after some mani- 
pulation, is 

E = -$np U(t) [Re (a, + b,)] [Re (b, - a,)] 

where Pn = d h  (t)/dt, and 



The power P follows simply from (6), P = T U  + E. The manipulation involved 
in arriving at the above result can be considerably facilitated by making use of 
the following relationship. 

THEOREM. If two arbitrary functions f (x), g(x) and their derivatives f '(x), g'(x) 

are continuous in - 1 < x 6 1, the% 

This theorem can be readily proved by successive integrations by parts and by 
observing the identity 

the contributions from the Cauchy principal limits 6 = x - E and 6 = x + s 

cancel out as s+ 0. 
The integrals in (44) and (45) can be converted into a series representation 

upon substituting for V and h their Fourier series, with their respective Fourier 
coefficients given by (35) and (46), into the integrand and carrying out the 
double integration, yielding 

in which the real value of each of a,, b,, ,8, is implied. 

Other flow quantities of related interest are the vorticity distribution along 
the trailing vortex sheet and the circulation around the plate. The strength of 

the vorticity in dx of the vortex sheet at  a point (x, 0) of the wake (x > 1) is 
y(x, t)dx, positive in the counterclockwise sense, where 

y(x, t) = - 2u+(x, t), (49) 

which, by virtue of (17) and (20), satisfies the equation 

It therefore follows that 

By Kelvin's circulation theorem, the circulation (positive in the clockwise 
sense) around the plate, F(t), varies a t  the rate 

which gives, upon integration, 
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Thus, both y(x,r) and r(r) are determined once u+(1,7) is found. This can be 
best done by evaluating first its Laplace transform G+(l, s). From the real part 
of the integral of (27) and condition (20) it follows that 

~ + ( l ,  s) = - s e+ exp (8x1 6+(x, s) dx, 11, 
where 6+(x, s) is the real part of P(x, s) given by (31 a)  evaluated a t  y = 0 + , 
1.1 < 1. Substituting this expression for 6+(x,s) in the above integral, using 
again (47), we obtain 

~ + ( l ,  s) = &ns e-S [(a, + 9,) I, (s) - (6, - 6,) I, (s)], 

where In are the modified Bessel functions of the first kind. By using (32a, b) 
and the Wronskian I, (s) K, (s) +I, (s) KO (s) = l/s, the above expression reduces to 

G+( 1, s) = $7 e-s [6", (s) + 6, (s)]/[K, (s) + K, (s)]. (53) 

u+(l, r )  is then given by the inverse transform, which can be written as a con- 
volution integral. 

A particularly significant feature of the general solution is noteworthy a t  this 

point. If for all t 
b o w  +b,(t) = 0, (54a) 

or equivalently, if V(x, t) assumes the following Fourier expansion (see (35)), 

00 

V(x, t) = b, (t) (4 - cos 8) + C b, (t) cos nB (x = cos B), 
n=2 

(54b) 

then, according to (53), u+(l, t) = 0, and hence the circulation I' remains constant 
(see (51)), and the plabe sheds no vorticity into the wake regardless of what 

values b, (t), b, (t), . . . may take. Thus, there are an infinite number of such modes 
of unsteady motion that will leave no trailing vortex sheet. Furthermore, by 
(34), condition (54 a)  also implies that a, (t) = b, (t) = - b, (t). It therefore follows 
from (44), (45) that the first terms in the expression for T and E vanish, thus 

leaving T, E and P to vary as the total time derivative of certain functions 
oft. Since no vortex sheet is shed under condition (54), those values of T, E and 
P can arise only from the effect of the virtual masses of the fluid. In particular, 
when the motion is periodic in t, the average values of T, E and P must all 

vanish under condition (54), implying no net transfer of momentum, no net 
energy loss, nor any net power required over each cycle. This last property was 
observed earlier by Wu (1961), and will be seen later in part 2 of this study 
to play a particularly significant role in the problem of the optimum shape of 
h(x, t) for the maximum swimming efficiency. 

4. Balance of recoil of a self-propelling body 

When an aquatic animal propels itself along a rectilinear path, the total 
force and the monient of force must balance the time rate of change of their 
corresponding momentum. Considering the typical case of a three-dimensional 



planar (or slender) fish, and leaving the secondary details such as the movement 
of pedal fins out of the picture, it is reasonable to assume that the motive power 

will come only from the pure moment of internal forces that can be produced by 
alternating muscular contractions and relaxations. This moment is analogous 

to the applied bending moment in the theory of elastic beams. Whether it is 
possible for an aquatic animal in reality to be represented by a linear elastic 
body is of course quite an open question, since the elasticity of the part that is 
of living soft tissues has been found by Fung (1967) to be strongly non-linear. 

How much this will be affected by the vertebral column is still not known. 
We shall, however, assume that the reactions of the flexible body to the applied 
bending moment and hydrodynamic forces satisfy the linear elastic relation- 
ahips. We shall further adopt the elementary beam theory, which is considered 
to be adequate here. 

FIGURE 2. Hydrodynamic and elastic forces and moments acting on a longitudinal 
element of a flexible body in transverse movements. The bending moment M includes the 
active moment Ma due to asymmetrical muscular contractions and relaxations. 

Taking the free-body diagram of a longitudinal section, of length dx, of the 
body (see figure 2), we obtain the equations governing the motion of a flexible 

body: 
aqpx + 4 = o, (554 

where q(x,  t )  is the longitudinal tension induced by 4 ,  which represents the 

longitudinal component of hydrodynamic shear and pressure forces per unit 
length, L, is the lift per unit length arising from the pressure, F, denotes the 
transverse hydrodynamic viscous drag per unit length, m is the mass of the 
body per unit length, Q is the elastic shear force in the cross-sectional plane, 
Ma represents the applied bending moment due to muscular contractions. The 
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quantity (E , I )  stands for the effective bending rigidity, E, being the effective 
young's modulus and I the moment of inertia about the bending axis. From 
(55a-c) one can evaluate the applied moment Ma that must be required for 

the prescribed body motion h, and vice versa, with suitable end 

(e.g. Q = Ma = 0 and the ends). 
~ualjtatively speaking, if the thrust and viscous drag are about uniformly 

distributed along a self-propelling body, I$ and should be everywhere small. 
Furthermore, Fn is generally small compared with L, a t  large Reynolds numbers 
if the cross-flow does not separate. Under these presumptions, we integrate 
(55a-c) along a slender or planar body, giving for the lift L and moment M 

= [llm(x) h&, t) dx, (56a) 

M(t )  = - xm(x) htt (x, t) dx. S', (56b) 

It may be remarked here that, after integration, the right-hand side of (56b) 

contains a term E,Ihzz evaluated at the two limits of integration, these two 
terms being assumed to vanish with the bending moments of inertia I a t  the 
two ends of the body. Although the integral conditions (56a, b) were given by 
Lighthill (1960), the set of differential equations (55a-c) are still thought useful 

for biological studies of the activating couple Ma. We further note that, although 
(56a, b) must be observed for all t, they are always satisfied in the mean by time 
harmonic motions. However, these recoil conditions, if not satisfied by a specific 
h of (12), may exclude the possibility of this motion being realized without extra 
'rigid-body ' motions of sideslip and yaw being superimposed. 

It can further be remarked that, when the present two-dimensional theory 
is applied to evaluate the propulsion of the lunate tail of large aspect ratio, or 
the wing of some birds, (56a, b) need not be considered as the primary conditions 
for recoil balance, since this question must be settled together with the motion 
of the entire body. 

5. Harmonic time motion with U = const. 

We consider next the special case of simple harmonic motion in t, with 
U = const., of a two-dimensional flexible plate which starts impulsively from 
h = 0 at t = 0. The steady-state solution has been evaluated by Wu (1961) 
using the Fourier series method (compared with which the present function- 

theory approach seems to be simpler). We shall supplement the previous work 
by providing the asymptotic solutions for both large and small t. 

The motion is prescribed by 

and h = 0 for t < 0. U = const., hence T = Ut. Then 

(4 = 0 (& +jg) hl (x) 



and V = 0 for t < 0. The asymptotic behaviour of the solution involves primarily 

the values of a, (t) for large and small t, since a, (t) is the only history-dependent 
term. Substituting the Laplace transform of V(x, t), 

q x ,  8) = q (x)/(s -j4, 

in (32),[and applying the inversion theorem to 6, (s), we obtain 

1 e+im ds 
a, (t) = b1 (t) - [b, (t) + b1 (t)] -1 exp [r(s - jcr)] a ( s )  - (6  > O),  (59) 

27~i S -J6 

where b,, b, are given by (35) (the time factor exp (jwt) of b,, b, being recovered 
here) and H(s) is given by (32 b). The imaginary unit j in the above integrand can 
clearly be taken to be the same as i = ,/ - 1. The integrand has a simple pole at 
s = i a  and a logarithmic branch point at  s = 0, and is regular elsewhere in the 
finites plane with a branch cut introduced along the negative real s-axis. 

l?or large r (actually large Utll, I being the half-chord which is being taken 

to  be unity here), the above path of integration can be deformed into a small 

circle (counter-clockwise) about s = icr and a contour I? circumventing counter- 
clockwise the entire negative real s-axis and the origin. The contour integral 
around s = i6 is given immediately by the residue theorem, whereas the I'- 
contourlintegral can be evaluated for large r,  according to Watson's lemma, by 

expanding the resulting integrand for small JsJ. The find result is 

@(cr) is the Theodorsen function, %and 9 being its real and imaginary part 
respectively, and cr is the reduced frequency based on half-chord I. The last 
term in (60) diminishes monotonically like t-2 (noting that the harmonic time 
factors cancel out) as t -+ co, yielding the steady-state solution of a,, 

a, (t) = b, - (b, + b,) @(cr). (62) 

For small r, the asymptotic value of the integral in (59) can be obtained 

directly by expanding the integrand for large Is[, giving 

This result shows that, immediately after the motion starts, the coefficient of 
the term (b, + b,) is 9, which changes over to @(a) as t +a. This feature is quite 
similar to the Wagner function for the sharp-edged gust effect. The above 
asymptotic expressions for a,, (GO), (63), can be directly used to determine 
T, E and P at large or small values oft. It is obvious that, for t large, T, E and P 
differ from their respective steady-state value by a term of 0( r -2 ) ,  which becomes 
negligible for r > 10, or after the body travelled over five chord lengths, provided 
a is not too small. 
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After the transient motion falls off, the time averages of T, E and P follow 

immediately from (44), (45) by applying the averaging formula (11). Thus 

F = f r p  Re [(a, + b, -A) (a: - b: +I?) +,8,,8:] 

= in-p {I b, + b,l (P2 + g2 - 9) - Re (j Ua(b, + b,) [(P: - P:) O (a) + P:])), (64) 

E = &rp U Re [(a, + bO) (b: - a$)] = $n-p U I bO + bl 1 [S- (P2 + g2)], (65) 

= UF + E = &rpU2 Re { - ja (b ,  + b,) [(P: - P:) @(a) +P:]), (66) 

the final expressions being obtained upon using (61), (62). This solution agrees 
with the previous result of Wu (1961, in which bn were written as -A,). To this 
end we observe that the above has the property E c 0. In fact, Theodorsen's 

function @(a) = F+ iY possesses the property F > (F2 + Y2) for a 3 0, the 
equality holding only when a = 0. Therefore B > 0 in general, and B = 0 
holds either when a =  0, a trivial case of steady motion, or when b, + b, = 0, a 
special case already discussed in the sequel to (54). 

6. Swimming with constant acceleration; small time optimum shape 

As a typical example of variable U(t) we consider the case in which a flexible 
plate moves forward with a constant acceleration from a t  rest, 

and its lateral motion is represented by a cubic form in x, 

3 

h(x, t) = +p,(t)+ p,(t) cos n0 (X = cos 0, 0 < 0 < 7 ~ ) .  
n= 1 

(68) 

This profile provides enough degrees of freedom for the lateral force and angular 
recoil to be minimized and the optimum efficiency examined. We further assume 
that in a certain time interval the coefficients Pn can be expanded for small t as 

This expansion starts from t2 so that the initial plate velocity V(x, 0) = 0. We 
shall, however, deal with only the first two leading terms in t, from which 
sufficient information can be obtained about the small time behaviour of the 
solution. 

The corresponding Fourier series of V(x, t) also has four terms, 

3 

V(x, t) = ht + ath, = & b, (t) + 2 bn (t) cos no. 
n = l  

(70) 

Since h, is of O(t) whereas ath, is of 0(t3), it follows that 

bn = ,8n+~(t3)  (n = 0, 1, 2, 3). 

TO obtain the expansion of a, (7) for t small, we first note 

23 F L M  46 



Consequently, the Laplace transform (with respect to 7) of tm is 

BY (3% a, (s) = 6, - (6, + 61) H(s). 

Now, by using the asymptotic expansion of K,(s) for large Is1 in (32b), 

Hence 6,(s) = i (61-60)-(1/~~)(b"0+61) [I +0(lsl-l)]. 

The Laplace inversion of the last term above is two orders smaller in t than 
(b, - b,), according to (73). Consequently, 

a, (t) = i ( b l  - b,) + 0(t3). (74) 

Next, we shall assume that the inerbial mass of the thin plate is negligible 
and further require the resulting lift L and moment M to be small so as to 
eliminate the recoil. Order estimate of L and M (see (40), (41)) shows clearly 

L = &np(b2 - 6,) + 0(t2), M = +np(6, - 6,) + 0(t2). 

Thus, L and M behave like a step function across t = 0 unless, up to 0(t2), 

b2 = bo, b3 = b1; or P2 = Po, P3 = Pl. (75) 

Only under this condition will L and M vanish up to the order t2. Under this 
assumption, we deduce from (44)' and (45)' the corresponding thrust and power 

required, also using (71), (74) : 

The expressions for T, P in terms of the coefficients P,, are 

2Th-p = (Pt2 + P?2 - 4P02P12) t2 f 3[P03 (Po2 - 3P12) +Pi3 (P12 - $PO2)1 t3 + 0(t4), (77) 

~ P I ~ P  = (ui2 + 4 ~ : ~ )  t + 3rh2pO3 + ~ ~ P I ~ P I ~ I  t2 + w3). (78) 

It is of interest to note that the thrust is produced by the time of O(t2), whilst 
the power is already required at the time of O(t), the initial power being positive 
definite. Another point of interest is that the rectilinear acceleration a does not 
yet appear in the first two order terms. 

A qualitative evaluation of Ohe optimum profile at  the initial stage can be 
made as follows. Up to the first-order terms, the thrust is maximum for fixed 
power P if 5 Pl2/PO2 = - (1 +1/193)/12 = - 1.24, (79) 

which can readily be verified by the method of undetermined multipliers. Deter- 
mination of the higher terms is not as simple. However, an indication of the 
trend of motion can still be given. If we require the second-order term of P to 
vanish, then the second-order term of T can be positive, under condition (79), 
if /3,,/PO3 = 1.07 and /303/P02 is sufficiently large and positive. 

Under condition (75), the body has the S-shape form, the maximum and 
minimum of h are given by 

ahlax = 12,8,x2+4P,x-2,8, = 0, 
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or, up to the first-order term, 

xl,Z = [ - 1 + (1 4- 6[2)t]/6c = - 0.564, 0.295. (80) 

When the higher terms in t are included, these points are seen to move back 

towards the trailing edge with increasing time. 
Withrout giving the detail, the vortex sheet strength a t  the trailing edge is 

found to be 
l s l r  6 

t) = - - - [ (~oz+8 ,z )+s (Bo3+~3t+~( t2 )  4. 1 , (81) 

which shows that, immediately after the motion is started, there is an initial 

vortex shed from the trailing edge. The sense of this vortex, under condition 
(79), is such that the fluid near the trailing edge is propelled downstream. 

I am very much indebted to Professor M. J. Lighthill for interesting and 

stimulating discussions, and particularly for his kindness in giving me the 

privilege of knowing his great work (1970) prior to its publication. This work 

was partially sponsored by the National Science Foundation, under Grant 

GK 10216, and by the Office of Naval Research, under Contract N00014- 
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