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ABSTRACT

In late April 2006, NASA launched Cloudsat, an earth-observing satellite that uses a near-nadir-pointing

millimeter-wavelength radar to probe the vertical structure of clouds and precipitation. The first step in

using Cloudsat measurements is to distinguish clouds and other hydrometeors from radar noise. In this

article the operational Cloudsat hydrometeor detection algorithm is described, difficulties due to surface

clutter are discussed, and several examples from the early mission are shown. A preliminary comparison of

the Cloudsat hydrometeor detection algorithm with lidar-based results from the Cloud-Aerosol Lidar and

Infrared Pathfinder Satellite Observation (CALIPSO) satellite is also provided.

1. Introduction

Clouds play a major role in earth energy and water

cycles. They cool the earth by reflecting sunlight back

to space and warm the earth by absorbing and reemit-

ting thermal radiation. By modulating the distribution

of heating within the atmosphere and at the surface,

clouds fundamentally influence the circulation of the

atmosphere and oceans (Stephens et al. 2002). Much of

our current knowledge of global cloud properties

comes from the study of satellite-based visible and in-

frared passive imager data, collected over the past sev-

eral decades. This imager perspective is now being en-

hanced with data from satellite-based radar and lidar

systems that provide range-resolved data on the vertical

structure of clouds and aerosols.

In late April 2006, the National Aeronautics and

Space Administration (NASA) launched the Cloudsat

and Cloud-Aerosol Lidar and Infrared Pathfinder Sat-

ellite Observation (CALIPSO) satellites. Cloudsat uses

a near-nadir-pointing millimeter-wavelength radar to

probe the vertical structure of clouds and precipitation,

while CALIPSO combines an active lidar instrument

with passive infrared and visible imagers to probe the

vertical structure and properties of thin clouds and

aerosols. CALIPSO and Cloudsat are separate satel-

lites that fly in formation with three other satellites

[Aqua, Aura, and PARASOL (Polarization and Anisot-

ropy of Reflectances for Atmospheric Sciences coupled

with Observations from a Lidar)]. Together, these sat-

ellites are part of a constellation of earth-observing sat-

ellites known as the A-Train. Thus, the Cloudsat obser-

vations, while of great interest by themselves, are also

part of a larger observational strategy to understand the

earth climate system (Stephens et al. 2002).

The first step in using Cloudsat observations is to

distinguish clouds and other hydrometeors from radar

noise. The Cloudsat project routinely generates a

“cloud mask” (described in section 2) that indicates

which radar observations are likely hydrometeors and

provides a rough estimate of the likelihood that a given
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detection is false. Here we describe the Cloudsat hy-

drometeor detection algorithm, discuss difficulties due

to surface clutter, and show several examples from the

early mission. We also provide a preliminary compari-

son of the Cloudsat hydrometeor detection algorithm

with lidar-based results from CALIPSO.

The Cloudsat radar does not scan but generates a cur-

tain, or two-dimensional cross section, through the atmo-

sphere as the satellite moves along its orbital trajectory. In

this article we refer to each element in this two-dimen-

sional cross section as a range bin. The radar transmits

pulses with an approximate duration of 3.3 �s and thus

measures cloud and precipitation reflectivity with an ef-

fective vertical range resolution of approximately 480 m.

The measured return power, however, is sampled at a

rate equivalent to about 240 m in range; that is, the

measured data are two times oversampled. Pulses are

averaged about 0.16 s along the nadir track, yielding an

effective footprint (6 dB) at the surface of about 1.4 km

� 1.7 km for each radar profile. The minimum detect-

able signal from the Cloudsat radar is still under evalu-

ation, but early results show that it is slightly exceeding

expectations with a sensitivity of about �30 dBZ.1

2. Cloud mask and detection algorithm

a. Description of 2B-GeoProf product

The purpose of the Cloudsat hydrometeor detection

algorithm is to identify when the measured radar return

power is likely to be due to scattering by clouds or other

hydrometeors and when it is likely to contain only

noise. The result of the operational algorithm is a

“cloud mask” that is stored in the Cloudsat operational

Geometric Profile (2B-GeoProf) data product. The

cloud mask contains a value between 0 and 40 for each

range bin, with values greater than 5 indicating the lo-

cation of likely hydrometeors. Increasing values indi-

cate a reduced probability of a false detection, as sum-

marized in Table 1. In addition to the cloud mask, this

product contains the radar reflectivity (i.e., the cali-

brated measured return power), an estimate of gas ab-

sorption due to oxygen and water vapor on the ob-

served reflectivity, and several quality indicator flags.

Unlike typical weather radars, which operate at much

longer wavelengths and are primarily designed to de-

tect rain rather than clouds, the effect of water vapor on

Cloudsat observed reflectivity can be significant. Two-

way attenuation from the surface to the satellite of

more than 5 dBZ is not unusual in the tropics. No es-

timate of loss in reflectivity due to absorption or scat-

tering by hydrometeors is included in GeoProf, and

users are cautioned that losses of 10 dB km�1 or higher

are possible with large liquid water contents. At times,

the Cloudsat radar is fully attenuated, or attenuated to

the point where multiple scattering dominates the mea-

sured return power (Mace et al. 2007).

The cloud mask, reflectivity field, and gaseous ab-

sorption are all provided on a height grid with 125 ver-

tical range bins, where the Cloudsat range bin closest to

mean sea level has been placed in vertical bin 105. The

location of the range bin that is closest to the actual

surface location is also provided.

b. Description of the hydrometeor detection

algorithm

The Cloudsat hydrometeor detection algorithm is

similar to the algorithm developed by Clothiaux et al.

(1995, 2000) but with two significant changes: 1) a

power probability weighting scheme and 2) an along-

track integration scheme. The along-track integration

1 The sensitivity (sometimes also referred to as the minimum

detectable signal) is defined as the point where the radar noise

power equals the target power. Because the scattered power from

distributed hydrometeors decreases as the distance from the radar

squared and the noise power is reduced by the square root of the

averaging time, the sensitivity is a function of the distance from

the radar and the averaging time. As such, any expression of radar

sensitivity should be accompanied by a reference range and av-

eraging interval. Cloudsat flies more than 700 km above the earth

surface (which can be taken as the reference range). Because of

this large distance, the change in sensitivity over the troposphere

is negligible.

TABLE 1. Description of Cloudsat cloud mask values, false detection rates, and percentage of false detections. The percent of false

detection is given by 100 times the number of false detections divided by the total number of detections for the specified cloud mask

value.

Mask value Meaning % false detections goal

Estimated % false detection

via CALIPSO comparison

�9 Bad or missing radar data

5 Significant return power but likely surface clutter

6–10 Very weak echo (detected using along-track averaging) �50% 44%

20 Weak echo (detection may be artifact of spatial correlation) �16% 5%

30 Good echo �2% 4.3%

40 Strong echo �0.2% 0.6%
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scheme helps identify targets that are too weak to be

detected at full resolution (0.16 s) but can be detected

through along-track (temporal) averaging of the data.

A schematic of the detection algorithm is given in

Fig. 1. The input to the routine is the raw radar mea-

sured return power (Praw), provided in the level 1B

Cloud Profiling Radar (CPR) data product. An esti-

mate of the mean and variance of the radar-measured

noise power is determined using the measured return

power from the stratosphere where the presence of any

hydrometeor—such as polar stratospheric clouds—

would have a volume-integrated backscatter cross sec-

tion much less than the detection threshold of the radar.

Therefore, any power in these range bins is due primar-

ily to microwave emission by the radar components, but

also contains contributions from microwave emission

by the earth surface and gases such as water vapor in

the atmospheric column. The mean noise power (Pn)

and its standard deviation (�Pn
) at each along-track

sample are calculated using a moving-average filter that

is 10 range bins in the vertical and 2 along-track bins

wide.

An initial set of hydrometeor detections is deter-

mined by comparing the target power (PT � Praw � Pn)

with �Pn
. Any range bin where PT � �Pn

potentially

contains backscattered power due to hydrometers.

However, because of random fluctuations in the noise

(which is Gaussian distributed), there is about a 16%

chance that any range bin will have PT � �Pn
due solely

to noise, that is, a potential false detection.

The detection algorithm starts by creating an initial

cloud mask (with the same dimensions as the input re-

turn power matrix) with values ranging from 0 to 40.

For range bins where �Pn
� PT � 2�Pn

, the cloud mask

is set to a value of 20; if 2�Pn
� PT � 3�Pn

, the mask is

set to 30; if PT � 3�Pn
the mask is set to 40; otherwise

it is set to 0. We reserve values of 10 or less in the cloud

mask to indicate clutter or the detection of clouds with

signal power PT less than �Pn
, which we discuss momen-

tarily.

To reduce the occurrence of false detections (which

are uniformly randomly distributed) and to reliably

identify range bins with hydrometeors whose PT is not

much different from Pn, a spatial box filter is applied.

Following Clothiaux et al. (1995), a box is centered over

each range bin of a size Nw (range bins along track) by

Nh (range bins in the vertical). We then count the num-

ber (N0) of range bins in the box where PT � �Pn
, not

counting the center range bin. If Pn is Gaussian distrib-

uted and independent in each range bin, the probability

(p) of any particular configuration with N0 of the total

(NT � NwNh � 1) range bins would have a PT � �Pn

solely because random noise is less than or equal to

p � G�L	�0.16N0	�0.84NT � N0	, �1	

where G is the probability that the center pixel could

be a false detection for a cloud mask value of level

L [G(0) � 0.84, G(20) � 0.16, G(30) � 0.028, G(40) �

0.002].

We expect that hydrometeor occurrence is highly

spatially correlated over spatial scales of Nw by Nh

range bins, and it is likely that, if a cloud is present,

many range bins in the box will contain significant

backscatter power (i.e., PT � �Pn
). Thus, if p given by

Eq. (1) is found to be less than some threshold value

(i.e., p � pthresh), then the center range bin is unlikely to

be noise and a hydrometeor (or other target) is likely

present. In this situation, the cloud mask for the center

range bin is then set to a value of 20 if it was 0 in the

initial cloud mask; otherwise the value in the initial

cloud mask is retained. Likewise, if p � pthresh, then the

measured power could well be noise and the cloud

mask is set to 0, regardless of the initial cloud mask

value. Following Clothiaux et al. (1995) this box filter is

applied to the data several times in succession. In each

pass of the box filter some nominally false detections

are removed, and the effect of removing these detec-

tions is propagated to nearby pixels in the next pass.

After a few passes one begins to remove more cloud

(i.e., generate more failed detections) than to remove

true false detections. Like Clothiaux et al. we found two

or three passes appeared nominal.

The algorithm described up to this point is identical

to that given by Clothiaux et al. (1995) except for the

(center pixel) power weight in Eq. (1), that is, the factor

G. We will discuss the purpose of the power weight in

section 2c.

Having visually examined data from eight aircraft

flights and months worth of ground-based radar data

FIG. 1. Cloud masking scheme.
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(both modified to look like less-sensitive Cloudsat mea-

surements, including the oversampling), as well as

early-mission Cloudsat observations, we have found

that

pthresh � �0.16Nthresh	�0.84NT � Nthresh	, �2	

with Nw � 7, Nh � 5, Nthresh � 20 (or equivalently

pthresh 
 10�17) and three passes of the box filter pro-

duces good results, by which we mean that the algo-

rithm is stable and appeared to produce few failed de-

tections and a low rate of false detections. These filter

parameters will be periodically evaluated throughout

the Cloudsat mission, but are not expected to change.

For the algorithm to be stable, Nthresh must be chosen

larger than 1⁄2 � (Nh � 1) � Nw or 14 in our configu-

ration. To understand this, imagine that we have a per-

fectly flat strongly reflecting cloud many kilometers

wide and examine a range bin directly above the cloud

layer. In this case, the bottom rows of the box filter will

all have significant power so we will have a value for N0

of at least 1⁄2 � (Nh � 1) � Nw. Therefore, if we do not

choose Nthresh larger than this value, we will always

mark any range bin above the cloud layer ON (a posi-

tive detection), even if the range bin contains no cloud.

Further, when we apply the filter repeatedly the cloud

will artificially expand. In application we also do not

want a few false positives above the cloud boundary to

falsely activate a clear range bin. Choosing Nthresh � 20

means 6 additional range bins must have significant

power (which will happen by chance only about 10% of

the time for our configuration with 21 bins above the

cloud boundary). We could choose Nthresh to be larger

than 20 to reduce the false detections, but we also do

not want to fail to detect true cloud-filled range bins.

For example, imagine a perfectly square cloud and ex-

amine the bin containing the corner of the cloud. The

corner has No � 1⁄4 � (Nh � 1) � (Nw � 1) � 15. As a

result, the algorithm will tend to indicate corners of true

clouds are likely false detections. The tendency to re-

move corners is partially corrected by the power-

weighting scheme in the case of clouds with high signal

to noise (as will be shown in section 2c). Nonetheless

one wants to set Nthresh low to minimize failed detections.

To improve the detection capability, the Cloudsat al-

gorithm is designed to average the raw return power in

the along-track direction. The purpose of this portion

of the algorithm is to find condensate that is horizon-

tally extensive (well beyond the size of the single radar

profile) but below the single-profile sensitivity limit of

the radar. We used four levels of along-track averaging

with 3-, 5-, 7-, and 9-bin-wide averaging windows. At

each level, a separate cloud mask is created and merged

in sequence, starting with the cloud mask created with-

out any along-track averaging. That is, we create a new

cloud mask based on 3-bin along-track averaging and

then merge this 3-bin-cloud mask with a cloud mask

created without any along-track averaging (what one

might call a 0-bin cloud mask). We then create a cloud

mask based on 5-bin along-track averaging and merge

this 5-bin cloud mask with the already combined

3-bin � 0-bin mask etc.

By applying a moving average to the data, the noise

and target power become increasingly spatially corre-

lated, thereby violating the independence assumption

used in the spatial filter, Eq. (1). By trial and error, we

found that using along-track averages of 3, 5, 7, and 9

bins for Cloudsat required increasing Nthresh (to com-

pensate for the additional correlation) to values of 23,

25, 27, and 29, respectively. In addition to increasing

Nthresh, we also only allow range bins to be marked as

containing a likely hydrometeor in the moving-

averaged cloud masks if they initially contain a signifi-

cant return (i.e., PT � �Pn
). Thus, unlike the cloud mask

created without along-track averaging, no range bin in

the 3-bin-average mask can have a value greater than

zero simply because it is surrounded by other likely

detections.

To merge each new moving-average mask with a pre-

vious mask, the new mask is compared with a reduced-

resolution version of the previous mask. This reduced-

resolution previous mask is constructed by taking a

moving average of the previous mask. The merged or

combined mask is then given by the previous mask plus

those range bins found to have both (i) values greater

than zero in the new mask and (ii) values of zero in the

reduced-resolution version of the previous mask. This

last step prevents objects identified in the previous

mask from being artificially expanded by the moving-

average process. The new detections are given a cloud

mask value of 11 minus the mask level number (which

varies from 1 up to 4). Thus, cloud mask values of 6 to

10 indicate weak targets and specify the number of

along-track bins averaged. Finally, after all levels are

complete, the cloud mask is run through the spatial box

filter a final time. This last filtering does allow pixels to

be turned ON because of position (e.g., if a seemingly

cloud-free pixel is completely surrounded by likely de-

tections).

c. Simple test results

Figure 2 shows the results of applying the hydrome-

teor detection algorithm of section 2b to a simple test

pattern. The test pattern, shown in Fig. 2a, consists of a

Gaussian noise background (with uncorrelated noise in

each range bin), a sequence of seven square targets

(with sides ranging from 100 bins to only 3 bins long),
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and three line targets with widths of 1, 2, and 4 bins. In

this first test, the targets are strong with a signal level

set to 10 times �P
n
. This is a strong signal, such that if we

were constructing a cloud mask based on simple thresh-

old of the observed signal in each bin, we would be

99.99% confident that these bins contained a cloud.

Figure 2b shows the cloud mask where values of 40 are

shown in white and those with values less than 40 in

black. Values of 40 indicate a strong detection (at least

3 times �P
n
). Figure 2b also shows that the hydrometeor

detection algorithm does an excellent job, detecting all

seven of the square targets and two of the three line

targets with almost no false detections (at level 40). The

algorithm does not find the line target that is only one

pixel wide, even though the signal is strong, because the

spatial filter requires a greater level of spatial correla-

tion than is present for the one-pixel-wide line. Cloud-

sat measurements are 2 times oversampled in the ver-

FIG. 2. Cloudsat algorithm applied to test pattern, with test object target signal equal to 10 sigma: (a) input to detection algorithm,

(b) cloud mask confidence level greater than 30, (c) cloud mask confidence level greater than 20, and (d) cloud mask confidence level

greater than 0.
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tical, so all strong signals will occupy at least two ver-

tical range bins.

Figure 2c shows the cloud mask with values of 20 or

more given in white and Fig. 2d shows the cloud mask

with all detections, including those found with along-

track averaging. Not surprisingly, we observe an in-

crease in the number of false detections at these lower

confidence levels. In both cases, noise near the true

targets tends to pass through the spatial filtering. The

along-track averaging scheme (cloud mask values be-

tween 6 and 10), in particular, is designed to be aggres-

sive in finding possible targets, and so also tends to

identify clusters of higher-than-average noise.

Earlier we mentioned that the Cloudsat scheme is

similar to the algorithm of Clothiaux et al. (1995) ex-

cept that Clothiaux et al. considered all detections as

binary (either yes or no), while our Eq. (1) takes into

account strength of the measured power. The power

weighting makes it more difficult to remove range bins

with large signal-to-noise ratios from the cloud mask.

This reduces the tendency of the Clothiaux et al. algo-

rithm to round off the edges of clouds. The rounding

occurs because there is an insufficient number of cloud-

filled bins near the corner of objects to prevent the

spatial filter from removing the edges. Figure 3 shows

the results of applying the hydrometeor detection algo-

rithm without the power weighting to the same test data

shown in Fig. 2a. A similar effect is demonstrated in

Fig. 6 of Clothiaux et al. (1995). Comparing Fig. 3 with

Fig. 2b shows that only five of the seven test squares are

identified. The 3 � 3 and 5 � 5 squares are lost entirely,

while the other squares are rounded. The 2- and

4-pixel-wide line targets are detected, but the ends of

the lines are also rounded.

Figure 4 summarizes the performance of the hydro-

meteor detection algorithm for this simple test, provid-

ing the number of false detections (range bins where

there is no actual target, but the hydrometeor detection

algorithm indicated there likely is a target) and the

number of failed detections (range bins where there is

a target, but the detection algorithm indicated none was

likely). The false detections and failed detections

(sometime referred to as false negatives), are shown as

a function of the cloud mask confidence values. With-

out the power weighting, more than 7% of the target

bins are not detected; however, on the positive side,

there are essentially no false detections. With the

power-weighting scheme, only a small percentage of

targets are missed, and almost all of these missing pixels

are the line target that was only one range bin wide.

The false detections with the power-weighting scheme

are nearly zero at confidence level 40, and even with the

along-track averaging remain less than 0.5% (by vol-

ume).

It should be pointed out that Clothiaux et al. (1995)

wanted only a simple yes/no cloud mask and, for their

application, a minimum of false detections. They were

less concerned with missing detections and specifically

noted the conservative nature of the cloud mask they

FIG. 4. Summary of failed detections (places where cloud mask

indicates clear where there is signal) and false detections (places

where cloud mask indicates clouds, but where only radar noise is

present).

FIG. 3. As in Fig. 2b, but without center-pixel power-weighting

scheme.
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created, which they estimated could be missing as much

as 15% of detectable hydrometeors.

Figures 5 and 6 demonstrate the performance of the

Cloudsat scheme for the same simple target set used in

Fig. 2, but the target power (PT � Praw � Pn) has been

reduced to 2 times and 0.5 times the standard deviation

in the noise power (�P
n
), respectively. This is equivalent

to a target power (PT � Praw � Pn) that is 3 dB above

and 3 dB below�P
n
.

In Fig. 5, we see that random noise fluctuations in-

crease the total measured power such that some of the

target bins are identified with high confidence (mask

level � 40), even though none of the target bins actually

have a strong signal. At mask level 20, five of the seven

target squares and most line targets are found. Using

the along-track averaging (mask level �5) all seven tar-

gets are found, although their size is exaggerated be-

cause the along-track averaging effectively reduces the

resolution of the measured power and cloud mask.

The targets as shown in Fig. 6 are extremely weak.

The hydrometeor detection algorithm can only find the

targets using the along-track averaging. As shown in

FIG. 5. As in Fig. 2, but with test object mean signal equal to 2 sigma.
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Fig. 6d, the mask is able to identify the presence of five

of the seven target squares and much of the line targets

(Fig. 6d). There is not enough power in the along-track

direction (horizontal) to make the small squares detect-

able because they are not sufficiently extensive targets.

After running this test many times (thereby varying the

pattern of the background noise), the percentage of

missed detections was found to vary from 9% to 15%

and the false detections varied from 0.6% to 1.2% (by

volume).

Note that the along-track algorithm does not main-

tain the sharp boundaries of the target squares. In part,

this is because the along-track scheme only averages in

the along-track direction. Given the 480-m vertical

resolution of Cloudsat, averaging in the vertical does

not yield much benefit and makes spatial filtering prob-

lematic. However, the algorithm described here could

be modified to take advantage of vertical averaging for

radars with higher vertical resolution or greater over-

sampling rates.

FIG. 6. As in Fig. 2, but with test object mean signal equal to 0.5 sigma.

526 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 25



d. Surface clutter

The nature of the Cloudsat measurements near the

surface is an important issue. The outgoing radar pulse

is not a perfect square wave, but has a finite rise time.

Because the surface is typically two to five orders of

magnitude more reflective than hydrometeors, interac-

tion between the surface and the edge of the radar

pulse (which extends outside the nominal 480-m reso-

lution volume) can contribute significant signal relative

to that of potential near-surface hydrometeors. Figure 7

shows an estimate of the clear-sky observed return

power for a typical orbit.2 Measurements in the range

bin closest to the surface and, because of oversampling,

the bin directly above this bin, are expected to be domi-

nated by the surface return. Figure 7 demonstrates that

the surface clutter unfortunately extends into the sec-

ond, third, and fourth bins above the surface. It is only

for the fifth range bin (
1.2 km) above the surface that

the signal returns approximately to the nominal sensi-

tivity.

As a result of the surface contamination, all cloud

mask detections below roughly the 99th percentile of

the clear-sky return (dashed lines in Fig. 7) are cur-

rently being set to a value of 5, to indicate there is

return power above the radar noise floor but the signal

is indistinguishable from surface clutter. While this con-

servative threshold should keep the false detection rate

(by volume) below 1%, it also means that typically only

rain and heavy drizzle can be detected in the third bin

above the surface (
720 m) and moderate drizzle in the

fourth bin (
860 m). The percentage of false detections

will also be larger between the surface and about 2 km,

than above 2 km. Initial estimates suggest the false de-

tection rate is about twice as high below 2 km as above

it. (Note the values derived in section 3 and given in

Table 1 include all altitudes.)

Subtracting an estimate of the surface clutter from

the total measured return power in the second through

fourth range bins above the surface is currently being

investigated and will be included in the next version of

the data product (R04). Preliminary assessment of such

a clutter rejection algorithm shows reductions in clutter

of 10–20 dB over ocean surfaces.

3. Examples from Cloudsat and CALIPSO

Figures 8, 9, and 10 show examples of Cloudsat ob-

served reflectivity along with the cloud mask obtained

using the procedure described in section 2. Each ex-

ample consists of 1000 profiles. The first example, Fig.

8, consists primarily of a high, thin cirrus cloud that

increases in thickness from left to right. In the Cloudsat

cloud mask (Fig. 8b), the detections that result from the

along-track integration scheme (values of 10 or less) are

represented by the light blue (cyan) color. The full ex-

tent of this cirrus layer is more readily apparent from

CALIPSO lidar observations. Figures 8c and 8d show

the CALIPSO lidar 532-nm total backscattering and

derived vertical feature mask (VFM; Vaughan et al.

2004). CALIPSO is a separate satellite from Cloudsat,

but flies along nearly the same orbit path, about 20 s

behind Cloudsat. The CALIPSO data in Fig. 8 are plot-

ted for the same latitude and longitude range as shown

for Cloudsat. The CALIPSO 532-nm lidar data show a

sharply defined cirrus cloud as well as scattering in the

boundary layer by a mixture of cloud and aerosols. The

CALIPSO data shown here are the first publicly re-

leased data (Prov-V1–10) and are of only provisional

quality.

The CALIPSO feature mask identifies where there is

backscatter from cloud or aerosol particles and tries to

differentiate between these feature types, as indicated

in Table 2. Blue (value 2) indicates a cloud, cyan (value

3) indicates aerosol, and red (value 7) indicates areas

where the lidar is totally attenuated. The identification

of cloud in the boundary layer by the lidar is somewhat

noisy, except near the middle of the image where there

are distinctive water layers and the lidar is attenuated

before reaching the surface. Cloudsat, at best, weakly

detects some of the boundary layer cloud.

To compare the Cloudsat and CALIPSO cloud

masks directly, on a range-bin-by-range-bin basis, we

have mapped the CALIPSO feature mask onto the

Cloudsat grid. The mapping is accomplished by first

locating the nearest CALIPSO profile (in latitude and

longitude) to each Cloudsat profile. Based on the lati-

tude and longitude coordinates supplied by each satel-

lite project, the nearest CALIPSO profile typically in-

tersects the surface within about 1 km of the Cloudsat

profile. Despite this level of collocation (1 km in space

and 20 s in time), there are places (though not in this

example) where offsets are clearly apparent. Because

CALIPSO vertical resolution is higher than Cloudsat,

we next locate the set of CALIPSO range bins within

2 At the beginning of the Cloudsat mission, the radar was un-

knowingly pointed 1.7° off nadir. This was corrected starting with

orbit 1023, and the radar pointed directly toward nadir. However,

it was found that pointing directly at nadir increased the surface

reflectance and the effect of surface clutter approximately 10 dB

due to specular reflection. Thus, starting with orbit 1595 (2000

UTC 15 Aug) the instrument was set to point 0.16° of nadir. This

angle put the specular reflection in the first antenna null and

reduced the surface clutter to previous levels. Data from these

time periods are referred to as epic “E” 00, 01, and 02 (given in

each file name), respectively. Data shown here are “typical” for

data in epic 00 and the data now being collected in epic 02.
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the 480-m Cloudsat resolution volume. The CALIPSO

lidar gathers data at about 333-m horizontal and 30-m

vertical resolution, but the data are averaged to 1-km

horizontal and 60-m vertical between 8.2- and 20-km

altitude. If any of the CALIPSO range bins in this set

has a value of 2 in the associated vertical feature mask,

we set the mapped-CALIPSO cloud mask to a value of

2 (meaning cloud present). Otherwise, we set the

mapped-CALIPSO cloud mask to the largest value in

the feature mask set.

To compare the masks directly, we then difference a

binary version of the Cloudsat mask—where all range

bins with a cloud mask value �5 are set to 1 and 0

otherwise—with a binary version of the CALIPSO

cloud mask. In the binary CALIPSO cloud mask all

range bins with a value of 2 or (where the binary Cloud-

FIG. 7. (top) Typical (estimated) surface clutter profile (orbit 1596). (bottom) Bin 0 is defined as the

range bin whose center is closest to the surface. Because of oversampling, bin 1 may or may not directly

overlap the surface.
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FIG. 8. Example of thin cirrus. (a) Cloudsat radar reflectivity, (b) Cloudsat cloud mask, (c)

CALIPSO 532-nm total backscatter, (d) CALIPSO vertical feature mask, and (e) difference

mask. In the difference mask, blue regions denote false detections: range bins where the

Cloudsat mask suggests hydrometeors are likely present but there is no detection in

the CALIPSO feature mask (cloud or aerosol) nor does the CALIPSO feature mask indicate

the lidar is attenuated. Orange-red regions denote failed detections: range bins where the

CALIPSO feature mask identifies clouds, but where Cloudsat does not detect hydrometeors.
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FIG. 9. Example of convection and boundary layer clouds. (a)–(e) As in Fig. 8.
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FIG. 10. Example of frontal cloud system. (a)–(e) As in Fig. 8.
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sat mask is 1 and the CALIPSO mask has a value of 3

or 7) are set to 1 and 0 otherwise. The later condition

(given in parentheses) on the CALIPSO mask prevents

areas where the lidar is attenuated or has falsely iden-

tified aerosols rather than cloud from being considered

cloud-free. The difference of the binary cloud masks

(CALIPSO � Cloudsat) is shown in Fig. 8e. Range bins

where CALIPSO detected a cloud but Cloudsat did not

appear orange-red. The orange-red bins are failed de-

tections by Cloudsat. Dark blue bins, on the other hand,

represent false detections; that is, range bins where

Cloudsat indicates the presence of hydrometeors is

likely, but CALIPSO failed to detect them and most

likely would have if they were present.

Given its sensitivity limit, it is not surprising that

Cloudsat does not detect the entire cirrus layer. This

limitation was understood from the genesis of the mis-

sion. Ultimately, retrievals of cloud particle size and

condensate from Cloudsat and CALIPSO (in combina-

tion with other A-Train sensors) will be used to char-

acterize the clouds that are detected by Cloudsat as well

as those clouds that are only detected by CALIPSO.

This example was selected to highlight the strengths

and weakness of the along-track integration scheme.

While the along-track integration scheme effectively

extends the sensitivity of the Cloudsat radar for hori-

zontally extensive clouds, it also introduces a sizeable

number of false detections. For this particular scene,

approximately 20% of all the Cloudsat detections with

a cloud mask value of 10 or less are false detections. We

have analyzed 16 full orbits of data and found that, for

any given orbit, 35%–65% of the Cloudsat detections

due to the along-track integration scheme are false de-

tections compared to the preliminary CALIPSO opera-

tional vertical feature mask. The mean value for all

analyzed orbits is about 44%. The percentage of false

detections for all the Cloudsat cloud mask confidence

levels are shown in Table 1 (fourth column).

Figure 9 shows a similar set of panels as Fig. 8, but for

a scene composed of developing convection and bound-

ary layer clouds. The CALIPSO lidar (Fig. 9c,d) is only

able to penetrate a short distance into the convective

anvil. The Cloudsat radar is able to penetrate through

the anvil, revealing various structural elements includ-

ing some cumulus congestus forming beneath the anvil.

CALIPSO also reveals boundary layer clouds on both

side of the convective region. On the left side, the

boundary layer cloud tops are sloping upward toward

the region of active convection. Cloudsat is able to de-

tect some of the boundary layer cloud—mostly the

cloud nearer the convective region—but much of this

cloud goes undetected because of the cloud’s low radar

reflectivity and the presence of surface clutter in the

Cloudsat observations.

The cloud mask difference plot (Fig. 9e) shows a line

of blue and orange-red around much of the anvil, indi-

cating both false and failed detections around this

boundary. Some of these apparent detection errors may

well be a result of the temporal and spatial mismatch

between the radar and lidar observations. However,

some of the false detections may also be due to the

finite rise time (shape) of the radar pulse and oversam-

pling. In much the same way as the surface return

spreads into the radar bins two to four bins above the

surface (see Fig. 7) strong reflectivity boundaries can be

expected to generate a similar effect, albeit a factor of

1000� weaker.

Cloudsat frequently obtains elegant cross sections

through frontal cloud systems, as shown in Fig. 10. This

example highlights the complementary nature of the

CALIPSO lidar and Cloudsat radar observations. As is

often the case, the lidar shows a region of thin cloud

that is not sufficiently reflective (at microwave frequen-

cies) for Cloudsat to detect. The fact that Cloudsat can-

not detect this cloud is useful information that places

upper bounds on the water content and effective par-

ticle size that this cloud may have. Throughout much of

the upper portion of the cloud, both radar and lidar

obtain good-quality measurements that can be used in a

combined radar–lidar retrieval technique (Donovan

2003). In optically thicker portions of the cloud system,

the radar continues to provide insight into the vertical

structure of the cloud well after the lidar is attenuated.

The difference mask (Fig. 10e) shows a number of

blue regions, indicating bins where the lidar was not

attenuated (according to the feature mask) but failed to

detect clouds that are easily detected by the radar. One

of the difficulties observed with the provisional

CALIPSO vertical feature mask is a tendency in some

instances to fail to identify bins where the lidar has

been fully (or nearly fully) attenuated. To reduce bias

in our false detection estimates (Table 1) that would be

caused by unidentified regions of lidar attenuation, we

added an additional threshold on the total 532-nm

TABLE 2. Description of CALIPSO vertical feature mask and

feature types.

Value Feature type

1 “Clear air”

2 Cloud

3 Aerosol

4 Stratospheric feature

5 Surface

6 Subsurface

7 No signal (totally attenuated)
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backscatter signal beyond that used by the CALIPSO

project operational code.

4. Summary and discussion

The purpose of the operational Cloudsat hydromete-

or detection algorithm is to produce a cloud mask that

identifies when the measured radar return power is

likely to be due to clouds or other hydrometeors and

when it is likely to contain only noise. The Cloudsat

operational cloud mask is stored in the Cloudsat 2B-

GeoProf data product and contains values between 0

and 40. Values greater than 5 indicate the location of

likely hydrometeors, with increasing values indicating a

reduced probability of false detection, as summarized

in Table 1.

Several examples of the Cloudsat cloud mask were

given in section 3. These examples highlight both

strengths and weaknesses of the Cloudsat data, as well

as highlight the complementary nature of the

CALIPSO lidar and Cloudsat radar observations.

The Cloudsat cloud mask is performing largely as

anticipated prior to satellite launch. The percent of

false detections (as estimated by comparison with

CALIPSO lidar observations) for weak detections

(cloud mask levels up to 20) is meeting expectations.

For strong detections (cloud mask levels 30 and 40) the

false detection rates are low, but not quite as low as

expected. Examination of difference masks, such as

those shown in Figs. 8, 9, and 10, indicates a mixture of

false and failed detections around the boundaries of

clouds, especially where there is a sharp cloud edge,

such as near the anvil cloud in Fig. 9. Some of these

apparent detection errors are likely the result of the

temporal and spatial mismatch between the radar and

lidar observations and the difference in bin resolution

between the two instruments. Consequently, the esti-

mated false and failed detection rates are likely to be

overestimates.

While the purpose of this paper was not to evaluate

the CALIPSO vertical feature mask, we can comment

on some aspects of these data. Overall, the feature

mask worked well for our purposes. The most signifi-

cant difficulty we encountered in this research was the

tendency for the feature mask to sometimes flag cloud

as aerosol (and vice versa) and to not flag some areas

where the lidar was fully, or nearly fully, attenuated.

Both of these difficulties can clearly be improved

through construction of a joint radar–lidar cloud mask.

Overall, the most significant difficulty with the

Cloudsat data is that surface clutter effectively reduces

the radar sensitivity near the surface. Algorithms to

improve hydrometeor detection within the surface clut-

ter are under investigation, but the ability to detect

hydrometeors below 1.2 km is likely to remain reduced

from that above 1.2 km.

Given its limited sensitivity and resolution and sur-

face clutter difficulties, Cloudsat is unable to detect

much of the thin cloud identified by the CALIPSO

lidar. For the preliminary test set examined here, the

percentage of failed detections—given as the number of

failed detection divided by the total successful detec-

tions—exceeded 35%. Ultimately, we plan to use re-

trievals of cloud particle size and condensate from

Cloudsat and CALIPSO in combination with other A-

Train sensors to characterize the microphysics of those

clouds that are detected by Cloudsat and those that are

not. Nonetheless, it is critical when using Cloudsat data

in model evaluations and science studies to carefully

consider the effect of Cloudsat resolution and detection

capabilities.
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