
T
h
e
 J

o
u
rn

a
l 
o
f 
E
x
p
e
ri

m
e
n
ta

l 
M

e
d
ic

in
e

 

JEM © The Rockefeller University Press $8.00

Vol. 202, No. 12, December 19, 2005 1643–1648 www.jem.org/cgi/doi/10.1084/jem.20051984

 

BRIEF DEFINITIVE REPORT

 

1643

 

Hydronephrosis associated with antiurothelial 

and antinuclear autoantibodies in 

BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

Pdcd1

 

�

 

/

 

�

 

 mice

 

Taku Okazaki,

 

1,2

 

 Yumi Otaka,

 

1

 

 Jian Wang,

 

1,2

 

 Hiroshi Hiai,

 

4

 

 Toshiyuki Takai,

 

5

 

 

 

Jeffrey V. Ravetch,

 

6

 

 and Tasuku Honjo

 

3

 

1

 

Department of Medical Chemistry and Molecular Biology, 

 

2

 

21st Century Center of Excellence Program, and 

 

3

 

Department of 
Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

 

4

 

Shiga Medical Center Research Institute, Shiga 524-8524, Japan

 

5

 

Department of Experimental Immunology and Core Research for Evolutional Science and Technology, Japan Science and 
Technology Agency, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan

 

6

 

Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10021

 

Because most autoimmune diseases are polygenic, analysis of the synergistic involvement 

of various immune regulators is essential for a complete understanding of the molecular 

pathology of these diseases. We report the regulation of autoimmune diseases by epistatic 

effects of two immunoinhibitory receptors, low affinity type IIb Fc receptor for IgG 

(Fc

 

�

 

RIIB) and programmed cell death 1 (PD-1). Approximately one third of the BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

Pdcd1

 

�

 

/

 

�

 

 mice developed autoimmune hydronephrosis, which is not observed 

in either BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

 or BALB/c-

 

Pdcd1

 

�

 

/

 

�

 

 mice. Hydronephrotic mice produced 

autoantibodies (autoAbs) against urothelial antigens, including uroplakin IIIa, and these 

antibodies were deposited on the urothelial cells of the urinary bladder. In addition, 

 

�

 

15% 

of the BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

Pdcd1

 

�

 

/

 

�

 

 mice produced antinuclear autoAbs. In contrast, the 

frequency of the autoimmune cardiomyopathy and the production of anti–parietal cell 

autoAb, which were observed in BALB/c-

 

Pdcd1

 

�

 

/

 

�

 

 mice, were not affected by the additional 

Fc

 

�

 

RIIB deficiency. These observations suggest cross talk between two immunoinhibitory 

receptors, Fc

 

�

 

RIIB and PD-1, on the regulation of autoimmune diseases.

 

Most human autoimmune diseases are polygenic,

and multiple genetic alterations are involved in

the initiation and progression of these diseases.

These genetic alterations are supposed to impair

some of the critical steps for immunological

tolerance, including negative selection of auto-

reactive T cells in the thymus, anergy/deletion/

suppression of autoreactive T cells in the pe-

riphery, and deletion and/or inactivation of

autoreactive B cells. Linkage analyses in animal

models of autoimmune diseases have provided

informative results on the polygenic regulation

of autoimmune diseases. Many autoimmune-

susceptible loci have been identified in each

animal model, and the immunological function

of each locus has been vigorously analyzed

by generating various congenic animals (1–3).

However, the mutual relationship of these loci

has not been analyzed well because of the

many possible combinations and rather limited

number of congenic mice that can be established

only by repeated backcrossing. Moreover, the

low resolution of the linkage analyses on poly-

genic diseases prevented identification of a single

gene from each susceptibility locus. Collectively,

our knowledge about the polygenic regulation

of autoimmune diseases is very limited.

Programmed cell death 1 (PD-1), an immu-

noreceptor belonging to the CD28/CTLA-4

family, provides negative co-stimulation to

antigen stimulation by recruiting src homology 2

domain–containing tyrosine phosphatase 2, a

protein tyrosine phosphatase (4, 5). PD-1 defi-

ciency has been shown to accelerate autoim-

mune predisposition and to induce autoimmune

diseases. PD-1 knockout (

 

Pdcd1

 

�

 

/

 

�

 

) mice de-

velop lupus-like glomerulonephritis and arthritis

on the C57BL/6 background and autoimmune

dilated cardiomyopathy (DCM) on the BALB/c

background (6–8). Recently, we have reported

that PD-1 deficiency accelerates autoimmune

diabetes in NOD (nonobese diabetic) mice (9).

The development of different forms of auto-

immune diseases on different genetic back-

grounds of mice indicates that autoimmune

phenotypes of 

 

Pdcd1

 

�

 

/

 

�

 

 mice are influenced
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by other genetic factors. Conversely, PD-1 deficiency may

exaggerate autoimmune predisposition of mice with various

genetic alterations.

Fc receptors, which provide either stimulatory or inhibi-

tory signals upon capturing the Fc portion of immunoglobu-

lins, link the humoral and cellular immune systems (10–12).

Fc

 

�

 

RIA, Fc

 

�

 

RIIA, Fc

 

�

 

RIIIA, and Fc

 

�

 

RIV provide stimula-

tory signals, whereas low affinity type IIb Fc receptor for IgG

(Fc

 

�

 

RIIB) provides an inhibitory signal. Because B cells ex-

press only Fc

 

�

 

RIIB among these Fc receptors, B cells are

destined to dampen their activity upon encountering cognate

immune complex. Fc

 

�

 

RIIB-mediated negative feedback has

been shown to be required for the maintenance of tolerance,

as 

 

Fcgr2b

 

�

 

/

 

�

 

 mice have been reported to be highly susceptible

to experimental autoimmune diseases upon immunization

with autoantigens and spontaneously develop systemic lupus

erythematosus (SLE)–like syndrome on the C57BL/6 back-

ground (10, 11, 13). Again, this spontaneous autoimmunity is

strain specific, and BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

 mice do not show any

autoimmune phenotypes, suggesting a compensatory role of

the other inhibitory mechanisms in the regulation of autoim-

mune diseases in BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

 mice (13). The distal re-

gion of mouse chromosome 1, which contains the Fc

 

�

 

RIIB

gene, has been reported to associate with autoimmune symp-

toms in several strains of mice, including NZB and BXSB.

These mice have been shown to express a reduced level of

Fc

 

�

 

RIIB on activated or germinal center B cells, and a tar-

geted restoration of Fc

 

�

 

RIIB expression on B cells efficiently

rescued these mice from autoimmune symptoms (14).

Although many immunoregulatory molecules have been

identified, including Fc

 

�

 

RIIB and PD-1, the mutual relation-

ship of these molecules in the establishment of autoimmune

diseases is still ill defined. In this paper, we analyzed the inter-

action of two immunoinhibitory receptors (Fc

 

�

 

RIIB and

PD-1) in the regulation of autoimmune diseases by generating

their double knockout mice on the BALB/c background. Ad-

ditional disruption of the Fc

 

�

 

RIIB gene did not affect the au-

toimmune DCM and the production of anti–parietal cell

autoantibodies (autoAbs) observed in BALB/c-

 

Pdcd1

 

�

 

/

 

�

 

mice. However, 35.3% of the DCM-free BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

Pdcd1

 

�

 

/

 

�

 

 mice developed hydronephrosis associated with the

production of antiurothelial antibodies (Abs), which had not

been observed either in BALB/c-

 

Pdcd1

 

�

 

/

 

�

 

 or BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

 mice. Production of antinuclear Abs was also ob-

served only in the double knockout mice of Fc

 

�

 

RIIB and

PD-1. These results demonstrate cross talk between Fc

 

�

 

RIIB

and PD-1 in the regulation of autoimmune diseases.

 

RESULTS AND DISCUSSION
Spontaneous development of hydronephrosis by 
BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

Pdcd1

 

�

 

/

 

�

 

 mice

 

We expected the cross between deficiencies of two negative

immunoreceptors, Fc

 

�

 

RIIB and PD-1, would enhance

DCM, and we monitored for the incidence of DCM in

BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

Pdcd1

 

�

 

/

 

�

 

 mice. Contrary to our expecta-

tions, the incidence of DCM was not different between

BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

Pdcd1

 

�

 

/

 

�

 

 mice and BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

Pdcd1

 

�

 

/

 

�

 

 mice (24.3 vs. 23.3% in 24 wk, respectively).

However, 35.3% (18/51) of the DCM-free BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

Pdcd1

 

�

 

/

 

�

 

 mice began to lose weight from 15 wk of

age and gradually became moribund. Autopsy examinations

revealed that both kidneys were enlarged about twofold in

diameter and both renal pelves were translucent, indicating

that enlargement of kidneys was caused by obstruction of the

urinary flow (Fig. 1 A). The renal cortex was observed only

marginally at the edge. The ureter was enlarged at the ure-

teropelvic junction, but the middle to lower part of the ure-

ter appeared normal. The urinary bladder also looked nor-

Figure 1. Spontaneous hydronephrosis in BALB/c-Fcgr2b�/�Pdcd1�/� 
mice. (A) Macroscopic images of a hydronephrotic kidney (right) and a 

normal kidney control (left) are shown. (B–F) Representative hematoxylin 

and eosin (H&E) staining histologies of kidney (B), ureteropelvic junction 

(C), ureter (D), and urinary bladder (E) are shown for hydronephrotic (right) 

and healthy control (left) mice. (F) High-power fields of ureter. Urothelial 

cells of hydronephrotic mice (right) are apparently unchanged from those 

of healthy control mice (left), except for the two- to threefold increase 

in the number of cells (brackets). Asterisks and arrowheads in C indicate 

orifice of pelvis and ureteral lumen, respectively. Magnifications: 

(B and C) 100; (D) 200; (E) 50; (F) 400.
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mal; however, urine was hardly detectable in the bladder.

From these macroscopic observations, the mice were judged

to have developed hydronephrosis.

Microscopic analysis of these hydronephrotic mice re-

vealed severe inflammation along the urinary tract (Fig.1,

B–F). The inflammation was most severe at the ureteropelvic

junction, and the urinary tract was serpiginous, as evidenced

by the appearance of multiple lumens in a section (Fig. 1 C,

right, arrowheads). We concluded, therefore, that the uri-

nary tract was most likely blocked at the proximal section of

the ureter. The remaining cortex of the kidney appeared

normal except for a reduction in the total mass and the mod-

erate enlargement of the tubular architecture (Fig. 1 B). The

middle to lower part of the ureter and the urinary bladder

appeared normal except for scattered inflammation (Fig. 1

E). There was also severe inflammation at the junction be-

tween the ureter and urinary bladder. Inflammation was ob-

served mainly outside the muscular layer, forming distinct

zones of T cells and B cells and suggesting the presence of a

chronic inflammation (Fig. 1, C and D; and not depicted).

The epithelial layer appeared normal except that the cellular-

ity was increased (Fig. 1, D and F). Interestingly, 35.7% (10/

28) of the BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

Pdcd1

 

�

 

/

 

�

 

 mice also developed

hydronephrosis, suggesting that the Fc

 

�

 

RIIB deficiency is

critical to the autoimmune response against the urinary tract.

Consistently, there was almost no pathological difference in

the hydronephrosis of BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

Pdcd1

 

�

 

/

 

�

 

 mice and

BALB/c-

 

Fcgr2b

 

�

 

/

 

�

 

Pdcd1

 

�

 

/� mice (unpublished data).

Some human SLE patients have been reported to de-

velop bilateral hydronephrosis with concomitant inflamma-

tion along the urinary tract (15). Interstitial cystitis is also one

of the main complications in SLE and Sjogren’s syndrome

(16, 17). BALB/c-Fcgr2b�/�Pdcd1�/� mice may thus serve as

a good animal model of such complications. IL-9–transgenic

mice, known to cause T cell lymphoma, have also been re-

cently shown to develop hydronephrosis, which is depen-

dent on IL-4 and/or IL-13 (18, 19). Although the develop-

ment of hydronephrosis does not seem to correlate with T

cell lymphoma in IL-9–transgenic mice, the role of this cy-

tokine in autoimmunity has not been well analyzed. Com-

pared with the bilateral onset of hydronephrosis in BALB/c-

Fcgr2b�/�Pdcd1�/� mice, hydronephrosis in IL-9–transgenic

mice is reported to occur unilaterally as well as bilaterally.

Therefore, the pathological mechanisms of hydronephrosis

seem to be different between IL-9–transgenic and BALB/c-

Fcgr2b�/�Pdcd1�/� mice.

Antiurothelial autoAb production

We suspected that the cause of the hydronephrosis observed

in the double knockout mice might be the result of autoAb

production because deficiency of either Fc�RIIB or PD-1 is

known to facilitate the production of autoAbs (7, 13). We

therefore examined the production of autoAbs against the

urinary tract by staining normal mouse tissue sections with

sera from hydronephrotic mice. As shown in Fig. 2 (A–D),

the epithelial layer of the urinary tract was stained with sera

from hydronephrotic mice. This staining was specific to the

urothelium in the renal pelvis, ureter, and urinary bladder. All

mice with antiurothelial Abs (n � 28) were affected with hy-

dronephrosis, whereas 0 out of 33 antiurothelial Ab–negative

BALB/c-Fcgr2b�/�Pdcd1�/� mice developed hydronephrosis.

We detected IgG1, IgG2a, and IgG2b, but not IgG3, sub-

classes of antiurothelial Abs (unpublished data). We next ex-

amined the deposition of autoAbs on the urothelium of the

hydronephrotic mice. All hydronephrotic mice examined

were positive for the IgG deposition (n � 5). Compared with

the serum staining (Fig. 2 D), IgG deposition was most evi-

dent on the apical surface of the urothelium (Fig. 2 E).

Recognition of uroplakin IIIa (UPKIIIa) by sera from 
hydronephrotic mice

We next performed Western blotting to examine the antigen

specificity of the antiurothelial Abs. We extracted protein

from the urothelial sheet of the urinary bladder and probed

with sera from hydronephrotic mice. As shown in Fig. 2 F,

all of the sera from hydronephrotic mice recognized a band

Figure 2. AutoAbs against urothelial cells. (A–D) Sera from hydro-

nephrotic mice recognized urothelial cells of renal pelvis (A), ureter (B), 

and urinary bladder (C and D). Green signals (left) represent staining by 

serum IgG. H&E staining of corresponding organs is also shown (right). 

(E) IgG deposition was strongly observed on the apical surface of the 

urothelium. (F) All of the sera from hydronephrotic (lanes 1–7) but not 

from healthy control (lanes 8–14) mice recognized a 45-kD urothelial cell–

specific antigen. (G) Sera from two hydronephrotic mice (lanes 1 and 2) 

and anti-UPKIIIa Ab (lanes 3–5; �2, �5, and �10 dilutions, respectively) 

recognized similar bands on urothelial extract. (H) Sera from hydronephrotic 

(lanes 1–6) but not from healthy control (lanes 7–12) mice recognized the 

recombinant UPKIIIa protein. PC, positive control of anti-UPKIIIa Ab.



GENETIC INTERACTION BETWEEN FC�RIIB AND PD-1 | Okazaki et al.1646

around 45 kD, whereas none of the sera from healthy mice

with the same genetic background recognized this band.

Protein extracts from other organs including the muscular

layer of the urinary bladder were negative under the same

conditions (unpublished data). UPKIIIa was suspected as a

candidate antigen based on its molecular weight and organ

specificity (20). We probed the same extract with a commer-

cially available Ab against UPKIIIa. As shown in Fig. 2 G,

the anti-UPKIIIa Ab recognized a band with a molecular

weight similar to that recognized by sera from hydroneph-

rotic mice. To confirm the identity of the antigen recognized

by the sera from hydronephrotic mice, we cloned the cDNA

for mouse UPKIIIa by RT-PCR and produced the UPKIIIa

protein in Escherichia coli. Sera from hydronephrotic but not

from healthy control mice recognized UPKIIIa, as shown in

Fig. 2 H. Therefore, UPKIIIa was confirmed to be one of

the major autoantigens that are targeted by BALB/c-Fcgr2b�/�

Pdcd1�/� hydronephrotic mice.

Transitional cells in the urinary tract contain a large

amount of membrane vesicles called urothelial plaques (20).

Upon urine load, urinary plaques are released into the

plasma membrane, resulting in the increase of the apical sur-

face area of the transitional cells, which allows the subse-

quent extension of the cell body. UPKIIIa is one of the

components of these urinary plaques and plays an essential

role in the retention of urinary plaques in the cytoplasm.

Mice deficient in UPKIIIa have been reported to have a re-

duced number of urinary plaques, resulting in impairment of

bladder extension with the eventual development of hydro-

nephrosis (20). Although both BALB/c-Fcgr2b�/�Pdcd1�/�

mice and Upk3a�/� mice eventually develop hydronephro-

sis, their pathogenic mechanisms are likely to be different.

Upk3a�/� mice have enlarged ureteral orifices, which results

in the backward flow of urine from the urinary bladder to

the ureter and the subsequent development of hydronephro-

sis coupled with hydroureter at the distal portion of the ure-

ter (20). In contrast, hydronephrosis in BALB/c-Fcgr2b�/�

Pdcd1�/� mice seems to be dependent on inflammatory oc-

clusion, accompanied by hydroureter at the proximal part of

the ureter. In addition, the deposition of anti-UPKIIIa auto-

Abs at the urothelium of BALB/c-Fcgr2b�/�Pdcd1�/� mice

suggests the involvement of the autoAbs in the pathogenesis

of hydronephrosis in BALB/c-Fcgr2b�/�Pdcd1�/� mice.

Production of antinuclear Abs but not anti–parietal cell Abs 
is regulated synergistically by Fc�RIIB and PD-1

In addition to the antiurothelial Abs, some of the BALB/c-

Fcgr2b�/�Pdcd1�/� mice produced anti–parietal cell Abs and

antinuclear Abs (Fig. 3, A and B). Most of the mice with

anti–parietal cell Abs were affected with severe gastritis

(Fig. 3, C and D). Because BALB/c-Pdcd1�/� mice also pro-

duced anti–parietal cell Abs in a frequency comparable with

BALB/c-Fcgr2b�/�Pdcd1�/� and BALB/c-Fcgr2b�/�Pdcd1�/�

mice (70, 60, and 80%, respectively; Fig. 3 E), the produc-

tion of anti–parietal cell Abs seems to be controlled primarily

by PD-1 deficiency and not by Fc�RIIB deficiency. Anti–

parietal cell Abs were not detected in sera from C57BL/6-

Pdcd1�/� mice (unpublished data).

We then analyzed the production of antinuclear Abs by

ELISA in mice with various genetic backgrounds. Approxi-

mately 15% of the BALB/c-Fcgr2b�/�Pdcd1�/� mice were

positive for antinuclear Abs, whereas neither BALB/c-

Fcgr2b�/� nor BALB/c-Pdcd1�/� mice were positive (Fig. 3

F). Similar to the situation observed for antiurothelial Abs, a

small fraction of the BALB/c-Fcgr2b�/�Pdcd1�/� mice pro-

duced a small amount of antinuclear Abs, suggesting that the

Fc�RIIB deficiency is critical to the autoimmune response

against nuclear as well as urothelial antigens.

Synergistic effects of Fc�RIIB and PD-1 deficiency on 
autoimmune phenotypes

We found the spontaneous appearance of novel autoimmune

phenotypes in mice deficient in two immunoinhibitory re-

ceptors, Fc�RIIB and PD-1. As summarized in Table I, hy-

dronephrosis and antinuclear Ab production are not ob-

served in mice that are sufficient in either of the molecules,

indicating that these phenotypes require the combined effect

of both deficiencies. In contrast, cardiomyopathy and anti–

parietal cell Ab production are observed in BALB/c-Pdcd1�/�

mice and not accelerated drastically by simultaneous de-

letion of Fc�RIIB. BALB/c-Fcgr2b�/�Pdcd1�/� mice may

thus serve as a good animal model of bigenic and oligogenic

autoimmune diseases. PD-1 has been shown to inhibit anti-

gen receptor signaling in both B cells and T cells, the insuffi-

Figure 3. Production of antinuclear Ab and anti–parietal cell Ab 
by BALB/c-Fcgr2b�/�Pdcd1�/� mice. (A and B) Anti–parietal cell Ab (A) 

and antinuclear Ab (B) were detected by immunohistochemistry. The inset 

shows a higher magnification. (C and D) Representative histology of 

healthy (C) and inflamed stomach (D) by H&E staining. Magnifications, 

200. (E) Frequencies of anti–parietal cell Ab–positive mice are shown for 

indicated genotype. n � 20, 10, 40, 23, and 15 mice from left to right. 

(F) Antinuclear Ab titer was examined for mice with indicated genotypes. 

PC, positive control of 10-wk-old MRL-lpr-MpJ mice.
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ciency of which results in the impairment of both central

and peripheral tolerance by facilitating the � selection of T

cells in thymus, augmenting the activation and proliferation

of T cells and B cells, enhancing the cytotoxic activity of

CD8� T cells, or impairing the anergy induction (4, 5, 21–

23). On the other hand, Fc�RIIB deficiency has been

shown to break peripheral tolerance of B cells by allowing

the proliferation of autoAb-secreting B cells and their differ-

entiation to plasma cells (10, 11, 24).

Autoimmune susceptibility of specific organs differs

among different strains of mice. For example, NOD mice

and NZB mice spontaneously develop type I diabetes

and hemolytic anemia, respectively, whereas SJL but not

C57BL/6 mice are susceptible to experimental encephalo-

myelitis. Although MHC molecules essentially determine

the organ-specific susceptibility of autoimmune diseases, ge-

netic interactions between specific immune regulators can

modify autoimmune susceptibility of organs. An overt au-

toimmune disease may arise when the threshold to an organ-

specific susceptibility is lowered through these genetic in-

teractions. Our present findings indicate that autoreactive

lymphocytes against cardiac and gastric antigens, which may

be selected in the BALB/c background, can be activated ex-

clusively by PD-1 deficiency, whereas activation of those

against urothelial and nuclear antigens are predominantly de-

pendent on Fc�RIIB deficiency because the latter pheno-

types required homozygous deletion of Fcgr2b but not Pdcd1

(Table I). PD-1 deficiency/insufficiency may be involved

additively by augmenting the inflammatory response against

these antigens as shown for type I diabetes on NOD mice

(9). Spontaneous production of antinuclear Abs by C57BL/

6-Fcgr2b�/� but not C57BL/c-Pdcd1�/� mice and IgG class

switching of anti-DNA Ab–producing transgenic B cells in

C57BL/6-Fcgr2b�/� mice support the idea that Fc�RIIB de-

ficiency is critical for immunological tolerance against nu-

clear antigens (6, 13, 24). Fc�RIIB deficiency can also aug-

ment humoral immunity in general by accelerating plasma

cell differentiation (9, 24).

Recently, single nucleotide polymorphisms (SNPs) for

both human PD-1 and Fc�RIIB genes have been analyzed

in various autoimmune diseases (10, 25). To date, �10 SNPs

have been reported both in human PD-1 and Fc�RIIB

genes. A nonsynonymous SNP in the transmembrane region

of Fc�RIIB has been reported to associate with SLE in Japa-

nese populations, and the 2B.4 promoter haplotype of the

Fc�RIIB gene has been reported to associate with SLE in

Caucasians (10). Two of the SNPs in the human PD-1 gene

were reported to associate with the incidence of SLE, rheu-

matoid arthritis, and type I diabetes (25–27). Prokunina et al.

reported that the A allele of the PD1.3 (PD1.3A), one of the

SNPs in the third intron of the human PD-1 gene, associates

with the incidence of SLE in Swedish, European-American,

and Mexican, but not African-American, populations (25).

However, the opposite results have also been reported in

Spanish populations; i.e., the PD1.3A allele is rather less fre-

quent among SLE patients in Spain, with statistical signifi-

cance (28). The effect of these SNPs in the PD-1 gene (P �

0.006) seems to vary depending on the genetic background,

which is reminiscent of the situation in the mouse. There-

fore, it is essential to analyze various immunoregulatory

SNPs in combination to completely understand the genetic

pathology of autoimmune diseases. However, because dis-

ease-promoting SNPs are generally less frequent and the

number of possible combinations is enormous, multivariable

studies of SNPs are still rather impractical.

Our present analysis clearly demonstrates that Fc�RIIB

and PD-1 cooperatively regulate autoimmune phenotypes in

the mouse, suggesting that some of the human autoimmune

diseases may also be regulated by the combination of dys-

function of human Fc�RIIB and PD-1 genes. Therefore, it

may be beneficial to analyze the combinatorial effect of

known SNPs on human Fc�RIIB and PD-1 genes in human

autoimmune diseases.

MATERIALS AND METHODS
Animals. BALB/c and MRL-lpr-MpJ mice were purchased from Japan

SLC. BALB-Pdcd1�/� mice and BALB/c-Fcgr2b�/� mice were described

previously (7, 13). All mouse protocols were approved by the Institute of

Laboratory Animals at the Kyoto University Graduate School of Medicine.

All animals were maintained under specific pathogen-free conditions.

Western blotting. Urinary bladders were collected from wild-type BALB/c

mice and separated into urothelial sheet and muscular layer under the micro-

scope. Crude extracts were prepared with a Polytron homogenizer in lysis

buffer (150 mM NaCl, 20 mM Tris-HCl, pH 7.4, 5 mM EDTA, 1% NP-

40, and protease inhibitor cocktail [complete; Roche]), separated by SDS-

PAGE, and transferred onto Hybond-P filter (GE Healthcare). Filters were

incubated with �200 diluted mouse sera or mouse mAb against UPKIIIa

(PROGEN) for 2 h at room temperature and visualized by horseradish per-

oxidase–labeled anti–mouse IgG Ab (Kirkegaard and Perry Laboratories)

with enhanced chemiluminescence system (GE Healthcare).

Immunohistochemistry. Organs were collected from wild-type BALB/c

mice and snap frozen in OCT compound (Sakura Finetechnical). Cryosec-

tions were fixed with CytoFix (BD Biosciences) and stained with �100 di-

luted sera from animals, as indicated in the figures, followed by FITC-

Table I. Summary of autoimmune phenotypes of 
BALB/c-Fcgr2b�/�Pdcd1�/� mice

Phenotypes Genotypes BALB/c C57BL/6

Pdcd1 �/� �/� �/� �/� �/� �/� �/�

Fcgr2b �/� �/� �/� �/� �/� �/� �/�

Cardiomyopathy � � � � � � �

Anti–parietal cell 

Ab

� � � � � � ND

Hydronephrosis � � � � � � �

Antinuclear Ab � � � � � �a �b

Spontaneous development of cardiomyopathy and hydronephrosis and production of 
anti–parietal cell Ab and antinuclear Ab are summarized for mice with the indicated 
genotypes on either a BALB/c or C57BL/6 background. ND, not done.
aData obtained from reference 6.
bData obtained from reference 13.
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labeled anti–mouse IgG Ab (Southern Biotechnology Associates, Inc.). IgG

deposition was analyzed by staining organs from hydronephrotic mice with

FITC-labeled anti–mouse IgG Ab. Signals were observed with axiovision

(Bio-Rad Laboratories).

Molecular cloning and expression of mouse UPKIIIa protein.

Mouse UPKIIIa cDNA was cloned by RT-PCR and confirmed by se-

quencing. Mouse UPKIIIa cDNA was subcloned into pGEX-6P-1 (GE

Healthcare) vector, and GST fusion protein of mouse UPKIIIa was ex-

pressed in E. coli according to the manufacturer’s instructions. GST-UPKIIIa

fusion protein was recovered from inclusion body and the purity was �90%

as judged by coomassie staining of the SDS-PAGE gel (unpublished data).

Recognition of GST-UPKIIIa fusion protein by sera was examined by

Western blotting as described in that section.

ELISA. Antinuclear Ab was measured using an antinuclear Ab detection

kit (Dade Behring) according to the manufacturer’s instructions.
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