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Hydrophilic surface modification of PDMS for droplet

microfluidics using a simple, quick, and robust method via

PVA deposition
Tatiana Trantidou1, Yuval Elani1,2, Edward Parsons3 and Oscar Ces1,2

Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets,

particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has

hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface

properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the

deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed

method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully

generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be

selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted

double emulsions.
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INTRODUCTION

Polydimethylsiloxane (PDMS) is considered by many to be the
material of choice for the fabrication of microfluidic devices1–3. Its
wide adoption has been responsible in large part for the
proliferation of microfluidics in the last two decades. Its
attractiveness as a material is due to a wide and varied set of
advantages that include low cost, chemical inertness, non-toxicity,
and the ability to translate features in the micrometer range3. In
addition, it is optically transparent and permeable to gases4. It is
an elastic and physically robust material that is reversibly
deformable, and it can be used to make components, including
valves and pumps, in microfluidic devices5. The fabrication of
devices using PDMS soft lithography is simpler, cheaper, and less
time consuming than other competing techniques (e.g., silicon
and plastic micromachining).
PDMS is a hydrophobic material (water contact angle 4100°)6,

which has consequences for droplet-based microfluidics. To
successfully generate droplets, the continuous (i.e., external)
phase needs to effectively wet the device walls; therefore, PDMS
is ideally suited for the generation of water-in-oil (w/o) droplets7.
However, the hydrophobicity of PDMS prevents the production of
oil-in-water (o/w) droplets with native, untreated PDMS. The
generation of o/w droplets is key for various microfluidic
applications, including the synthesis of advanced nano- and
micro-materials in oil droplet microreactors8,9, organic functional
group transformations10,11, encapsulation of single cells in double
emulsions followed by flow cytometric sorting12, and the
formation of vesicles13 and other model membranes14,15. The

incompatibility of PDMS in this regard has led researchers to use
alternative, less desirable materials, such as glass and silicon16–18.
In response to this, there have been efforts to modify the PDMS

surface to become hydrophilic. These efforts have included
chemical vapor deposition of polymer coatings19, incorporation
of an amphiphilic surfactant in the PDMS bulk20, deposition of
glass-like layers on the substrate surface (sol-gel coating)21, and
layer-by-layer (LbL) deposition of charged polyanions and
polycations22. One well-established approach to produce hydro-
philic PDMS surfaces is to oxidize the polymer surface with plasma
or ultraviolet (UV) irradiation23. However, this effect is transient,
and the hydrophobic nature of PDMS returns several minutes after
plasma or UV exposure because of the migration of the uncured
hydrophobic polymer chains to the surface. Methods to slow
down or prevent this recovery from occurring include keeping the
surface in water immediately after treatment and removing
uncured polymers using solvent extraction24,25. However, the
utility of these approaches for droplet microfluidics has not been
established, and it is likely that exposure of the surface to oil will
negate these effects. Another strategy to achieve surface
modification is to coat substrates with polyvinyl alcohol (PVA; a
hydrophilic polymer). This strategy has primarily been used for
non-PDMS surfaces, such as silica capillaries for biopolymer
separation and DNA sizing applications26–28. PVA can also be
irreversibly adsorbed onto hydrophobic polymer films29 and gold
substrates30. Others have demonstrated PVA adsorption onto
PDMS via heat immobilization following plasma treatment27, via
plasma oxidation and covalent attachment of an (3-aminopropyl)
triethoxysilane (APTES) linker31, and via the synthesis of a
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PVA/PDMS copolymer microsuspension32. These procedures were
developed to control the degree of biomolecule interaction with
the PDMS substrate and not to modify the hydrophobicity of the
surface with regards to droplet microfluidics. A combination of
PVA and glycerol coating was immobilized on a plasma-treated
PDMS microfluidic chip to encourage poly(L-lactic acid) micro-
sphere generation33. However, this study relied on a continual
supply of PVA during microsphere generation.
The generation process for lipid-stabilized droplets is the

most challenging type of droplet generation because of the
very specific favorable wettability between lipids and PDMS.
There is one elegant example of using PVA-modified surfaces in
droplet microfluidics for the controlled generation of lipid
vesicles34. Although the aforementioned examples demonstrate
the potential of the PVA deposition strategy for chemistry and
biology, a systematic characterization and optimization of this
technique for droplet microfluidics is lacking, specifically regard-
ing the effects of the various process parameters on the surface
properties. This has hindered the wide scale adoption of this
versatile technique by the microfluidics community, particularly in
the field of bottom-up synthetic biology for artificial cell
manufacturing.
In the context of droplet microfluidics, several criteria need to

be considered when assessing the suitability of the surface
modification technique. The surfaces should be sufficiently
hydrophilic to generate o/w droplets. The treatment needs to be
long lasting and irreversible, especially when the surface is in
contact with both oil and water phases. The treatment should be
versatile enough to yield droplets with a range of surfactants,
including lipids, which are typically considered less effective for
stabilizing droplets. Given the increased use of droplets for the
construction of artificial membranes, the development of an
adequate treatment is of great importance13–15. In addition, the
modified channel should be biocompatible, and any deposited
material should not interfere with cells and biological compo-
nents. Furthermore, the technique should allow for modifications
of different regions on the same device to create both
hydrophobic and hydrophilic areas. This is especially relevant in
droplet microfluidics, where the phase that is exposed to the
channels (the external phase) is different in different regions of
the chip (e.g., in double emulsions). This has been achieved by
connecting together several devices with differing surface
properties35,36 and by selectively exposing regions to plasma
using a scanning radial microjet37. The latter approach is
problematic because it necessitates the use of expensive and
specific equipment and suffers from hydrophobic recovery issues.
A versatile method for selective modification is to use flow
through solutions through defined regions of the device22,36 and
selectively modify these regions. Most importantly, the technique
must be practical; it should be simple, low cost, and not time
consuming. Although existing surface modification techniques
meet some of the criteria above, there is not a single technique
that meets all of them. In this article, we developed and optimized
an effective, simple, quick, versatile, and cheap method to make
long-lasting, hydrophilic PDMS surfaces for droplet microfluidics.
The method was based on coating channels with PVA immedi-
ately after plasma treatment. We characterized the effects of the
procedure on the contact angle and hydrophilic surface lifetime
and showed that the PVA-treated devices can generate droplets
with traditional surfactants as well as phospholipids. The
procedure can pattern specific regions of the device to exhibit
defined wettability characteristics, which is further demonstrated
in droplet microfluidics for the generation of emulsions, double
emulsions, and inverse double emulsions using a single device
design.

MATERIALS AND METHODS

Chemicals

Silicon wafers (4 in) were purchased from IBD Technologies Ltd.
(Wiltshire, UK). Standard microscope glass slides (75 × 25
× 1.5 mm) were obtained from VWR (Leicestershire, UK). Acetone
and isopropyl alcohol (IPA) were both obtained from Sigma-
Aldrich (Dorset, UK). Negative photoresist SU-8 2050 and EC
solvent developer solution were obtained from Chestech Ltd.
(Rugby, UK). PDMS prepolymer and the curing agent kit (Sylgard
184) were obtained from Dow Corning (Midland, MI, USA). PVA
(87–90% and 99+% hydrolysis degree) was purchased from
Sigma-Aldrich. The phospholipids, 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC), were obtained from Avanti Polar Lipids
(Alabaster, AL, USA). Oleic acid was obtained from Sigma-Aldrich.
Span-80 and sodium dodecyl sulfate (SDS) surfactants were
purchased from Sigma-Aldrich. Ethanol and glycerol were
obtained from Sigma-Aldrich. Milli-Q (Millipore, Billerica, MA,
USA) water was used to prepare aqueous solutions. Sudan Red
7B dye was purchased from Sigma-Aldrich.

PVA surface modification

To dissolve PVA in water, PVA was added to Milli-Q water (1 wt%)
and stirred at room temperature for 40 min. The temperature was
then gradually increased to 100 °C, and the solution was stirred for
another 40 min. Finally, the temperature was reduced to 65 °C,
and the solution was left to stir overnight. The container with the
solution was weighed, and water was added to compensate for
any losses due to water evaporation.
To treat PDMS for the contact angle measurements, the PDMS

pieces (15 × 15 × 2 mm) were thoroughly degreased in IPA, blown
dry with nitrogen, and dehydrated in an oven at 110 °C for at least
40 min. They were then placed inside a Femto plasma cleaner
(Diener Electronic, Ebhausen, Germany) and plasma oxidized
under various conditions (power intensity and exposure time) at
an oxygen flow of 20 sccm and pressure of 0.67 mbar. The PVA
solution was immediately poured onto the plasma-treated surface
for 10 min at room temperature, and the pieces were blown dry
with nitrogen and heated on a hotplate at 110 °C for 15 min.
The hydrophilic treatment of PDMS for the droplet generation

microfluidic chips was performed immediately after plasma
bonding of the devices (at 100 W for 1 min, 20 sccm O2 flow
and 0.65 mbar pressure) by passing the PVA solution into the
microchannels using a plastic syringe. The PVA solution was left
inside the channels for 10 min at room temperature and was
thoroughly removed by blowing pressurized nitrogen through the
channels and heating at 110 °C for 15 min to remove any residual
moisture. When the lipid was used to stabilize the droplets, this
process was repeated three times to achieve a sufficient level of
surface hydrophilicity and remove all traces of wetting. Similar to
previous findings27, we found that this process significantly
increased the adsorption of PVA onto the PDMS surfaces. When
a surfactant was used, a single layer of PVA was sufficient to
produce stable droplets.
To selectively modify the hydrophobicity of the channels of a

chip, a plastic syringe and tubing were used to pass air through
the hydrophobic channels at 200 μL min− 1 via a syringe pump.
The PVA solution was manually passed through the channels that
should be turned hydrophilic using a plastic syringe and tubing. A
detailed schematic showing the process is shown in
Supplementary Figure S1. In o/w/o devices, the air syringe was
placed in the outlet, and the PVA solution was manually passed
through inlet #1 via a plastic syringe. In w/o/w devices, the air
syringe was placed in inlet #1, and inlet #2 was blocked using a
plug. The PVA solution was manually passed through the outlet. In
both cases, the PVA solution was only passed through the desired
path to ensure selective surface modification. Any PVA residuals
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were then removed by blowing pressurized nitrogen through the
channels. The devices were then heated on a hotplate at 110 °C
for 15 min. This process was repeated three times when the device
was used for lipid-stabilized double emulsions.
To identify any variations in the size and uniformity of the PDMS

microchannels before and after the PVA treatment, a Dektak Stylus
profiler (Veeco Instruments Inc, St Ives, UK) (5 μm radius) was used
directly on the non-bonded PDMS microfluidic chips. For these
experiments, the microchannels of the PDMS microfluidic device
were first measured with the profilometer. The device was
subsequently plasma oxidized (100 W for 1 min) and pressed
continuously against a flat, untreated PDMS surface to temporarily
seal the microchannels while flushing the PVA solution. The
treatment process was the one described above and was repeated
three times. After treatment, the device was separated from the
flat PDMS substrate and measured with the profilometer again.

Contact angle measurements

The evaluation of the surface hydrophilicity of the PVA-treated
PDMS was performed via static contact angle measurements using
a Drop Shape Analyzer DSA100 (Krüss GmbH, Hamburg, Germany).
Three different samples were used for each condition. Deionized
water (10 μL) was always dropped at the center of the PDMS
piece, and the affinity of the drop for the surface was measured
using the circle fitting method. The mean contact angle was
extrapolated based on the three distinct samples. Measurements
were performed for each sample before treatment, immediately
after treatment and up to the 30th day after treatment. All
samples were maintained in a standard room environment (20 °C
and 30–35% humidity).

Atomic force microscopy (AFM) measurements and analysis

AFM measurements were conducted in contact mode on a Bruker
Multimode 8 equipped with an ‘E’ scanner. MSNL silicon nitride
cantilevers were used with a spring constant of 0.1 N m–1. Si tips
were used (MSNL-10, Bruker, Coventry, UK) with a nominal radius
of 2 nm. Measurements were performed on untreated and PVA-
coated PDMS surfaces in 50 μL aqueous solutions (consisting of
72% v/v Milli-Q water, 14% v/v ethanol, and 14% v/v glycerol) to
replicate the experimental conditions during microfluidic droplet
generation. As a roughness metric, we used the root mean
squared average of the height deviations taken from the mean
image data plane (Equation (1)):

Rq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

sumz2
i

N

r

ð1Þ

Preparation of solutions for droplet and double emulsion
generation

In all droplet generation experiments, the aqueous phase was
composed of Milli-Q water (72% v/v), ethanol (14% v/v), and
glycerol (14% v/v), and all the components were vortexed to give
a turbid mixture. Glycerol was added to the aqueous solution to
increase the viscosity of the outer phase to aid droplet breakup.
In o/w droplet generation experiments, the oil phase was

composed of 1 mg mL− 1 DOPC lipid in oleic acid. In the double
emulsion experiments, 10 mg mL− 1 POPC in oleic acid was used.
To dissolve the lipids in oil, they were first pre-dissolved in
chloroform, which was removed under a stream of nitrogen to
give a lipid film. Oleic acid was then added, and the mixtures were
sonicated for 60 min to fully dissolve the lipid. In experiments
with surfactants, the surfactant was 0.1 wt% Span-80 in oil and
0.5 wt% SDS in water.

Microfluidic device fabrication

The device designs were patterned on a silicon wafer using
standard soft lithography techniques to produce a mold. The
PDMS prepolymer and curing agent were then thoroughly mixed
in a 10:1 ratio. The mixture was cast onto the silicon mold master,
thoroughly degassed in a vacuum and cured overnight in the
oven at 65 °C. Thin PDMS slabs (~1 mm) were similarly produced
inside flat containers. Glass microscope slides were degreased in
acetone inside an ultrasonic bath for 5 min, rinsed with IPA, and
blown dry with nitrogen. PDMS slabs were bonded with the
microscope slides after oxygen plasma treatment (100 W for
1 min, 20 sccm O2 flow, and 0.67 mbar pressure) by manually
pressing the two parts together. The microfluidic chips were
bonded to the PDMS slabs in the same way.

Microfluidic generation of droplets and double emulsions

The inlet phases of the microfluidic chips were all injected using
1 mL plastic syringes linked to 1.09 PTFE tubing (Adtech Polymer
Engineering Ltd., Stroud, UK). Syringe pumps (Chemyx Inc.,
Stafford, TX, USA) were used to pump the reagents into the
microfluidic chips at controlled flow rates. When surfactants were
used, the o/w flow rates were 1 and 5 μL min− 1, respectively.
When lipids were used, the o/w flow rates were 5 and
15 μL min− 1, respectively.
In the o/w/o devices, the solutions were driven into the device

at 1, 8, and 20 μL min− 1, respectively. For visualization purposes,
Sudan Red 7B dye (5 mg mL− 1) was mixed with the internal
oil phase.
In the w/o/w devices, the aqueous phases were inserted into

the device via inlets at 1, 5, and 12.5 μL min− 1, respectively, with
Sudan Red 7B dye (0.5 mg mL− 1) added to the oil phase to allow
visualization.

Data acquisition and analysis

All microfluidic experiments were imaged using an inverted Leica
DM IRB microscope (Leica Microsystems Ltd., Milton Keynes, UK).
For droplet size measurements, an Olympus IX81 microscope with
a Phantom high-speed camera (Vision Research Ltd., Bedford, UK)
was used, and the size was calculated using an automated process
developed in ImageJ (NIH, Baltimore, MD, USA) and Python (Python
Software Foundation, Wilmington, DE, USA). The monodispersity of
the droplets was extrapolated from the Gaussian fitting of the
histogram as the standard deviation over the average value
(coefficient of variation). When this number was smaller than 5%,
the droplet generation was assumed to be monodispersed.

RESULTS

Surface wettability study of PVA-treated PDMS

The first step in our treatment was exposing the PDMS surface to
oxygen plasma. This treatment generates radical species of surface
silanol groups (Si–OH), alcoholic hydroxyls (C–OH), and carboxylic
acids (COOH)27,38,39 on the PDMS surface and these species can
form covalent bonds with the PVA molecules. A series of contact
angle measurements were taken to study the effect of PVA
deposition on PDMS surface properties (Figure 1). We found that
the PDMS treated with plasma and PVA showed significantly lower
water–air contact angles than native PDMS (Figure 1a). Moreover,
the combined plasma oxidation and PVA treatment resulted in the
long-term stable and sustained hydrophilicity of the PDMS
surfaces in contrast to the plasma oxidized PDMS, which tended
to regain its surface hydrophobicity 1 day after treatment (average
contact angle was 7.2 ± 0.5° immediately after plasma oxidation
and increased to 92.6 ± 0.3° 1 day later). The complete study on
the contact angles of PVA-treated PDMS over a 30-day period is
presented in the Supplementary Figure S2.
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We evaluated the level of the surface hydrophilicity induced by
two commercially available PVA solutions commonly used in
PDMS surface modification27–29,32–34. We applied PVA solutions
with 87–90% and 99+% hydrolysis degrees on PDMS surfaces that
were plasma oxidized under the same conditions (50 W for 1 min)
and concluded that the former had a more profound effect on the
PDMS surface chemistry both in the short and the long term
(Figure 1a). The average contact angles for the plasma oxidized
PDMS were 24.9 ± 0.4° for PVA 87–90% and 37.0 ± 19.2° for PVA
99+% immediately after treatment, and this difference was
retained for 9 days. PVA 87–90% was used for all subsequent
experiments. A more detailed study on the effect of PVA 99+% can
be found in Supplementary Figure S3.
The oxygen plasma recipe had an important role in the

hydrophilic surface modification of PDMS with PVA; plasma
treatments at a high power combined with the PVA treatment
delivered a more hydrophilic PDMS surface (Figures 1b and c). The
highest surface hydrophilicity was achieved at a plasma power
value of 100 W (the average contact angles were 22.7 ± 5.4° and
27.5 ± 9.1° for 1- and 5-min treatment durations, respectively), and
this power also resulted in a longer-lasting surface hydrophilicity

(Figures 1b, c and Supplementary Figure S2). For example, the
average contact angle for plasma oxidized PDMS surfaces at
100 W for 1 min was 21.0 ± 3.2° 30 days after treatment.
We found that the surface roughness of the plasma oxidized

PDMS surfaces (100 W for 1 min) with a PVA coating was
significantly higher than that of the untreated PDMS surfaces
(Supplementary Figure S4). The average surface roughness (Rq)
value for the untreated PDMS was 4.21 ± 0.87 nm (N= 3 areas) in
contrast to the PVA-coated PDMS, which had a value of
14.70 ± 1.73 nm (N= 3 areas).

Generation of o/w microdroplets

First, we demonstrated that o/w droplets do not wet the channel
surface. For this purpose, we used a larger microfluidic channel
(4 mm width × 3 mm depth) (Figure 2). Using a syringe, we
injected c. 10 μL of oil (oleic acid) containing 1 mg mL− 1 of DOPC
into a PDMS channel containing an aqueous solution. In an
untreated PDMS channel, the oil droplet wetted the walls and
spread inside the channel (Figure 2a). However, when the PDMS
channel was plasma oxidized and PVA coated, the oil droplet
remained intact inside the channel (Figure 2b).
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The size and uniformity of a PVA-treated channel (400 μm wide
and 200 μm deep) was evaluated using a stylus profiler before and
after surface modification. The profilometer scan profiles acquired
from two distinct channels are presented in Figure 2c. The average

values and standard deviations for the vertical distances of the
untreated and treated channels were 206.9 ± 3.4 μm (N= 3
measurements) and 206.9 ± 3.6 μm (N= 4 measurements). These
values correspond to a depth variation in the range of 3.7% from

the initial channel depth, which is not significant enough to affect
most applications, including droplet and double emulsion
generation. We did not observe any variations in the channel’s

width based on the horizontal distance data.
Next, we constructed a PVA-treated microfluidic device based

on a flow-focusing geometry for the generation of o/w droplets,
and the oil phase contained the DOPC lipid as the surfactant
(Figure 3a). The two phases were inserted through two inlets using
syringe pumps at flow rates of 15 and 5 μL min− 1, respectively.

The microfluidic device consistently generated smooth droplets at
a rate of 570 droplets min− 1 (Figure 3b and Supplementary
Video S1). The oil droplet size distribution was measured

(Figure 3c), and the droplets had a high level of droplet

monodispersity with a coefficient of variation of 0.5% and an
average droplet diameter of 117.9 μm (N= 883 droplets).
Similarly, the hydrophilic coating was successfully used for oil

droplet generation with traditional surfactants instead of lipids. In
this case, the two phases were inserted into the chip at flow rates
of 1 and 5 μL min− 1, respectively (Supplementary Video S2). This
demonstrated that the proposed modification procedure is
equally efficient for surfactant and lipid-oil droplet generation.
Our microfluidic chips were reusable after simply flowing nitrogen

through the channels to clear them of the aqueous phases. For the
removal of more difficult residues in the channels, such as oils and
organic dyes, ethanol was flushed through the channels and
followed by a nitrogen flow. This was sufficient to clean the device,
which minimizes the effort, time and cost of producing new devices.
This cleaning procedure can be repeated several times without
affecting the PDMS surface hydrophilicity, and this was supported by
the experimental data presented in the Supplementary Figure S5.
To test the long-term efficiency of the proposed treatment, we

plasma oxidized and PVA treated a microfluidic device, which was
then stored under standard room conditions. The microfluidic chip
was tested 30 days after treatment and could still reliably generate
lipid/oil droplets (Supplementary Video S3). This showed that the
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proposed method can reliably deliver off-the-shelf products that
can be stored for at least a month without compromising the
production of stable and monodisperse emulsions.

Generation of o/w/o and w/o/w double emulsions

A versatile surface treatment must be capable of being used to
construct devices with both hydrophobic and hydrophilic regions

via the selective treatment of various areas. In a series of
experiments, we used our modification method for the selective
modification of defined areas, and we constructed devices
capable of generating w/o/w and o/w/o double emulsions.
Double emulsions have lately attracted interest for their potential
in many applications, such as the encapsulation of small
molecules, pesticides, and drugs40,41, and they have the potential
to serve as small bioreactors for in situ production and delivery of
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pharmacological compounds42. Microfluidic production of double
emulsions is preferable to bulk preparation methods43,44 because
it produces monodisperse emulsion droplets and is a very well-
controlled process allowing the number of encapsulated droplets
to be precisely defined45. The production of double emulsions in
microfluidic devices is a challenging task as it requires synchro-
nization of the droplet formation frequencies and very specific
channel wettability; oil droplet formation can only be realized at a
hydrophilic flow-focusing junction, whereas the aqueous droplets
can only form at a hydrophobic junction.
Here, we demonstrated the versatility of our modification

method by precisely patterning the surface chemistry within a
network of microchannels. We leveraged the microfluidic device
shown in Figure 4 to produce two types of double emulsions: (i)
o/w/o double emulsions and (ii) w/o/w double emulsions. These
were generated using a microfluidic device consisting of two
sequential flow-focusing modules for droplet generation; first to
generate the droplets and then to encapsulate the initial droplets
in larger droplets. Depending on which channels were modified to
be hydrophilic, we were able to produce oil and water droplets at
different parts of the microfluidic chip.
To generate o/w/o emulsions, an oil solution was used as both

the inner and outer solution, and the middle solution consisted of
a water/glycerol mixture (Figure 4, left). Oil droplets were
generated at the first junction and were encapsulated by bigger
water droplets at the second junction (Supplementary Video S4).
One thousand four hundred thirty double emulsions were
generated per minute. To increase the visibility, the internal oil
phase was dyed with 5 mg mL− 1 Sudan Red dye. The droplet
diameter distribution of both the oil and water droplets was
narrow for both the inner oil and the outer water droplets; the
average diameter for the oil droplets was 172.3 μm with 2.9%
monodispersity (N= 206 droplets), and the average diameter for
the water droplets was 267.2 μm with 2.7% monodispersity
(N= 308 droplets).
For w/o/w generation (Figure 4 right), the water droplets were

produced at the first junction and were then encapsulated inside
larger oil droplets at the second junction (Supplementary Video
S5). To enhance the visibility of the emulsions, Sudan Red dye was
added at a lower concentration (0.5 mg mL− 1) to the middle (oil)
phase. The droplet diameter distribution of both the water and oil
droplets was narrow for both the inner water and the outer oil
droplets; the average diameter for the water droplets was
136.1 μm with 2.9% monodispersity (N= 168 droplets), and the
average diameter for the oil droplets was 285 μm with 1.4%
(N= 152 droplets).

DISCUSSION

PDMS has dominated the field of microfluidics because of its
attractive physical and chemical properties, such as optical
transparency, chemical inertness, biocompatibility, simple device
fabrication via soft lithography, and easy interfacing of devices
with the user. However, its hydrophobicity hinders its use for o/w
droplet generation, which is used for many applications in high-
end material synthesis in oil droplet microreactors8,9 and in more
complex multi-phase systems that can serve as advanced
microreactors for in situ drug synthesis and delivery40,41.
Many surface modification techniques have been developed to

alter PDMS hydrophobic properties19–23,37,38. However, modifying
the surface hydrophobicity of PDMS specifically for o/w formation
is a challenging process, and despite a contact angle reduction,
some surface modification techniques cannot be used for droplet
generation20,23. This is thought to be because: (i) the channels are
not sufficiently hydrophilic, and the wetting of the oil droplets on
the device compromises the device operation; (ii) the very process
of introducing oil to the channel surface leads to a reversal of the
surface treatment. Some treatments, such as plasma oxidation,

have only temporary results and the PDMS surfaces restore their
natural hydrophobicity a few minutes after the plasma
treatment46, which was confirmed by our experimental data.
Other modification methods, such as LbL deposition, graft photo-
polymerization, and sol-gel coating, are labor intensive and time
consuming, as they require manual injection and removal of
solutions, and each step in the method requires several minutes.
In this article, we demonstrated a simple, one-step, robust

surface modification method to create hydrophilic microchannels
in PDMS-based microfluidic devices, which surpasses several
existing techniques. We showed that the PVA surface modification
does not suffer from the aforementioned problems and can be
used for the generation of o/w droplets and more complex multi-
phase systems. The proposed surface modification was achieved
by exposing plasma oxidized PDMS surfaces to 1 wt% PVA in
water for 10 min. O2 plasma creates alcoholic hydroxyls (C–OH),
silanols (Si–OH), and carboxylic acids (COOH), which allow
hydrogen bonding between the PVA molecules and the activated
PDMS surfaces27, which leads to permanently hydrophilized
surfaces. In addition, a multilayer PVA assembly is facilitated
through hydrophobic interactions between the main chain groups
(–CH2–CH–) and the intermolecular hydrogen bonding of the
γ–OH hydroxyl groups between the absorbed PVA after drying out
the PDMS surface and the PVA chain in aqueous solution30. Our
experimental data show that the PVA-treated PDMS surfaces
retain their hydrophilicity in the long term. We leveraged PVA
solutions with two distinct hydrolysis degrees (87–90% and 99+%)
because these are widely used for surface modification in PDMS-
based microfluidics33,34. Based on a wettability study, we found
that PVA with a hydrolysis degree of 87–90% was more efficient in
both the short and long term compared with PVA with a 99+%
hydrolysis degree. An explanation for this is that PVA 99+% cannot
form a dense and consistent coating on the PDMS surface, which
is supported by other studies27.
We also investigated the effect of PVA in combination with

different oxygen plasma process parameters on modifying the
surface properties of the PDMS surfaces. Our results showed that
plasma oxidation at high power (100 W) resulted in a more
profound and long-lasting surface hydrophilicity. Increasing the
power intensity of the oxygen plasma treatment increases the ion
bombardment of the PDMS surface, which results in the formation
of more γ–OH hydroxyl bonds for surface bonding with the PVA
solution47. Nevertheless, long and high-power plasma processes
(e.g., at 100 W for longer than 5 min) cause excessive heating
inside the plasma chamber, which may compromise the thermal
integrity of PDMS and lead to cracking of the surface and weak or
incomplete bonding47. We found that a good balance between
the level of the induced surface hydrophilicity and the thermal
stability of the PDMS was plasma processing at 100 W for 1 min.
The surface roughness of the PVA-treated PDMS surfaces

significantly increased compared with the untreated PDMS.
According to Wenzel’s equation48, increasing the roughness of a
surface enhances the wettability due to the chemistry of the
surface. In our case, the increase in the roughness due to the
plasma treatment49 was further enhanced by the random
deposition of PVA50. These two combined effects account for
the long-lasting hydrophilic effect on the PDMS surfaces
(430 days).
The surface modification method allowed for the high-

throughput generation of stable and monodisperse o/w droplets
(both with lipids and surfactant). The modification process is not
labor intensive; it simply relies on passing a PVA solution through
the channels and increasing the throughput production rate of
chips. In addition, the treatment remains stable for at least one
month after the hydrophilic coating, which highlights the ability of
the proposed method to deliver off-the-shelf products that can be
maintained without compromising the performance of the
microfluidic device.
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Moreover, we modified the surface chemistry of specific
microchannels on a chip to create partially hydrophilic, partially
hydrophobic, channel networks. Treatments based on chemical
vapor deposition19 and incorporation of an amphiphilic surfactant
in the PDMS bulk20 are unsuitable in this regard. In a series of
experiments, we used our modification method for the selective
modification of defined areas, and we constructed devices
capable of generating monodispersed w/o/w and o/w/o double
emulsions simply by changing which areas were surface modified,
which highlights the versatility of our approach.
A major advantage of the proposed approach is that it allows

microfluidic chips to be reused by simply flowing nitrogen
through the channels to clear them of the aqueous phases. For
the removal of more difficult residues in the channels, such as
organic dyes, ethanol can be flushed through the channels and
followed by a nitrogen flow. This cleaning procedure could be
repeated several times without affecting the surface hydrophilicity
of the modified PDMS. This approach has considerable advantages
in terms of time, effort, and cost effectiveness compared with
other approaches. This is particularly relevant for devices used to
generate lipid-stabilized droplets based on LbL deposition22,
which were only used one-time before fouling of the device
occurred.
The ability to generate lipid-stabilized o/w droplets in PDMS

devices has added significance given the current emergence of
droplet microfluidics for the construction of model membranes,
including droplet interface bilayers14,15, multisomes51,52,
vesicles13,53,54, and artificial cells in general55. With respect to
droplet generation, lipids are more problematic than surfactants,
and many surface modification techniques that are adequate for
surfactant-stabilized droplets are inadequate for lipid-stabilized
droplets. This work demonstrates that the PVA deposition
approach is compatible with lipids.
In conclusion, compared with alternative approaches, the

benefits of this method are: (i) the robustness/reusability of the
devices, which reduces the cost and effort to make new devices;
(ii) the treatment is long lasting (at least 30 days) as opposed to
simple UV irradiation and plasma exposure techniques; (iii) the
simplicity, convenience, and versatility of our approach, only one
type of polymer (PVA) has to be adequately infused and removed;
and (iv) the ability to create a spatially patterned microchannel
network. The versatility, robustness, and simplicity of this
approach has the potential to further accelerate the development
of double emulsion technologies and applications. This is
particularly important given the increasing potential of double
emulsions in academia and industry in uses ranging from the
gradual release of cargoes in cosmetics56, food science57, and
pharmaceuticals56, to templating vesicles58 and polymersomes59

with defined architectures for drug delivery purposes and as
microreactors for the production of small molecules52 and micro-
and nanoparticles60.
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