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Abstract

In many numerical ocean models, the hydrostatic approximation is made. This approximation causes a considerable

saving in computing time. However, for phenomena involving large vertical speeds, for many small scale phenomena,

and in areas with weak stratification, the approximation becomes questionable. In this report, a s-coordinate

hydrostatic C-grid model is extended to include non-hydrostatic dynamics. The test cases involve gravitational

adjustment of a downslope flow. The first test case has a simplified slope profile and no ambient stratification in the

deep basin. The second test case has ambient stratification and more realistic topography. The differences between

hydrostatic and non-hydrostatic simulations are described and discussed. It is shown that the shapes of the head and the

body of density driven plumes are better preserved in the non-hydrostatic experiments. The wave propagation away

from the plume head is considerably reduced when including non-hydrostatic effects.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With improvements in computing power, it
becomes possible to use increasingly finer meshes
in numerical ocean models. At some limit,
e front matter r 2004 Elsevier Ltd. All rights reserve
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depending on the problem studied, the hydrostatic
assumption made in most ocean models will no
longer be a good approximation for all the time
and length scales resolvable by the model. Further
refinements of the grid should therefore include
non-hydrostatic physics. Based on scale analysis,
see Marshall et al. (1997b), the following criterion
may be used to check the validity of the hydro-
static approximation:

n ¼
g2

Ri

51; ð1Þ
d.
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where n is the non-hydrostatic parameter, g ¼ h=L

is the ratio of the vertical length scale to the
horizontal length scale and Ri ¼ N2h2=U2 is the
Richardson number. (N is the Brunt–Väisälä
frequency, U is the horizontal velocity scale.) They
state that for ocean modelling, the hydrostatic
assumption may begin to break down for phe-
nomena of horizontal length scale somewhere
between 1 and 10 km, depending on the strength
of the stratification.

Several numerical models have been built that
includes non-hydrostatic physics, see Mahadevan
et al. (1996a, b), Stansby and Zhou (1998), and
Marshall et al. (1997b, a). Convection in the ocean
is recently studied with non-hydrostatic z-coordi-
nate ocean models. See Legg et al. (1998) and Legg
and McWilliams (2000, 2001). Lamb (1994)
applied a terrain following, non-hydrostatic, rigid
lid ocean model using projection of the flow field
onto the divergence free part to study internal
wave generation. This paper describes a way to
extend a s-coordinate free surface general circula-
tion ocean model using splitting of the flow field
into the depth averaged part and the deviation
from the depth average, to include non-hydrostatic
physics through a velocity correcting pressure
term. A similar extension for an atmospheric
model has been described in Dudhia (1993), and
in Marshall et al. (1997b) for an z-coordinate
ocean model. The velocity correction is implemen-
ted so that it can be switched on and off by the
user, which makes it easy to study the effect of
non-hydrostatic physics on a given test case.

The test cases presented here are investigations
of the flow of dense water down a steep
topographic slope in the absence of rotation, as
posed in Haidvogel and Beckmann (1999). Lo-
cally, near the density front, the gradient of the
density works as a destabilising force, contrary to
many ocean circulation phenomena. The flow will
therefore accelerate until the acceleration is
balanced by entrainment. The vertical acceleration
terms may therefore be significant for gravity
plumes. Understanding of this problem can be
important for example when studying phenomena
at the Norwegian continental shelf edge. The
problem is also interesting for larger scale ocean
circulation studies. Especially for the North
Atlantic, where inflow and outflow of dense water
through narrow and steep straits and subsequent
downslope flow and mixing can be important
processes in the production of North Atlantic
Deep Water.

Section 2 gives a brief overview of the basic
equations, the s-coordinate system and the nu-
merical implementation of the model. In Section 3
a derivation of the non-hydrostatic pressure
correction equation is presented, and Section 4
consists of descriptions and results from test cases.
In the discussion part, the main findings are
summarised and presented in a broader context.
2. The basic equations

The basic equations are the Reynolds averaged
momentum equations where the Boussinesq ap-
proximation has been used (the density differences
are neglected unless the density is multiplied by
gravity)

@U

@t
þ ~U � rU þ W

@U

@z
� fV ¼ �

1

r0

@p

@x
þ Fx; ð2Þ

@V

@t
þ ~U � rV þ W

@V

@z
þ fU ¼ �

1

r0

@p

@y
þ Fy; ð3Þ

@W

@t
þ ~U � rW þ W

@W

@z
¼ �

1

r0

@p

@z
�

rg

r0

þ Fz;

ð4Þ

where ~U and rU are the horizontal velocity vector
and horizontal gradient operator, respectively, W

the vertical velocity, f the Coriolis parameter, p the
pressure, r the density, r0 the reference density,
and g the gravity. Fx;F y and Fz are the horizontal
and vertical viscosity/eddy-viscosity terms.

If the hydrostatic approximation is made, all
terms in the vertical momentum equation except
the pressure term and the gravity term are
neglected. The third equation is then reduced to

@p

@z
¼ �rg: ð5Þ

The equation of continuity is

@U

@x
þ

@V

@y
þ

@W

@z
¼ 0: ð6Þ
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Fig. 1. The location of 3D variables in the C-grid. Z is the s-

coordinate at the cell interface, and ZZ is the s-coordinate at

the cell center. (a) Horizontal view. (b) Vertical view.
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The conservation equation for density(r) is

@r
@t

þ ~U � rrþ W
@r
@z

¼
@

@z
KH

@r
@z

� �
þ Fr; ð7Þ

where Fr is the horizontal diffusivity and KH the
vertical diffusivity.

The numerical sigma-coordinate ocean model
applied in the present studies is described in
Berntsen (2000) and is available from
www.mi.uib.no/BOM/. See also Berntsen and
Svendsen (1999), Avlesen et al. (2001), Eliassen
et al. (2001) and Berntsen (2002). The finite
difference grid is staggered, and the Arakawa
C-grid (Mesinger and Arakawa, 1976) has been
used, see Fig. 1 where the positions of all the 3D
fields are shown. The water elevation and the
depth integrated velocities (the 2D fields) are given
at cell centers and cell interfaces respectively. The
governing equations are basically the same as for
the Princeton Ocean Model (POM) (Blumberg and
Mellor, 1987 and Mellor, 1996), but the numerical
methods are different. For advection of momen-
tum and density a TVD-scheme with a superbee
limiter described in Yang and Przekwas (1992) is
applied. The model is mode split with a method
similar to the splitting described in Berntsen et al.
(1981) or more recently in Kowalik and Murty
(1993). That is: U ¼ U2D þ U 0; where U2D is the
depth averaged velocity and U 0 the deviation from
the average. The solution is propagated in time
using single time step methods. For the depth-
integrated momentum and continuity equations
the forward–backward method is applied. After
the depth-integrated velocities at the new time step
are estimated, the deviation U 0 is also propagated
in time to the new time step under the hydrostatic
assumption and Unþ1 ¼ Unþ1

2D þ U 0;nþ1: In non-
hydrostatic mode, effects of the non-hydrostatic
pressure corrections are included when estimating
U 0;nþ1:

In all experiments reported here the model is run
with zero horizontal diffusivity on the density
field. The horizontal viscosity, AM ; is computed
according to Smagorinsky (1963). The constant
CM in the Smagorinsky model, see Mellor (1996),
is set to 0.2 in both test cases. In the vertical the
Mellor–Yamada 2-1/2 level scheme (Mellor and
Yamada (1982)) is applied to parameterise sub-
grid-scale processes. The internal pressure is
estimated with the second order central difference
scheme as in POM.

The basic equations are transformed into a s-
coordinate system. This is a bottom and surface
following coordinate system that has the property
that the bottom always has the s-coordinate �1
and the free surface always has the s-coordinate 0.

The transformation from the Cartesian coordi-
nate system ðx; y; z; tÞ to the s-coordinate system
ðx	; y	;s; t	Þ is given by

x	 ¼ xy	 ¼ ys ¼
z � Z
Zþ H

t	 ¼ t;

where Zðx; y; tÞ is the surface elevation and Hðx; yÞ
is the depth measured from the surface at rest.

http://www.mi.uib.no/BOM/
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3. The pressure-correction equation

The non-hydrostatic correction is accomplished by
introducing a pressure-correction term p0; where p0 is
the deviation from the hydrostatic pressure.

In both the hydrostatic and the non-hydrostatic
model, the change in surface elevation Z exactly
balances the gradient of the horizontal fluxes. The
new Z is found in the calculation of the 2D external
mode, where it is balanced against depth averaged
velocities ðUnþ1

2D ;V nþ1
2D Þ: Two new 3D velocities

ðUn	
ADV;V

n	
ADVÞ with the same vertical average as

ðUnþ1
2D ;V nþ1

2D Þ; and the same vertical variation as the
total velocities ðUn;VnÞ are then defined.

In the hydrostatic model, no further corrections
to Un	

ADV and V n	
ADV are made, so these variables

can be renamed Unþ1
ADV and V nþ1

ADV and the vertical
velocity wnþ1 is calculated using the equation of
continuity, i.e.

wnþ1ðsÞ ¼
Z 0

s

@ðUADVDÞ
nþ1

@x
þ

@ðVADVDÞ
nþ1

@y

� �
ds

� s
@Z
@t

; ð8Þ

using the fact that wð0Þ ¼ 0: D is the dynamic
depth ðD ¼ H þ ZÞ: Volume conservation in every
cell is maintained, and Unþ1

ADV; V nþ1
ADV; wnþ1; Zn and

Znþ1 can therefore be used for advection of scalar
fields.

In the non-hydrostatic model, the calculation of
the vertical velocity is postponed until a pressure
correction p0 is found. The gradient of this pressure
term gives corrections to the horizontal velocities, and
thus also to the vertical velocity w through Eq. (8).

Following ideas from industrial computational
fluid dynamics described for instance in Patankar
(1980), we may consider the terms of the equations
describing a balance between the acceleration
terms and the pressure terms first, and derive an
equation for the non-hydrostatic pressure correc-
tions. Remaining terms are treated separately
numerically. In the Cartesian coordinate system
this can be written

dU

dt
¼ �

1

r0

@p

@x
; ð9Þ
dV

dt
¼ �

1

r0

@p

@y
; ð10Þ

dW

dt
¼ �

1

r0

@p

@z
�

rg

r0

; ð11Þ

where d
dt
¼ @

@t
þ ~U � r is the total derivative, ~U is

the 3D velocity vector and r is the 3D gradient
operator.

We split the pressure into three parts

p ¼ pG þ pZ þ p0; ð12Þ

where

pG ¼ g

Z 0

z

rðz0Þdz0 ð13Þ

and

pZ ¼ gr0Z ð14Þ

and p0 is the non-hydrostatic pressure-correction
term to be calculated. pG balances the gravity term
in the vertical, and pZ is independent of z. These
two pressure terms are included in the hydrostatic
model. The horizontal advection terms are also
included in the hydrostatic model.

The equations in sigma-coordinates for the non-
hydrostatic pressure correction then become

@UD

@t
¼ �

D

r0

@p

@x
þ

1

r0

@p

@s
@Z
@x

þ s
@D

@x

� �
; ð15Þ

@VD

@t
¼ �

D

r0

@p

@y
þ

1

r0

@p

@s
@Z
@y

þ s
@D

@y

� �
; ð16Þ

@WD

@t
¼ �

1

r0

@p

@s
: ð17Þ

Primes and asterisks are deleted to simplify
notation. We also require that the velocity correc-
tions satisfy the equation of continuity

@UD

@x
þ

@VD

@y
þ

@w

@s
þ

@Z
@t

¼ 0: ð18Þ

With the vertical velocity transformation

w ¼ D
ds
dt

¼ W � U s
@D

@x
þ

@Z
@x

� �
� V s

@D

@y
þ

@Z
@y

� �

� s
@D

@t
þ

@Z
@t

� �
; ð19Þ
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this is a closed set of equations. The change in
surface elevation Z is balanced by the horizontal
fluxes. The non-hydrostatic pressure will not
change the vertical averaged horizontal fluxes into
a water column, so Z will not be changed by the
non-hydrostatic pressure.

The s-coordinate system is not an orthogonal
coordinate system, and this is the reason for the
@p=@s-terms on the right-hand side of the horizon-
tal momentum equations. In a z-coordinate model
like the MIT-model, see Marshall et al. (1997a), the
solution matrices get a nice structure with six off-
diagonal entries. The techniques for solving linear
systems with this structure are well established. The
@p=@s-terms destroy this structure, and create a
stronger coupling between the equations. This may
lead to a very CPU-intensive code. Our strategy to
handle this problem is to solve a simplified system
of equations iteratively. The system of equations to
be solved in each iteration step will have the same
structure as for a z-coordinate model. However, it
is necessary to recompute the @p=@s terms for each
iteration, and include the effect as a forcing to the
simplified system of equations.

Defining the discretized pressure in cell centers,
we can write the equations governing p, in finite
difference notation, as

UCORR
nþ1
ijk DU

nþ1
ij

Dt
¼ �

DU
nþ1
ij

r0

pnþ1
ijk � pnþ1

i�1jk

Dx

þ
UCORR2

nþ1
ijk DU

nþ1
ij

Dt
; ð20Þ

VCORR
nþ1
ijk DV

nþ1
ij

Dt
¼ �

DV
nþ1
ij

r0

pnþ1
ijk � pnþ1

ij�1k

Dy

þ
VCORR2

nþ1
ijk DV

nþ1
ij

Dt
; ð21Þ

W nþ1
ijk � W n

ijk

Dt
¼ �

1

Dnþ1
ij r0

pnþ1
ijk�1 � pnþ1

ijk

D ~sk�1
; ð22Þ

ðUADVDU Þ
nþ1
iþ1jk � ðUADVDU Þ

nþ1
ijk

Dx

þ
ðVADVDV Þ

nþ1
ijþ1k � ðVADVDV Þ

nþ1
ijk

Dy
þ
wnþ1

ijk � wnþ1
ijkþ1

Dsk

þ
Znþ1

ij � Zn
ij

Dt
¼ 0; ð23Þ

where Unþ1
CORR ¼ Unþ1

ADV � Un	
ADV and V nþ1

CORR ¼

Vnþ1
ADV � Vn	

ADV � Unþ1
CORR2 and Vnþ1

CORR2 are second-
order discretizations of the terms involving @p=@s
in the horizontal velocity equations. The term
Unþ1

CORR2 thus becomes

UCORR2
nþ1
ijk

¼
Dt

2DU
nþ1
ij r0

pnþ1
i�1jk�1 � pnþ1

i�1jkþ1 þ pnþ1
i1jk�1 � pnþ1

i1jkþ1

D ~sk�1 þ D ~sk



Znþ1

ij � Znþ1
i�1j

Dx
þ s

Dnþ1
ij � Dnþ1

i�1j

Dx

 !
; ð24Þ

where DU ; DV and D are the dynamic depths in U-
points, V-points and cell centers, respectively, Dsk

is the vertical distance between cell interfaces at
level k, and D ~sk is the vertical distance between cell
centers at level k. The term V nþ1

CORR2 is computed
similarly.

Using Eq. (19), Eq. (22) can be rewritten in
terms of the s-coordinate velocity w

wnþ1
ijk � wn	

ijk

Dt
þ

rnþ1
ijk � rn	

ijk

Dt
¼ �

1

Dnþ1
ij r0

pnþ1
ijk�1 � pnþ1

ijk

D ~sk�1
;

ð25Þ

where rnþ1
ijk � rn	

ijk ¼UCORR
nþ1
ijk

Ziþ1jk�Zi�1jk

2Dx
þ VCORR

nþ1
ijk

Zijþ1k�Zij�1k

2Dy
; where UCORR and VCORR are averaged

to w points (see Fig. 1). rnþ1
ijk � rn	

ijk is updated

during the pressure iteration. It is only calculated
at w-points in the interior of the domain, in order
to avoid introduction of erroneous fluxes through
the surface or the bottom.

Eqs. (20), (21), (23) and (25) are combined in
Eq. (26) to give a system of equations for the
dynamic pressure correction p at time step n þ 1: n
indicates the iteration number.

Anþ1
ijk pnþ1;n

i�1jk þ Bnþ1
ijk pnþ1;n

iþ1jk þ Cnþ1
ijk pnþ1;n

ij�1k þ Dnþ1
ijk pnþ1;n

ijþ1k

þ Enþ1
ijk pnþ1;n

ijk�1 þ Fnþ1
ijk pnþ1;n

ijkþ1 þ Gnþ1
ijk Pnþ1;n

ijk

¼
UADV

n	
iþ1jkDU

nþ1
iþ1j � UADV

n	
ijkDU

nþ1
ij

Dx
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þ
VADV

n	
ijþ1kDV

nþ1
ijþ1 � VADV

n	
ijkDV

nþ1
ij

Dy

þ
wn

ijk � wn
ijkþ1

Dsk

þ
Znþ1

ij � Zn
ij

Dt

�
ðrnþ1

ijk � rn	
ijkÞ � ðrnþ1

ijkþ1 � rn	
ijkþ1Þ

Dsk

þ
UCORR2

nþ1;n�1
iþ1jk DU

nþ1
iþ1j � UCORR2

nþ1;n�1
ijk DU

nþ1
ij

Dx

þ
VCORR2

nþ1;n�1
ijþ1k DV

nþ1
iþ1j � VCORR2

nþ1;n�1
ijk DV

nþ1
ij

Dy
;

ð26Þ

where

Anþ1
ijk ¼

Dt

r0Dx2
DU

nþ1
ij ; ð27Þ

Bnþ1
ijk ¼

Dt

r0Dx2
DU

nþ1
iþ1j ; ð28Þ

Cnþ1
ijk ¼

Dt

r0Dy2
DV

nþ1
ij ; ð29Þ

Dnþ1
ijk ¼

Dt

r0Dy2
DV

nþ1
ijþ1; ð30Þ

Enþ1
ijk ¼

Dt

r0DskD ~sk�1Dnþ1
ij

; ð31Þ

Fnþ1
ijk ¼

Dt

r0DskD ~skDnþ1
ij

; ð32Þ

Gnþ1
ijk ¼ � ðAnþ1

ijk þ Bnþ1
ijk þ Cnþ1

ijk þ Dnþ1
ijk

þ Enþ1
ijk þ F nþ1

ijk Þ: ð33Þ

This is an elliptic equation in p, which is solved
using an iterative method. In this implementation
we use the BiCGSTAB iteration method (Barrett
et al., 1994).

If p is ordered into a vector, Eq. (26) can be
written compactly in matrix form as

Apnþ1;n ¼ b þ Cpnþ1;n�1; ð34Þ

where A is a banded matrix, b represents the lack
of volume conservation in the fields Un	

ADV; V n	
ADV;

wn; Zn; and Znþ1: Cpnþ1;n�1 represents the terms
involving the velocity corrections UCORR2 and
VCORR2: In order to minimise roundoff errors, we
subtract the vector Apn from both sides of the
equation before starting the iterations. The result-
ing system is then

Adpnþ1;n ¼ ðb � ApnÞ þ Cpnþ1;n�1; ð35Þ

which is solved for dpnþ1;n; where dpnþ1;n ¼

pnþ1;n � pn:
In many simulations, Dx and Dy can be much

larger than Ds: In these cases, the coefficients E

and F will be much larger than the coefficients
A,B,C, and D, causing a badly conditioned
problem. A rescaling of the pressure of the form
pðx; y;sÞ ¼ ~pðx; y; asÞ with a constant a; may
therefore speed up the iterations. All terms
involving @p=@s must then be multiplied by a:
For example Eq. (25) turns into

wnþ1
ijk � wn

ijk

Dt
þ

rnþ1
ijk � rn	

ijk

Dt
¼ �

a
Dnþ1

ij r0

~pnþ1
ijk�1 � ~pnþ1

ijk

D ~sk�1

ð36Þ

and the terms E and F are mapped the following
way:

E 7!aE; ð37Þ

F 7!aF : ð38Þ

The choice a ¼ Ds2D2=Dx2 will in the case of
constant distance between s-layers and Dx ¼ Dy

give coefficients in the pressure iterations that are
everywhere of the same magnitude. In the current
studies with variable layer thickness, the a was
chosen as minðDsÞ2 maxðDÞ

2=Dx2: No systematic
study of the best choice for the a value for this case
has been performed.

The boundary condition for p is

@p

@n
¼ 0; ð39Þ

which implies that the pressure correction should
cause no flux change across boundaries. An
application of the Green’s theorem shows that
with this boundary condition, a necessary condi-
tion for the system of equations to be solvable is
that the integral of the right-hand side of Eq. (26)
over the domain is zero (Folland, 1995). This is the
case here, since the depth integrated gradient of
the horizontal velocities exactly balances the
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change in surface elevation, and w and r are zero at
the free surface and at the bottom, so the integrals
of their derivatives are zero.

It should be noted that the Poisson problem
with the Neumann boundary condition does not
determine the solution uniquely. The solution is
only determined up to an additive constant. This is
not a real problem, since we are only interested in
the gradient of the pressure. The problem can be
solved by subtracting the mean pressure in each
iteration or fixing the pressure at a given point. We
have chosen the former solution in this implemen-
tation.
3.1. Further discussion on the implementation

In the current ocean model, there are two sets of
horizontal velocities, called UADV;VADV and
U ;V : The first set of velocities are computed after
the depth averaged velocities are computed. They
have the same depth integrated transport as the
depth averaged velocities, and the same vertical
variation as the velocities U ;V : They are exactly
volume conserving (to machine precision) and can
therefore be used for advection. If the velocity
corrections caused by the non-hydrostatic pressure
are added to UADV and VADV without conver-
gence in the pressure iteration to machine accu-
racy, we might introduce artificial divergence in
the velocity fields and have associated problems
with mass conservation and stability problems. An
option may be to add the velocity corrections only
to the total velocities U and V, since these
velocities are not used for advection. This will
however decrease the effect of the velocity correc-
tion, since the immediate effect of the non-
hydrostatic correction on the advection will
become indirect. In the 2D test cases to be
discussed in Section 4, the velocity corrections
were added to UADV and VADV: This was feasible
since convergence to machine accuracy in the
pressure iterations was achieved relatively quickly.
It is still an open question whether this is feasible
in more realistic domains. Another possibility
which has not been tested yet is to adjust Z if
convergence of the non-hydrostatic pressure to
machine accuracy has not been achieved.
3.2. The advection of the vertical velocity

The horizontal velocities are advected with a
TVD scheme with a superbee limiter (Yang and
Przekwas, 1992). This is a non-oscillating scheme
with little numerical diffusivity. It was therefore
chosen to advect the new prognostic vertical
velocity with the same scheme. Transforming the
total derivative of the vertical velocity W to s-
coordinates, shows that it is the velocity W that
should be advected. It therefore seems natural first
to transform the vertical velocity w into the W

vertical velocity using Eq. (19), and then advect
this velocity before transforming back into a new
w-velocity. It is important that this is done after
the advection of scalars and horizontal velocities,
since this operation may introduce divergence in
the velocity field.
4. The test cases

When a dense fluid is released in a less dense
ambient fluid, the dense fluid will spread under the
influence of its buoyancy, with a distinct raised
head followed by a shallower flow behind.
Motions of this kind are often referred to as
gravity currents or density currents, and have been
studied over a number of years. When the flow is
along a horizontal boundary, the head is a
controlling feature of the flow. Britter and
Simpson (1978) and Simpson and Britter (1979)
have shown how the mixing, which occurs
immediately behind the head, determines the rate
of advance of the current.

According to Simpson (1987) the motion of a
gravity current down a slope is appreciably
different from that along a horizontal surface.
Britter and Linden (1980) states that for gravity
currents flowing down an incline there can be
balance between the gravitational force and the
frictional and entrainment drag. As a con-
sequence the flow is steady. On the other hand,
for horizontal current the frictional and entrain-
ment drag will inevitable decrease the current
velocity.

Ellison and Turner (1959) investigated the
motion of a gravity current, and in particular the
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entrainment into the current. It was shown that for
the continuous current well behind the head, the
mean velocity down the slope was independent of
the downstream distance from the source. The
thickness of the current, however, increased down-
stream due to entrainment, maintaining a constant
buoyancy flux down the slope.

Britter and Linden (1980) restricted their atten-
tion to the case of large Reynolds numbers and
unstratified ambient water. Their experimental
results showed that

 For very small slopes (slope angle p0:5�) the
head decelerates with distance from the source.
At greater slopes the buoyancy force is large
enough to overcome frictional effects and a
steady head velocity results.

 For a Boussinesq plume the front velocity is
found to be approximately 60% of the mean
velocity of the following flow. This means that
the head increases in size as it travels down the
slope, both by direct entrainment into the head
itself and by addition of fluid from the following
flow. Direct entrainment increases with increas-
ing slope and accounts for one-tenth of the
growth of the head at 10� and about two-thirds
at 90�:
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0 0
ρ2 = 1030 ρ1 = 1025
The velocity of the front show small variations
with the slope angle. The gravitational force
increase with slope, but so do entrainment, both
into the head itself and the flow behind. This
produces an increased retarding force on the
current as momentum is imparted to the
entrained fluid.

In the first test case, there is no ambient stratifica-
tion, so the above theory can be applied directly.
The second test case includes stratification, which
will inevitably slow down the flow as it reaches the
level of equal density.
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Fig. 2. The initial setup for test case 1.
4.1. Test case 1

The first test case is identical to the problem
proposed in Haidvogel and Beckmann (1999,
Chapter 6.4). A 2D idealised slope with horizontal
dimension 0pxp200 km is specified using a tanh-
profile

hðxÞ ¼ Hmin þ
1

2
ðHmax � HminÞ


ð1 þ tanhððx � x0Þ=LSÞÞ; ð40Þ

where Hmin ¼ 200 m; Hmax ¼ 4000 m; LS ¼ 10 km;
and x0 ¼ 100 km: This gives a maximum slope
angle of about 10�: A density front is located at
x ¼ 60 km; with a density of 1030 and 1025 kg m�3

to the left and right of the front, respectively, see
Fig. 2. The initial velocity field is at rest. The left
and right boundaries are open boundaries, using
the FRS open boundary relaxation technique
(Martinsen and Engedahl, 1987).

In Haidvogel and Beckmann (1999) this case is
run with different numerical models and with
different schemes for the parameterisation of
subgrid-scale processes. The results were seen to
be sensitive both to the model used and to the
subgrid-scale parameterisation.

An effect not studied in Haidvogel and Beck-
mann (1999), is the sensitivity to non-hydrostatic
effects. They state in a footnote that non-hydro-
static effects probably are important, because of
the large vertical velocities. In our simulations, the
horizontal resolution is 500 m. The vertical resolu-
tion was increased until no significant changes
could be seen in the solution, and in these
simulations 70 layers are used, with increased
resolution near the bottom. The s-values at the cell
interfaces are as follows: 0.000, �0.041, �0.081,
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�0.120, �0.158, �0.194, �0.230, �0.265, �0.298,
�0.331, �0.362, �0.393, �0.422, �0.450, �0.477,
�0.504, �0.529, �0.553, �0.576, �0.598, �0.619,
�0.638, �0.657, �0.675, �0.692, �0.707, �0.722,
�0.735, �0.748, �0.759, �0.769, �0.779, �0.787,
�0.794, �0.800, �0.806, �0.811, �0.817, �0.822,
�0.828, �0.833, �0.839, �0.844, �0.850, �0.856,
�0.861, �0.867, �0.872, �0.878, �0.883, �0.889,
�0.894, �0.900, �0.906, �0.911, �0.917, �0.922,
�0.928, �0.933, �0.939, �0.944, �0.950, �0.956,
�0.961, �0.967, �0.972, �0.978, �0.983, �0.989,
�0.994, �1.000. Sensitivity to the vertical resolu-
tion is investigated in Vikebø et al. (2001). In this
study it is shown that when increasing the number
of s-layers from 50 to 70 with focus towards the
bottom, the shape of the density plume is better
preserved down the slope.

The hydrostatic results in Fig. 3 look quite
similar to results obtained in Haidvogel and
Beckmann (1999) (Fig. 6.12 in Haidvogel and
Beckmann, 1999), with respect to propagation
speed and shape of the plume-head. The non-
hydrostatic results, however, in Fig. 4, show a
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Fig. 3. Time development of the density distribution ðkg m�3Þ for the

(a) 2.5 h, (b) 5 h (c) 7.5 h (d) 10 h.
plume that is more localised in space, and the
density of the plume head is well preserved as the
plume descends. The height of the plume head
grows as the plume descends, in accordance with
the theory in Britter and Linden (1980). The
contour plots of speed in Fig. 5, also illustrate this;
a distinct head can be seen in the non-hydrostatic
case, in accordance with theory. The internal speed
of the head is higher than the following flow, but
the propagation speed is lower. In the hydrostatic
case the head is not as distinct, and there is also a
pressure wave propagating in the entire water
column.

The value of the density along the bottom is
plotted against time in Hovmöller diagrams,
Fig. 6. These diagrams clearly show that the
density gradient at the head of the plume is better
preserved in the non-hydrostatic case. These
diagrams also make it easy to read the advance-
ment speed of the head. The advancement speed
can be seen to vary slightly as a function of slope
angle, with an average speed of about 1:8 m s�1 in
the hydrostatic case and 2:1 m s�1 in the non-
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unstratified hydrostatic case, 0:5 kg m�3 between contour lines.
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hydrostatic case. In both cases the advancement
speed is less than the mean speed of the following
flow, as in the experimental results by Britter and
Linden (1980).

4.2. Test case 2

This test case is similar to test case 1, but
the bottom topography is an idealisation of the
shelf slope off mid-Norway, as proposed in
Ommundsen (2000)

hðxÞ ¼

Hmin 0pxpLS

Hmax � ðHmax

�HminÞ
LL�x

LL�LS

� �2

LSoxoLL

Hmax LLpxpL;

8>>>><
>>>>:

ð41Þ

where Hmin ¼ 250 m; Hmax ¼ 1300 m; LS ¼ 60 km;
LL ¼ 160 km and L ¼ 200 km: This implies an
average slope angle of about 1�:
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Fig. 6. Hovmöller diagrams of the bottom density ðkg m�3Þ for test case 1, 0:5 kg m�3 between contour lines. (a) Hydrostatic case, (b)

Non-hydrostatic case.

1028.1

1027.9

1027.54

1027.5

1026.8

1028.1

Cross shelf distance [km]

D
ep

th
 [

m
]

0 50 100 150 200

0 50 100 150 200

-1300
-1200
-1100
-1000

-900
-800
-700
-600
-500
-400
-300
-200
-100

0

-1300
-1200
-1100
-1000
-900
-800
-700
-600
-500
-400
-300
-200
-100
0

Fig. 7. Bathymetry and initial density distribution for test case

2. The distance between the density contours is 0:2 kg m�3 for

density less than 1027:0 kg m�3; 0:1 kg m�3 for density between

1027.0 and 1027:5 kg m�3; and 0:04 kg m�3 for density higher

than 1027:5 kg m�3:

Y. Heggelund et al. / Continental Shelf Research 24 (2004) 2133–2148 2143
The stratification is taken from climatology
(Engedahl et al., 1998), and is for simplicity
chosen to be horizontally uniform. Model studies
with a horizontal resolution of 400 m indicate
that water from about 750 m may run up
the shelf slope and onto the shelf during strong
wind events, see Eliassen et al. (2000). This dense
water may subsequently flow down the shelf
slope. To study the processes during this phase,
water with density corresponding to the initial
density at 750 m depth (about 1028:1 kg m�3) is
elevated up to the shelf as a 50 m thick layer. The
ambient density at the shelf edge level is
about 1027:5 kg m�3: The initial velocity
field is at rest. The left and right boundaries are
open boundaries, using the FRS open boundary
relaxation technique (Martinsen and Engedahl,
1987).

The bottom topography and initial density
distribution can be seen in Fig. 7. To highlight
the plume, the density contours are especially
dense in the interval 1027.5–1028:1 kg m�3:

The horizontal resolution is 500 m, and 70 layers
are used in the vertical, with the same distribution
as in test case 1.

As the plume flows down the slope, the density
difference between the plume and the surrounding
water will decrease, both because the plume moves
towards a level of equal density, but also because
of entrainment. The plume is therefore expected to
find a new level of neutral buoyancy above the
level where the water was initially taken from.

The time development of the plume is shown in
Figs. 8 and 9. There is a slight zoom-in in order to
focus on the plume. As in the unstratified case, the
plume head is better developed in the non-
hydrostatic case. The head also grows in height
and length as the gravity current travels down
slope, although the head vanishes as it reaches the
level of neutral buoyancy.

The hydrostatic simulations give no clear plume
head, except possibly in the very early stages of the
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Fig. 8. Time development of the density distribution ðkg m�3Þ for the hydrostatic case 2. (a) 2 h, (b) 8 h, (c) 14 h, (d) 20 h.
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flow. There is a very clear barotropic wave caused
by the sudden release of the density front. Such a
wave is also apparent in the non-hydrostatic
simulations, but it is not as pronounced. We
believe that the reason for this is that more of the
energy goes to local adjustments of the velocities in
the non-hydrostatic case, so less energy is available
for conversion into barotropic kinetic energy. The
propagation speed of the wave is about 2 m s�1;
which fits well with the speed of internal gravity
waves.

The Hovmöller diagrams in Fig. 10 also show
that the density of the plume head is better
preserved in the non-hydrostatic case, allowing
the head to travel further. It takes longer time to
build up the momentum in the non-hydrostatic
case, but once the gravity current starts travelling
down slope, the propagation speed is about the
same as in the hydrostatic case.

Fig. 11, shows the development of horizontal
speed at the shelf edge and some positions off the
shelf edge. The velocities in the hydrostatic case
exhibit some periodic oscillations, which are
probably due to the internal wave generated in
this case. The velocity 2 km off the shelf edge has
the highest maximum of about 0:75 m s�1 in this
case. This differs from the non-hydrostatic simula-
tions, where the velocity at the shelf edge has the
highest maximum (about 0:9 m s�1). After the time
of maximum speed level at the shelf edge, the
speed at this point in the non-hydrostatic case is
approximately twice as large as in the hydrostatic
case. The oscillations in the non-hydrostatic case
are not as smooth and periodic as in the
hydrostatic case.
5. Discussion

The validity of the hydrostatic assumption made
in many ocean models becomes questionable for
phenomena involving large vertical speed varia-
tions and for many small scale phenomena,
especially when the stratification is weak. This
report explains a way to extend a hydrostatic s-
coordinate ocean model to include non-hydro-
static physics. Non-hydrostatic effects are impor-
tant when studying density currents. If the model
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in addition is terrain following, the near sea bed
layer and the processes in this layer may also be
well resolved. The equations for the non-hydro-
static pressure in a s-coordinate model may, as
described in this paper, become more complicated
than the corresponding equations for a z-coordi-
nate model. Simplifications of the present strategy
should therefore be sought.
The solution of the elliptic pressure equation is
very expensive, and accounts for at least half the
computing time on the test cases presented here.
We believe improvements are possible, for exam-
ple by using better pre-conditioners.

Substantial differences are seen between the
hydrostatic and non-hydrostatic simulations of
gravity plumes both in unstratified and stratified
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ambient water. In the non-hydrostatic simulations
the density contrast at the plume head is better
preserved, and the plume height and length
grows as the plume advances in accordance with
theory.

The test cases described in the present paper are
two-dimensional. In three dimensions it will
become more expensive to solve the pressure
equations. Also the pressure corrections driven
by horizontal divergence may affect the horizontal
flow rather than the vertical velocities. At present
it is not clear how this will affect the non-
hydrostatic pressure corrections.

In the real ocean, the flow of dense water down
steep topography will be strongly influenced by the
earths rotation. Overflows has recently been
studied with a 1 1

2
-layer model in Shapiro and Hill

(1997). In Jiang and Garwood Jr. (1996) the POM
is used to study overflows, and Shi et al. (2001)
used an isopycnal model to study variability of the
Denmark Strait overflow. These studies are
performed with models using the hydrostatic
approximation. There is also a considerable
interest in boundary layer mixing along the
continental slopes and along the shelf edges, see
Munk and Wunsch (1998). The breaking of
internal waves may explain the enhanced mixing
in these regions. Internal waves and the reflection
of the waves are also influenced by the earths
rotation, see Thorpe (2000). In several studies
models have been applied to investigate internal
tides and their interaction with topography,
see for instance Xing and Davies (2001, 2002);
Davies and Xing (2002). Most of these studies
are performed with hydrostatic models. In Legg
and Adcroft (2003), however, the non-hydrostatic
MIT model, see Marshall et al. (1997a) is used to
study internal wave dynamics, and significant
differences between hydrostatic and non-hydro-
static results are described. The spatial variability
near the sea-bed is high both horizontally
and vertically. Recent analysis of high
frequency measurements also show that the
temporal variability in the bottom boundary layer
may be very high, see Hosegood and van Haren
(2003).

There is thus a need for 3D non-hydrostatic
models with high resolution, in time and space, to
facilitate studies of processes along the continental
slopes. The effects of rotation must be included.
The vertical resolution near the sea-bed should be
high enough to allow the representation of for
instance density plumes and/or internal bores.
Terrain following 3D models with non-hydrostatic
capabilities should be adequate for such studies.
The model presented in this paper may be
regarded as a step on the way towards such a
model.
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Engedahl, H., Ådlandsvik, B., Martinsen, E., 1998. Production

of monthly mean climatological archives of salinity,

temperature, current and sea level for the Nordic Seas.

Journal of Marine Systems 14, 1–26.

Folland, G., 1995. Introduction to Partial Differential Equa-

tion. Princeton University Press, Princeton, NJ.

Haidvogel, D., Beckmann, A., 1999. Numerical ocean circula-

tion modeling. Series on Environmental Science and

Management, Vol. 2. Imperial College Press.

Hosegood, P., vanHaren, H., 2003. Ekman-induced turbulence

over the continental slope in the Faeroe-Shetland Channel

as inferred from spikes in current meter observations. Deep-

Sea Research I 50, 657–680.

Jiang, L., Garwood Jr., R., 1996. Three-dimensional simula-

tions of overflows on continental slopes. Journal of Physical

Oceanography 26, 1214–1233.

Kowalik, Z., Murty, T., 1993. Numerical Modeling of Ocean

Dynamics. Advanced Series on Ocean Engineering, Vol. 5.

World Scientific, Singapore.

Lamb, K., 1994. Numerical experiments of internal wave

generation by strong tidal flow across a finite amplitude

bank edge. Journal of Geophysical Research 99,

843–864.

Legg, S., Adcroft, A., 2003. Internal wave breaking at concave

and convex continental slopes. Journal of Physical Oceano-

graphy 33, 2224–2246.

Legg, S., McWilliams, J., 2000. Temperature and salinity

variability in heterogeneous ocean convection. Journal of

Physical Oceanography 30, 1188–1206.

Legg, S., McWilliams, J., 2001. Convective modifications of a

geostrophic eddy field. Journal of Physical Oceanography

31, 874–891.

Legg, S., McWilliams, J., Gao, J., 1998. Localization of deep

ocean convection by a mesoscale eddy. Journal of Physical

Oceanography 28, 944–970.

Mahadevan, A., Oliger, J., Street, R., 1996a. A Nonhydrostatic

Mesoscale Ocean Model. Part I: Well posedness and scaling.

Journal of Physical Oceanography 26, 1868–1880.

Mahadevan, A., Oliger, J., Street, R., 1996b. A Nonhydrostatic

Mesoscale Ocean Model. Part II: Numerical implementa-

tion. Journal of Physical Oceanography 26, 1881–1900.

Marshall, J., Adcroft, A., Hill, C., Perelman, L., Heisey, C.,

1997a. A finite-volume, incompressible Navier–Stokes

model for studies of the ocean on parallel computers.

Journal of Geophysical Research 102 (C3), 5753–5766.

Marshall, J., Hill, C., Perelman, L., Adcroft, A., 1997b.

Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean



ARTICLE IN PRESS

Y. Heggelund et al. / Continental Shelf Research 24 (2004) 2133–21482148
modeling. Journal of Geophysical Research 102 (C3),

5733–5752.

Martinsen, E., Engedahl, H., 1987. Implementation and testing

of a lateral boundary scheme as an open boundary

condition in a barotropic ocean model. Coastal Engineering

11, 603–627.

Mellor, G., 1996. Users guide for a three-dimensional, primitive

equation, numerical ocean model. Technical Report,

Princeton University.

Mellor, G., Yamada, T., 1982. Development of a turbulence

closure model for geophysical fluid problems. Reviews of

Geophysics and Space Physics 20, 851–875.

Mesinger, F., Arakawa, A., 1976. Numerical methods used in

atmospheric models, Volume I. WMO/ICSU Joint Organiz-

ing Committee, Garp Publication Series No. 17.

Munk, W., Wunsch, C., 1998. Abyssal recipes II: energetics of

tidal and wind mixing. Deep-Sea Research I 45, 1978–2010.

Ommundsen, A., 2000. Numerical simulations of tides, shelf

slope currents and Lagrangian advection of particles. Ph.D.

thesis, Department of Mathematics, University of Oslo,

Norway.

Patankar, S., 1980. Numerical Heat Transfer and Fluid Flow.

Series in Computational and Physical Processes in Me-

chanics and Thermal Sciences. Taylor & Francis, London.

Shapiro, G., Hill, A., 1997. Dynamics of dense water cascades

at the shelf edge. Journal of Physical Oceanography 27,

2381–2394.

Shi, X., Røed, L., Hackett, B., 2001. Variability of the

Denmark Strait overflow: a numerical study. Journal of

Geophysical Research 106 (C10), 22277–22294.
Simpson, J., 1987. Gravity Currents in the Environment and the

Laboratory. Halsted Press, New York.

Simpson, J., Britter, R., 1979. The dynamics of the head of a

gravity current advancing over a horizontal plane. Journal

of Fluid Mechanics 94, 477–495.

Smagorinsky, J., 1963. General circulation experiments with the

primitive equations, I. The basic experiment. Monthly

Weather Review 91, 99–164.

Stansby, P., Zhou, J., 1998. Shallow-water flow solver with

non-hydrostatic pressure: 2D vertical plane problem. Inter-

national Journal for Numerical Methods in Fluids 28,

541–563.

Thorpe, S., 2000. The effects of rotation on the nonlinear

reflection of internal waves from a slope. Journal of Physical

Oceanography 30, 1901–1909.

Vikebø, F., Berntsen, J., Furnes, G., 2001. Gravity currents at

Ormen Lange. Technical Report 163, Department of

Applied Mathematics, University of Bergen, Norway.

Xing, J., Davies, A., 2001. Non-linear effects of internal tides

on the generation of the tidal mean flow at the

Hebrides shelf edge. Geophysical Research Letters 28,

3939–3942.

Xing, J., Davies, A., 2002. Processes influencing the non-linear

interaction between inertial oscillations, near inertial inter-

nal waves and internal tides. Geophysical Research Letters

29, 10.1029/2001GL014199.

Yang, H., Przekwas, A., 1992. A comparative study of

advanced shock-capturing schemes applied to Burgers

equation. Journal of Computational Physics 102,

139–159.


	Hydrostatic and non-hydrostatic studies of gravitational adjustment over a slope
	Introduction
	The basic equations
	The pressure-correction equation
	Further discussion on the implementation
	The advection of the vertical velocity

	The test cases
	Test case 1
	Test case 2

	Discussion
	Acknowledgements
	References


