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Abstract -The papcr considers a new formulation of Optimal Power 
Flow (OPF) that makes it eminently suitable for accurate incremental 
modcling. Zoutendijk's method of feasible directions for solving the 
nonlinear programming problcms is adapted for the solution of the OPF. 
Hydraulic modeling of systems with considerable share of hydraulic gen- 
eration is also considered. The method is very efficient as it is designed 
to exploit the special structure of the problem. 

INTRODUCTION 

The computation of active and reactive Optimal Power Flow (OPF) 
has received widespread attention in the last decade [1]-[16]. It is of 
currcnt interest to many utilities and has been identified as one of the 
most important operational needs. Real-time application in particular 
requires the computer codes to be fast and robust, high accuracy having 
less importance. In this type of problcms the choice of method lies 
bctwcen two main approaches: nonlinear and linear programming tcch- 
niques. 

Nonlinear programming techniques [1]-[7],[11]-[16],[26] have 
'ken used for accurate active and reactive OPF models. These methods 
had several drawbacks in the earlier applications, including slow conver-' 
gcnce, complexity, and difficulties involved in handling constraints and 
in adapting to different problems. These problems have been addressed 
and solved to a great extent in the more recent publications. 

The LP method has been reported to be reliable and fast in solving 
linearized OPF models [8]-[10],[12]. It is very convenient for handling 
thc constraints. But on the other hand, i t  produces solutions that arc at 
the comers of the linearized feasible region while the nonlinear objective 
could lie anywhere within thc feasible region. An important drawback is 
that LP allows only for a lincar objective function. Oscillatory bchavior 
may also occur if the LP is iterated without good linearization of the con- 
,straints. 

The work reported in this paper focuses on the active problem even 
though it can be applied equally to the reactive power problem. It is 
based on the combination of the two methods, to take advantage of the 
strong points in one to compensate for the shortcomings of the other. 
One previous paper [ 151 was based on such an idea and it used the LP 
tcchnique to help the Generalized Reduced Gradient technique in a feasi- 
bility adjustment step. In the work presented here, Zoutendijk's feasible 
directions method [21] for solving nonlinear programming problems has 
k e n  used. In this method an incremental model using the gradient at an 
existing solution is employed. A small linear domain around this solution 
is chosen to ensure good linearization. The original constraints that bind 
in this small region are included in the incremental model. This model is 
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a sparse LP with embcdded network structure. Solution of the LP pro- 
duces a feasible improving direction. The nonlinear objective is then 
optimized along this feasible direction within the original nonlinear con- 
straints. The process is continued at the new solutions obtained until the 
problem converges. 

Several modifications have been made to avoid the general prob- 
lems in existing optimization techniques, mentioned earlier. First, to 
cxploit the speed of the LP technique, the first solution is produced using 
a linear model in which a piecewise linear approximation of the cost 
curve and linearization of the nonlinear constraints is employed. This 
will result in a near optimum solution that can be used to start the non- 
linear programming technique. Second, a branch oriented formulation of 
OPF is used as opposed to a nodal one to provide an accurate lineariza- 
tion of the problem. At least one paper [ 141 has addressed this problem 
and has given a good linearization model. Third, the sparsity and the 
embedded network structure of the constraints are exploited to speed up 
the solution technique. Fourth, the method of parallel tangents is used to 
speed up the convergence of the nonlinear technique. The procedure 
developed in this work is capable of starting from an infeasible initial 
solution. 

The hydraulic system is not normally included at the instantaneous 
OPF level. It involves time due to the water energy storage and is nor- 
mally considered in daily, weekly or seasonal optimizations [22],[23]. 
One previous work [25], in which an approximate hydraulic model is 
considered, combines the daily optimization dnd OPF. Hydraulic model- 
ing in OPF for systems with high share of hydraulic generation is essen- 
tial. The present work includes the hydraulic system in the OPF. 

Test results from the application of the proposed technique are 
prcscnted to demonstrate the capability of the solution technique. 

PROBLEM FORMULATION 

The Optimal Power Flow (OPF), as formulated in this work, has 
the following structure: 

Minimize 

The variable vector x consists of real and imaginary parts of voltages and 
currents on all network branches, longitudinal and transversal, plus the 
active generated powers (these active powers are further divided into 
components in the case of piecewise linear approximation of the thermal 
production costs). 

The branch oriented formulation of OPF when compared with the 
conventional nodal formulation has several important advantages, even 
though the size of the problem grows due to the introduction of more 
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variables. First, the representation of the system equations is simplified 
and the model becomes very sparse and has an embedded network struc- 
ture. Second, the technique becomes very efficient for constrained OPF 
problems where new constraints bind during the optimization. These 
constraints can be added in a simple manner with minimal effort and 
computational time requirement. Third, the special structure of this for- 
mulation makes it possible to apply special fast algorithms to solve the 
problem. These points are considered in the following sections. 

The Objective Function 

The objective in the active Optimal Power Flow Problem is to 
minimize the production cost of the thermal system. The production cost 
curve for a thermal plant is nonlinear and is normally approximated as a 
quadratic curve. In this work, the objective is considered differently in 
two stages. In the first stage a piecewise linear approximation of the ther- 
mal cost curves is used. This approximation connects the minimum and 
maximum production levels through the most efficient operating points 
corresponding to different number of generators in operation, as shown 
in figure 1. 

4 

P 
MIN 

Figure 1. Piecewise linear approximation of cost curve for a typical ther- 
mal unit. 

In this stage, the active power generated from a thermal plant must 
be divided into components, each corresponding to a line segment, as 
follows 

Pi = P;j + P,m 
i 

where P;  is the power production from the thermal plant i and Pi, 
represents its components corresponding to the different line segments in 
the piecewise linear approximation (the summation is over the number of 
line segments). 

The quadratic approximation, as shown in figure 1 by the dotted 
curve, is considered in the second stage. 

The Linear and Nonlinear Constraints 

The linear equality constraints (2) consist of Kirchhoff‘s voltage 
and current laws and Ohm’s law. The coefficient matrix corresponding to 
these constraints is very sparse and has an embedded network structure. 
These constraints constitute the major part of the total constraints 
involved in the problem. This is very important for the method con- 
sidered in this paper. 

The nonlinear equality constraints (3) represent the active and reac- 
tive power definitions in terms of voltages and currents. This set consti- 
tutes a very small part of the constraints. 

The nonlinear inequality constraints (4) reflect the usual opera- 
tional limits. The number of constraints involved in this set is rather 
large. But the number of binding constraints is usually very low. These 
are the only ones required to be eventually considered in the optimiza- 
tion. 

A 5-Bus Example 

In this section, the simple 5-bus system shown in figure 2 is con- 
sidered in order to present some further details of the problem formula- 
tion. 

BUS 1 LBUS 
/ B U S  5 

r ‘ , U S  4 
BUS 2 

Figure 2. A simple 5-bus system 
The linear constraints for this system consist of three different sets 

of equations. The first set contains Kirchhoff‘s current law at the five 
buses for the real and imaginary parts of the complex currents (two equa- 
tions per bus): 

D;=O, p ’ ; = O  

(the summation is over all currents incident to a node. ’ and ” represent 
the real and imaginary parts of a complex variable, respectively). 

The second set consists of Kirchhoff‘s voltage law in the seven 
loops of the system (some involving the ground) for the real and ima- 
ginary parts of the voltages (one equation per line): 

CV‘; = 0, CV”; = 0 

(the summation is over all the voltages in one loop). 

work: 
The third set consists of Ohm law for the components of the net- 

V = Z I  

where V and I are the vectors containing the complex voltages across and 
the complex currents through the network components. Z is a diagonal 
matrix containing the impedance of the components. This set will con- 
tain two equations per line and two equations per bus (for the shunt 
admittances). 

The nonlinear equality constraints consist of two sets of equations. 
The first set contains the nonlinear power equations at the load buses in 
terms of the complex voltages and currents (two equations per load bus): 

P;=Re(V;I*; )=V’;I ’ ;+V‘’ ;I” i  

The second set consists of equations representing the real power 
production at the generator buses with respect to the complex voltages 
and currents (one equation per generator bus) 

Pi =Re(V,I*i)=V’iI’i +V” i l ” i  

For the case of piecewise linear approximation, the power is 
replaced by its components: 

Pmin + Pij = Re ( Vi[*; ) 
J 

The nonlinear inequality constraints reflect the usual operational 
limits. For the simple 5-bus system, this set contains the lower and upper 
limits for the bus voltages, for the active and reactive power generations 
and the transmission line limits (two equations per load bus, four equa- 
tions per generation bus and one equation per line): 

v; ,in I vi 5 vi mm 
P; min I P;  5 P;  ,ax 
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Q i  min Q i  2 Q t  max crators are reflected on them. The dual variables corresponding to the 
flow balance at different nodes in figure 4 are the water values for the 
reservoirs during the corresponding hours and reflect the sensitivity of 
hydraulic benefits to flow changes (and the corresponding production 
changes). 

11 5 11 m a  

Tap changing and phase shifting transformers are modclcd in the 
conventional way. 

HYDRAULIC SYSTEM 

The optimal operation planning of the electric power system is nor- 
mally divided into several subproblems which are computationally 
manageable and each subproblem provides the answer to a different 
aspect of the total problem. The different subproblems are: 
1) Long-term production planning (2-3 years of optimization horizon, 

monthly discretization intervals) 
2) Seasonal production planning (yearly horizon, weekly intervals) 
3) Weekly production planning (weekly horizon, 4-6 hours intervals) 
4) Daily production planning (daily horizon, hourly intervals) 
5) Optimal power flow (instantaneous formulation) 

The hydraulic system involves time becausc of the water energy 
storage. The main economical gains from this system are at the daily or 
higher optimal scheduling levels [22],[23]. Therefore, the hydraulic pro- 
duction has been always treated as constant in the OPF. In fact this is not 
valid and the hydraulic system can have a considerable effect in a con- 
strained OPF. For example, a small change in a nearby hydraulic produc- 
tion can relax a binding transmission limit instead of a remote expensive 
thermal unit required for the same purpose. 

The solution of each production planning subproblem provides 
some of the input required at the next lower level. For example, the daily 
production planning provides the thermal unit commitment and the 
hydraulic generations for the OPF. It is shown in this section that other 
hydraulic information, such as hydraulic unit commitment and water 
values from the daily scheduling, can be used to allow variable hydraulic 
generation in OPF. 

In this work, a daily hydraulic scheduling program based on net- 
work flow algorithms [23] is used to define the hourly hydraulic produc- 
tions, dual values (water values) and the possible variation limits. The 
three plant system in figure 3 is used to demonstrate the technique. 

The first plant has 3 generators and is connected to bus 1, the 
sccond one has 2 generators and it is connected to bus 2. The third plant 
has 3 generators and it is Connected to bus 3. 

HOUR 1 HOUR 2 HOUR 3 

RES 1 

RES 2 

RES 3 

Figure 4 The network representation of the hydraulic system. 
The hydraulic unit commitments obtained at the daily level are 

assumed fixed in OPF. A marginal production variation from the values 
obtained in the daily scheduling is allowed for each plant located at a 
node of figure 4. The variation limit was chosen to be equal to one third 
of the last unit committed in each plant. This is small enough to keep the 
dual values valid. 

An increase of flow in a vertical arc in figure 4 (a generation unit 
discharge), such as rhe third arc from reservoir 1 to 2 during hour 1, is 
considered for the sake of explanation. This increase will result in mov- 
ing a certain amount a of water from reservoir 1 during hour 1 ,  with 
water value x l .  to reservoir 2 during hour 1, with water value x2 . The 
value of the water moved from an upstream reservoir to a lower one is 
decreased by: 

loss =a( R, -Rz ) 
The Corresponding gain depends on the efficiency q of the generation 
unit to produce power from the displaced water and the benefits h 
obtained from the power production: 

gain = h q a 

If this gain dominates over the corresponding loss, then such a hydraulic 
production change is beneficial in OPF. Thcrefore, hydraulic productions 
are modeled with the corresponding costs and become similar to the ther- 
mal units in the OPF solution. 

It should bc noted that this hydraulic model can be also included in 
other conventional OPFs. 

OPTIMIZATION 
t 

Figure 3. Three plants hydraulic system. 
A network formulation of this problem for a daily scheduling is 

shown in figure 4. The horizontal arcs indicate the water saved in the 
reservoirs from one hour to the next. The vertical arcs arc the discharges 
through different turbines and the efficiencies of the corresponding gen- 

The optimization consists of four stcps as shown in figure 5 .  In the 
first step, an initial solution is obtained by fixing the control variables at 
the generation buses to some predefined values and employing a standard 
power flow technique. The next three steps are performed from this ini- 
tial solution using an incremental model. These steps are discussed in the 
ncxt subsections. 
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Step One 
Power flow solution 

I 

1 

1 

Step Two 
Feasibility adjustment 

Step Three 
Optimization with piece- 
wise linear approximation 
of production cost curves 

Step Four 
Optimization with quadratic 
approximation of production 

cost curves 

Figure 5 .  Optimization flow chart 

The Incremental Model 

The nonlinear equations can be linearized around any existing solu- 
tion using Taylor's series: 

f (XI = f ( x " )  + c - Ax; . axi af 1 
' 0  

The linearization of equations (1)-(5) around an existing solution 
results in: 

Minimize 

Vf(X0) Ax ( 6 )  

A 1 Ax = b '1 (7) 

Vh(x") Ax = b '2 (8) 

Vg(Xo) AX S b '3 (9) 

AxeR (10) 

Subject to 

where R is a closed domain around the existing solution to ensure that 
the linearization errors are small. Solution of this incremental problem 
will produce a feasible improving direction. 

The R domain plays an important role in the efficiency and conver- 
gence of the optimization technique considered in this work. This 
domain can not be limited with the conventional nodal approach and this 
is the reason for the lack of any previous work in the literature in the 
application of the feasible direction optimization techniques to OPF. 

The branch oriented formulation presented above can limit the R 
domain properly and results in excellent feasible optimum directions. A 
test was performed on the effect of the reduction of variables, where part 
of the variables were eliminated by simple algebraic operations. It was 
noticed that the quality of the directions produced deteriorated from the 
feasibility and optimality points of view. 

This problem can be demonstrated by the simple example shown in 
figure 6. The power balance at bus 1 is; 

PI =pi2 +PI3 

Using the conventional nodal approach our variables are p,'s and 
v , ' ~ .  Therefore, the incremental variables to be limited are Ap,'s and 
Av,'s. Unfortunately, this can only limit variable p properly but not p 12 
and p 13. Since the later variables can vary more than desired, the lineari- 
zation will introduce greater error than anticipated. 

In the expanded branch oriented form we have: 

Re ( VI  1; ) = Re ( Vi 4 2  ) + Re ( Vi1;3 ) 

- P  
2 

P +  
1 

- P  
3 

Figure 6. A 3 bus example. 

All Vi's, 1;'s and li,'s are variable and their increments can be limited to 
produce a good feasible directions. 

Zoutendijk's Optimization Technique 

This method is a feasible direction technique for optimization of 
nonlinear programming techniques. The method is based on a successive 
linearization process that uses an incremental model to produce a feasi- 
ble improving direction. A complementary line search is then performed 
along this direction to obtain the optimum for the nonlinear objective 
without violating nonlinear constraints. This process is continued until 
the solution converges within a specified accuracy limit. The steps of the 
method are as follows: 
Step 1. Compute the gradient vector [Vfl at the existing solution [x,] 
Step 2. Find the feasible improving direction [dl by solving the LP prob- 

lem, equation (6)-(10). 
Step 3. Determine the optimal step aopr along the direction [dl by 

minimizing f (xo+a[d] )  subject to feasibility of all constraints 
(only the nonlinear ones need to be checked). The Golden Search 
method is used in this optimization together with a feasibility 
check subroutine. The criterion is to find aopr so that none of the 
constraints is violated. Therefore, the values of a that violate a 
constraint are discarded. 

Step 4. x,,,, = ~ , , ~ ~ , [ d ] :  if the convergeilce criterion is not satisfied go 
to step 1. 

The method of parallel tangents is employed to prevent zig- 
zagging. This method performs an extra line search in the direction con- 
structed by every second solution point. This can be simply demon- 
stratcd on figure 8. The slow convergence apparent on this figure is due 
to the poor directions from solution point 1 to 2, from solution point 2 to 
3, etc. The zig-zagging caused by the poor direction can be eliminated by 
performing a line search in the direction constructed by connecting every 
second solutions. For example, if a line search is performed in the direc- 
tion obtained from connecting solution point 1 to 3 (as shown by the dot- 
ted line in figure 7), the zig-zagging is eliminated. This is obvious from 
the figure. The extra line search is very economical and requires very low 
CPU time compared to the LP solutions. 

Feasible Optimal Directions 

A sparse linear programming technique (191 is used to solve the 
incremental model, equations (@-(IO), which is simplified in this section 
as follows: 

Minimize 

C A X  

Subject to 

A A x = b  

& E R  
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Figure 7. Illustration of the convergence propertics of the mcthod 

Several important points are considered to reduce the CPU time 
required in the phase I of this LP which constitutes a major part of the 
computation time. The phase I of standard LP starts with an all artificial 
initial solution. This means that one artificial variable per constraint is 
added to the LP problem: 

A Axx+s=b 

where vector s contains the artificial variable that constitutes the first 
basic solution. During the phase I process all the variables in s are elim- 
inated to produce a feasible solution for the phase I1 of LP. 

The first point that can be considered to reduce the CPU time 
required for phase I is the fact that thc right hand side vector, b in equa- 
tion (12), consists of mainly zcro elcrr.ents (90%) for the OPF. Therefore, 
an initial solution such as 

Ax = O  

will be feasible for most of the constraints in the problem. Thus, the 
artificial variables are only required for a few of the constraints in the 
problcm. This reduces the CPU time of phase I to 40-60% of an all 
artificial start. 

A second point is that the LP basis from each iteration of 
Zoutcndijk’s optimization mcthod can be used as the starting basis for 
the next one. The old basis would be feasible for most of the constraints 
(95%). Artificial variables can be used for the constraints that are not 
feasible. This reduces the CPU time of the later iterations to 10% of an 
all artificial start in the first itcration. 

The new binding constraints can be added to thc previous basis by 
simply cxpanding the basis [24] and adding one artificial variable per 
new constraints. This procedure requircs a very low CPU timc. 

Thc poinls considcrcd above reduce the CPU time requirerncnt of 
thc later iterations in Zoutendijk’s optimization technique to a very small 
fraction of the first iteration. The CPU time of the first iteration is also 
rcduced as compared to a standard all artificial start. 

The basis for the Linear Programming problem produced by linear- 

ization in each step is very sparse. Thus sparse matrix techniques can be 
used to reduce the storage requirement for the basis matrix. The method 
of J. K. Reid [19] for handling sparse linear programming basis has been 
used in this work. 

The LP basis has also an embedded network structure. About 45% 
of the constraints in this LP problem have a network structure. The above 
mentioned sparsity techniques have been extended to consider the net- 
work structure of the constraints in the problem. The basic idea used in 
this cxtcnsion is that the coefficient matrix A corresponding to a problem 
that has a network structure is actually an incidence matrix. The basis 
corresponding to this matrix can be triangularized by proper permuta- 
tions (row column interchanges). Therefore, the operations for the part of 
matrix with network structure can be simplified with a considerable 
reduction of computing time. 

Other methods, such as dual LP and network flow bascd tech- 
niques, have been examined for solving the incremental model. The main 
problem with the dual LP technique is that the benefits arising from the 
embedded network structure are lost. Partitioning and decomposition 
methods have also been examined for exploiting the embcddcd network 
structure of the incremental model. The problem encountered in the par- 
titioning method is that the LP basis from one iteration is not feasible for 
the next one and causes considerable CPU increases in applying this 
tcchnique. The decomposition technique on the other hand has slow con- 
vcrgcnce and can basically be used when the constraints with network 
structure constitute a major portion of the total set of constraints. 

Feasibility Adjustment 

The standard power flow techniques can not consider some system 
limits, e.g. transmission line limits. Therefore the solution obtained in 
the first step might not be feasible. These infcasibilities are minimized in 
the second step. 

Consider a line flow limit that is violated: 

I > Im, (14) 

In order to make this constraint feasible, a feasibility slack variable 
S can bc added as follows: 

I - s  =Imm (15) 
where 

s = I - I , ,  

If the minimization of thc variable S is set to be the objective of the 
LP incremental model, then the objective should be equal to zero for a 
feasible solution: 

s = o  (17) 
and 

I =Imm 

Equation (15) is originally nonlinear, therefore it is linearized in 
the LP incremental model. Consequently, equation (18) might only be 
feasible in the linearized form. Of course, in such a case the infeasibili- 
tics of the nonlinear constraints are reduced, but not to zero. In the com- 
plementary line search the original nonlinear equation is considered and 
its infeasibility is further reduced. This procedure is repeated until feasi- 
bility is obtained. Normally one iteration is required in this step. Since a 
new itcration requires a low CPU time compared to the first one, it is not 
a problcm to have a few iterations in this step. 

Optimization of Objective 

The optimization of objective as shown is figure 5, is performed in 
two stages. In the first stage, the optimization is achieved using the 
picccwise linear approximation of thc thermal production curves. This 
stage does not normally involve a complementary line search due to the 
f x t  that the objective is linear. But new linearizations arc required until 
convergcnce is obtained. This step normally requires 2-3 iterations. A 
near optimum solution is obtained in this stage. 

In thc second stage, the nonlinear objcctive with quadratic approxi- 
mation of production costs for the thermal plants is used to obtain further 
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improvements. The incremental model is employed to produce a feasible 
improving direction. A complementary line search is then performed to 
fmd the nonlinear optimum along this direction with respect to the non- 
linear constraints. This procedure is repeated until convergence within a 
specified accuracy limit is obtained. 

The method applied in this second stage requires 5 to 10 iterations 
and is very efficient from a near optimum solution such as the one 
obtained in the first stage optimization. 

~ 

CPU LPsize 
time No. of basic 

seconds variables 

Optimization Flow Chart 

Solve the incremental model 
for improving direction and 

perform line search 

I 

The optimization Row chart is shown in figure 8. In the first step a 
power Row solution is obtained by fixing the control variables at the gen- 
eration buses to some predefined values. The problem is then linearized 
around this solution. If any of the system limits are violated the feasibil- 
ity procedure is started. In this procedure the objective is to minimize the 
infeasibilities of the current solution subject to the equality and binding 
inequality constraints. Zoutendijk’s technique as described earlier (in 
four steps with the extra line search) is applied. The line search domain 
in this technique stretches as far as possible with no new constraints 
being violated. If the infeasibilities are not reduced to zero, the problem 
is linearized around the new solution and the procedure is repeated until 
feasibility is obtained. The new binding constraints are added to the 
active set in each iteration and the LP basis is expanded correspondingly. 

Once feasibility is obtained, the problem is linearized and the 
optimization of generation costs is performed in two stages. In the first 
stage, the piecewise linear approximation of the cost curve is used pro- 
ducing a simple LP. This stage consists of only one iteration and pro- 
duces a close optimum solution. The solution from this first stage is used 

Flow Solution 

Linearize and use the linear 

es to produce near optimum 
solution 

Linearize and use the gradi- 
ent of the nonlinear object- 
ive to produce improving 

Perform line search 

‘A& Converged 

Figure 8. The Optimization Flow Chart. 

as the starting point for the optimization of the nonlinear objective using 
Zoutendijk’s technique. This second stage optimization consists of 
several linearizations, direction calculations, and line searches. The pro- 
cedure is stopped when the desired convergence is obtained. The conver- 
gence criterion is defined on the improvements from one iteration t? the 
next. 

TEST RESULTS 

A computer program has been developed and tested. The procedure 
proved to be very efficient since it exploits the special stmcture of the 
problem. The IEEE 39 bus test system, shown in figure 9, is used in this 
section for presentation of the results. Two river systems consisting of 
seven power plants have been added to the system. The transmission 
network connections of the first river system are at nodes 10, 11 and 13 
and the second river system connections are at nodes 7,9, 12 and 17:The 
maximum plant productions in the hydraulic system varies from 1.2 to 
4.2 p.u. in a 100 MVA power base, while the maximum thermal plant 
productions which vary from 3.5 to 7.5 p.u. The system consists of 46 
branches. Table 1 summarizes some interesting results obtained on a 
VAX 8600. Phase I and I1 are compared in the first and following itera- 
tions. The standard all artificial phase I start is compared with the partial 
artificial start used in this method. The method starts from zero incre- 
ments 

h = O  

Table 1. Some test results on the 39-bus system. 

Description 

Phase I, iteration 1 1 700-1000 1 2-6 1 420-430 
(all artificial start) 

(partial artificial start) 
Phase I, iteration 1 300-600 0.5-4 420-430 

Phase 11, iteration 1 1 10-20 1 - 420-430 

Phase I, other iterations 1 20-200 1 < 1 I 420-430 

Phase 11, other iterations 10-60 420-430 

LP iterations 

An all artificial Phase I start in iteration 1 consumes a major part of 
the computation time required to solve the problem. The CPU time 
required for the first iteration is equivalent to the CPU time required by 
the following 5 to 10 iterations. This is very important in such an itera- 
tive method. 

The convergence of the proposed technique is demonstrated in 
Table 2. The costs are normalized with respect to the initial solution cost. 
The costs increase in the feasibility stage and decrease later during the 
optimization process. The number of binding inequality constraints also 
increases during the procedure. 

The total CPU time required for solving the 39-bus system is 5 to 
15 seconds depending on the operational limits considered. The total 
CPU time required for a 118 bus system, the largest system considered in 
this study, was 30-45 seconds. This system included 3 river systems 
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Figure 9. Thc 39-bus systcm. 
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Table 2. Somc test results on the convergence of 39-bus systcm 
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Stage 

Power flow 

Fcasibility 

Approx. opt. 

Nonlinear opt. 

itcr. 1 

iter. 2 

itcr. 3 

iter. 4 

iter. 5 

Total system 
cost (norm.) 

1 .o 

1.1 

0.89 

0.85 

0.83 

0.81 

0.80 

0.80 

" 

CPU time 
(seconds) 

3 .O 

0.6 

0.5 

0.8 

0.5 

0.8 

0.4 

consisting of 25 hydraulic stations 
Comparison of this method with prcvious oncs reported in the 

litcrature highlights its capability of integrating thc OPF into a system 
with strong hydraulic content. 

CONCLUSIONS 

A new formulation of Optimal Power Flow has been presented in 
this work. This formulation is branch oriented as opposed to the conven- 
tional nodal approach. The model for this formulation is very sparse and 
has an embeddcd network structure. Zoutendijk's feasible dircctions 
tcchnique was employed to solve thc nonlinear programming problem 
cxploiting the special structure of thc problem. The hydraulic units were 
modclcd to reflect their importance in a system with considerable share 
of hydraulic gcncration. 

The Zoutendijk optimization technique was further accelerated by 
taking into account the followings: 

1) The piecewise linear approximation considered in the first stage 
produces a near optimum starting point for the nonlinear optimiza- 
tion. Therefore it eliminates an excessive number of initial itera- 
tions in the nonlinear solution. 
The method of parallel tangents eliminates slow convergcnce that 
might result from zig-zagging. 
Thc LP solution for the incremental model in each iteration differs 
from the next one by only few equations. Therefore, the basic solu- 
tion obtained in one iteration is used in the next one to accelerate 
the optimization technique. 
An initial zero incremental solution is used in the phase I of itera- 
tion one to reduce the computation time. This transforms an all 
artificial start to a partial one. 
The embedded network structure of thc constraints is used to speed 
up thc basis manipulations. 
The new binding constraints which are not active at the initial solu- 
tion arc added latcr, when they bind, in a simple manner with low 
contributions to CPU time. 

2) 

3) 

4) 

5 )  

6) 

Thc specific characteristics of this work are: 

1) The method is particularly efficient for constrained OPF problems, 
sincc it can start with an active set of constraints and add the new 
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binding constraints in a simple manner so that the increase of CPU 
time is very low. 
The program can start from an infeasible initial solution. 
The hydraulic system is taken into account for a power system with 
considerable amount of hydraulic generation. 
All components of the power system and their limits can be con- 
sidered in a very simple formulation. 
The expanded branch oriented formulation used in this work makes 
it possible to produce an exact incremental model and consequently 
very good optimum feasible directions. This renders the solution 
technique very efficient. 
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