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Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of
Nanoporous Cobalt Oxide Nanorods

Guoxiu Wang,*,† Xiaoping Shen,†,‡ Josip Horvat,† Bei Wang,† Hao Liu,† David Wexler,† and
Jane Yao†

Institute for Superconducting & Electronic Materials, School of Mechanical, Materials and Mechatronics
Engineering, UniVersity of Wollongong, NSW 2522, Australia, and School of Chemistry and
Chemical Engineering, Jiangsu UniVersity, Zhenjiang 212000, China

ReceiVed: December 2, 2008; ReVised Manuscript ReceiVed: January 28, 2009

Nanoporous cobalt oxide nanorods were synthesized by a hydrothermal method. Transmission electron
microscopy analysis showed that the individual Co3O4 nanorods have a nanoporous structure, consisting of
the textured aggregations of nanocrystals. Optical properties of Co3O4 nanorods were characterized by Raman
and UV-vis spectroscopy. Magnetic property measurement shows that Co3O4 nanorods have a low Néel
transition temperature of 35 K. We observed quite significant exchange bias for nanoporous Co3O4 nanorods,
indicating the existence of magnetic coupling between the nanocrystals in Co3O4 nanorods. When applied as
electrode materials in supercapacitors, Co3O4 demonstrated a high capacitance of 280 F/g.

1. Introduction

One-dimensional (1D) nanostructures, including nanowires,
nanorods, nanotubes, and nanoribbons, have been extensively
investigated in the past few years, mainly due to their peculiar
chemical and physical properties. These 1D nanostructures have
many technological applications, ranging from as building
blocks for fabricating nanoscale electronics and photonics,1-4

molecular chemical and biological nanosensors,5,6 to energy
storage and conversion.7

Cobalt(II,III) oxide (Co3O4) with a spinel crystal structure
(Fd3m) has many functional applications, including as hetero-
geneous catalysts,8 solid-state sensors,9 electrochromic devices,10

solar energy absorbers,11 and magnetic materials.12 In particular,
1D Co3O4 nanowires and nanotubes have attracted wide interest.
Mesoporous Co3O4 nanowire arrays have been prepared by a
facile solution-based synthesis route.13 Polycrystalline Co3O4

and Au-Co3O4 nanowires have been synthesized by virus-
enabled assembly and exhibited a high lithium storage capac-
ity.14 Needlelike Co3O4 nanotubes were also prepared via a self-
supported formation process, which demonstrated high capacity
with improved cycle life and high rate capability in lithium ion
cells.15 Nanocast Co3O4 nanowires show a unidirectional
exchange anisotropy with an enhancement of the field-cooled
coercivity at low temperature.16

Herein, we report the effective synthesis of nanoporous Co3O4

nanorods by a hydrothermal method. The crystal structure,
optical, magnetic, and supercapacitance properties of Co3O4

nanotubes were examined by transmission electron microscopy
(TEM), ultraviolet-visible (UV-vis) spectroscopy, Raman
spectroscopy, magnetic measurements, and electrochemical
testing. Nanoporous Co3O4 nanorods exhibited unusual magnetic
behavior related to surface spins and a high supercapacitance
when used as an electrode material in supercapacitors.

2. Experimental Section

Materials Synthesis. All chemicals were analytical grade
reagent purchased from Sigma-Aldrich. In a typical synthesis
of Co3O4 nanorods, 1.2 g of cobalt chloride (CoCl2) and 0.06 g
of urea (CO(NH2)2) were dissolved in 20 mL of distilled water
to form homogeneous solutions, respectively. The urea solution
was then added dropwise to the CoCl2 solution with stirring.
The mixture was then transferred to a 50 mL Teflon-liner
autoclave, which was sealed and heated to 105 °C for 6 h. After
the autoclave was cooled to room temperature, the resulting pink
precipitate was separated by centrifugation, washed three times
with distilled water and ethanol, respectively, and dried in a
vacuum oven. The dried product was then sintered at 300 °C
for 3 h. The final black powders were then obtained.

Materials Characterization. The phase identity of the as-
prepared product was characterized by X-ray diffraction (XRD,
Cu KR radiation, Philips 1730 diffractometer). The morphology
and crystal structure of Co3O4 nanorods were analyzed by
transmission electron microscope (TEM, JEOL 2011) and high
resolution TEM (HRTEM). The specific surface area of the
Co3O4 nanorods was measured by the gas adsorption technique,
using a Quanta Chrome Nova 1000 Gas Sorption Analyzer based
on the Brunauer-Emmett-Teller (BET) method. The optical
properties of the Co3O4 nanorods were characterized by Raman
spectroscopy and UV-vis spectroscopy. Raman spectra of the
Co3O4 nanorods were collected with a Jobin Yvon HR800
confocal Raman system with 632.8 nm diode laser excitation
on a 300 lines/mm grating at room temperature. The band gap
of the Co3O4 nanorods was determined by UV-vis spectros-
copy, using a Shimadzu 1700 UV-vis spectrometer.

Magnetic Property Measurement. Magnetic properties of
Co3O4 nanorods were measured by using the extraction mag-
netometer in a Quantum Design Physical Properties Measure-
ment System (PPMS). The magnetic moment was measured as
a function of temperature under zero-field cooled (ZFC) and
field-cooled (FC) conditions. In ZFC measurements, the sample
was cooled from room temperature to 5 K in Earth’s field. At
5 K, a field of 1 T was applied and magnetization was recorded
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upon warming to room temperature. In FC measurements, the
sample was cooled from room temperature to 5 K in a field of
1 T. The sweep rate of the temperature was 1.5 deg/min,
resulting in no apparent temperature lag between the sample
and thermometer, and therefore no discernible difference in the
magnetic moment at high temperatures for the ZFC and FC
regimes. Measurements of magnetic hysteresis loops were
performed at 5, 100, and 200 K with fields up to 7 T. The sweep
rate of the field was 50 Oe/s.

Supercapacitance Testing. A beaker-type three-electrode cell
was fabricated utilizing Co3O4 nanorods with carbon black and
polyvinylidene difluoride (PVdF) as the working electrode.
Co3O4 nanorods (63.5 wt %), carbon black (27.0 wt %), and
PVdF binder (9.5 wt %) were ground thoroughly and dispersed
in N-methyl-2-pyrrolidinone (NMP) solvent to form a slurry.
Then the slurry was spread onto a piece of platinum foil and
maintained at 120 °C in a vacuum oven overnight. Platinum
foil and a saturated calomel reference electrode (SCE) were used
as the counter electrode and the reference electrode, respectively.
The electrochemical properties were evaluated in 2 M KOH
electrolyte at room temperature by the cyclic voltammetry (CV)
method on an Electrochemical Workstation (CHI 660C). CV
measurements were conducted over the voltage range from
-0.25 to 0.55 V at various scan rates (5, 10, 20, 50, and 100
mV s-1). Cycling tests were performed in the same voltage
range, with a scan rate of 100 mV s-1 for 1000 cycles.

3. Results and Discussion

The phase identity of the as-prepared Co3O4 nanorods was
determined by X-ray diffraction. Figure 1 shows the XRD
pattern of the Co3O4 nanorods. All diffraction lines can be
indexed to a cubic phase (SG: Fd3m), confirming the pure phase
of the product. The morphology and crystal structure of Co3O4

Figure 1. X-ray diffraction pattern of Co3O4 nanorods.

Figure 2. (a) Low magnification TEM image of Co3O4 nanorods. (b) High magnification TEM image of a single Co3O4 nanorod, showing the
porous structure. The inset is the corresponding electron diffraction pattern. (c) HRTEM image of part of a single Co3O4 nanorod, from which the
crystal size and pore size can be determined. In inset is the selected area electron diffraction pattern obtained by converge beam. (d) Lattice
resolved HRTEM image of a single Co3O4 nanocrystal.
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nanorods were analyzed by TEM and HRTEM analysis. Figure
1a shows a general low magnification bright-field TEM image
of the as-prepared Co3O4 nanorods. The lengths of nanorods
extend a few micrometers. A high magnification TEM image
of a single Co3O4 nanorod is shown in Figure 1b, from which
the diameter of the nanorods was determined to be about 400
nm. It is clearly visible that the Co3O4 nanorod is polycrystalline
and has a nanoporous structure. The porous Co3O4 nanorods
could be formed via two steps. In the first step, the nanorods of
the intermediate product CoII(OH)a(CO3)bCl(2-a-2b) ·nH2O was
formed in the hrdrothermal process. In the second step, those
precursors were converted into porous Co3O4 nanorods in the
calcination process. As revealed by Zou et al.,17 the crystal
structure of CoII(OH)a(CO3)bCl(2-a-2b) ·nH2O includes Co-OH
layers and counteranions between the Co-OH layers. During
the sintering process, the Co-OH layers are converted into
cobalt oxide nanoparticles through the dehydration and pyrolysis
of counteranions into gases (such as CO2 and HCl). The spaces
of the -OH and counterions are converted into nanopores.
Selected area electron diffraction (SAED) was performed on
the nanorods, and the SAED pattern is shown as the inset in
Figure 2b. The diffraction rings can be fully indexed to the cubic
Co3O4 crystal structure. Figure 2c shows a high resolution TEM
image of part of a Co3O4 nanorod. The individual nanocrystals
have a shape resembling elongated elipses, with a size in the
range of 20-30 nm. We can also identify that the pore sizes
are in the range of a few nanometers. We performed the SAED
on the region shown in Figure 2c along the [001] zone axis. A
spot SAED pattern was obtained and is shown as the inset in
Figure 2c, indicating that the Co3O4 nanocrystals grew along
one direction and aggregated into a porous structure. The lattice
resolved HRTEM image of part of a Co3O4 nanocrystal is shown
in Figure 2d. The interplanar spacing was measured to be 0.285
nm, corresponding to the (220) crystal planes. The specific
surface area of the Co3O4 nanorods was measured to be 232
m2 g-1 (BET area), which is much higher than that of the
commercial microcrystalline Co3O4 powders (7 m2 g-1).

The optical properties of the Co3O4 nanorods were character-
ized by Raman spectroscopy and UV-vis spectroscopy. Figure
3 shows the Raman spectrum of the Co3O4 nanorods. Five
distinguishable Raman peaks are located at 194, 475, 516, 613,
and 680 cm-1, respectively. They correspond to 3 F2 g, 1 Eg,
and 1 A1 g Raman active modes of the Co3O4 nanocrystals, as
labeled in Figure 3. The phonon symmetries of the Raman peaks
are caused by the lattice vibrations of the spinel structure, in
which Co2+ and Co3+ cations are situated at tetrahedral and
octahedral sites in the cubic lattice. The frequencies of all the

Raman peaks of Co3O4 nanorods are similar to theose standard
microcrystalline Co3O4 powders.18

Co3O4 is a p-type semiconductor. The optical band gap of
Co3O4 is strongly influenced by the size, shape, and dimensions
of materials. Figure 4a shows the UV-vis absorbance spectrum
of the Co3O4 nanorods. The band gap Eg can be calculated from
the equation:

where R is the absorption coefficient, hν is the photon energy,
B is a constant characteristic to the material, and n equals either
1/2 for an indirect transition, or 2 for a direct transition. The
(Rhν)2 versus hν curve is shown in Figure 4b. The value of hν
extrapolated to R ) 0 gives the absorption band gap energy.
The curve in Figure 4b can be linearly fitted into 2 lines with
the intercepts at 1.28 and 2.34 eV, respectively. The band gap
of 2.34 eV should be associated with the O2- f Co2+ charge
transfer process (valence to conduction band excitation), while
the band gap of 1.28 eV can be assigned to O2-f Co3+ charge
transfer (with the Co3+ level located below the conduction band).
The best fit of eq 1 gives n ) 2, suggesting that the obtained
Co3O4 nanorods are semiconducting with a direct transition.19,20

The magnetic response of the Co3O4 nanorods should be the
result of the complex interaction between the individual Co3O4

nanocrystals and the collective magnetic properties of the

Figure 3. Room temperature Raman spectrum of Co3O4 nanorods.

Figure 4. (a) UV-vis absorbance spectrum of Co3O4 nanorods. (b)
Optical band gap energy of Co3O4 nanorods obtained by extrapolation
to R ) 0.

(Rhν)n ) B(hν - Eg) (1)
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nanorods. The influence of the shape anisotropy of the nanorods
can be excluded because the sample powders consist of
randomly oriented Co3O4 nanorods. The temperature dependence
of the magnetic moment of the Co3O4 nanorods is shown in
Figure 5, the data for which were collected under ZFC and FC
conditions. The ZFC and FC points overlap above 35 K,
showing a paramagnetic response. The inset in Figure 5 shows
more details of ZFC and FC measurements below 100 K. There
is a cusp at T ) 35 K for both ZFC and FC magnetization,
which corresponds to the Néel transition. The ZFC and FC
magnetic measurements were also performed with the field of
H ) 300 Oe. The results of the cusp at 35 K and a difference
between ZFC and FC measurements below 35 K are qualita-
tively the same as those for H ) 1 T. We interpret this cusp as
an antiferromagnetic transition for Co3O4 nanorods at 35 K. ZFC
and FC magnetic moments show no overlap below 35 K, and
there also exists an increase of magnetic moment with decrease
of temperature for FC measurement below 10 K.

Because Co3O4 nanorods consist of nanocrystals with a size
of about 30 nm, which are ordered into a porous nanorod shape,
there is the possibility that there are unpaired spins near the
surface of the nanocrystals which do not have an antiferromag-
netically coupled counterpart. This would result in a substantial
nonzero magnetic moment of the sample, because the surface-
to-volume ratio of nanocrystals is much larger than that for
macroscopic particles. When magnetic field is applied, these
unpaired spins would contribute to a substantial magnetic
moment of the sample. Their alignment would be disturbed by
thermal excitations, resulting in an increase in the magnetic
moment with decreasing temperature. However, unpaired spins
would be frozen-in at low temperature in the direction of the
magnetic field, giving an almost constant magnetic moment at
low temperatures in the FC regime. This result was obtained
by Salabas et al. for Co3O4 nanowires with a diameter of 8 nm.16

Salabas et al. obtained an increase in the magnetic moment when
they cooled their samples through the freezing temperature of
30 K, followed by an almost constant moment at lower
temperature in the FC regime. Nethravathi et al. reported a
strong increase in the magnetic moment with cooling below 20
K for ZFC and FC measurements in low (50 Oe) and high (5000
Oe) fields on Co3O4 nanoparticles with a size of 35 nm.21 This
was explained by a strong interaction between the agglomerated

nanocrystals. Our results differ from these in that our FC
measurements exhibit a cusp similar to the one for ZFC
measurements and show no constant magnetic moment at low
temperatures. However, they do not show any evidence of a
spin-freezing type of behavior in FC measurements. Therefore,
the dominant process in our ZFC and FC measurements could
be the antiferromagnetic ordering of Co2+ ions.

The obtained value of the Néel temperature, TN, is below the
Néel temperature of 40 K for macroscopic Co3O4 crystals.22,23

This lowering of TN is due to the geometric confinement effect
on the magnetic ordering, which has been shown to reduce the
ordering temperature by24

where TN0, �0, λ, and d are the Néel temperature for an infinite
crystal, the correlation length of the magnetic ordering, the shift
exponent, and the size of the nanoparticle, respectively. Values
of λ ) 1.1 and �0 ) 2.8 nm were reported for Co3O4

nanoparticles.25 Because ΔTN for our sample is 5 K, the size of
the particles is expected to be d ) 27 nm. This is in good
agreement with the size of nanocrystals in our nanorods
observed from TEM analysis (Figure 2). Our ZFC and FC
measurements are in good agreement with the results presented
in ref 24, including the increase in the moment with decreasing
temperature for T < 10 K.

Figure 6 shows the magnetization dependence on the applied
magnetic field (hystersis loops) recorded at T ) 5, 100, and
200 K. The inset in Figure 6 shows magnetic hysteresis loops
up to 7 T. There is no apparent hysteresis visible. However,
zooming-in around zero field reveals several effects. There are
small hysteresis loops for all temperatures and the coercive field
decreases with temperature. While all hysteresis loops at T >
35 K are centered on H ) 0, those for T < 35 are shifted to
lower values of H. The coercive field at 5 K is 250 Oe and the
center of the loop is at H ) -530 Oe. This loop was measured
after field cooling through TN in a field of 1 T. The coercive
fields for hysteresis loops at 100 and 200 K, centered at H ) 0,
are 140 and 90 Oe, respectively. This is consistent with the
existence of unpaired spins on the surface of the nanocrystals.
Below TN, there is an exchange bias interaction between
ferromagnet-like coupled surface spins and underlying antifer-

Figure 5. Temperature dependence of zero-field-cooled (ZFC) and
field-cooled (FC) magnetic moment of Co3O4 nanorods, measured in
the field of 1 T. Inset: Details below 100 K, showing Néel temperature
of 35 K.

Figure 6. Magnetic hysteresis loops of Co3O4 nanorods measured at
5, 100, and 200 K. The main figure shows the details around zero field
for the hysteresis loops measured at 5 (solid line) and 100 K (dashed
line).

ΔTN ) TN0(�0

d )λ

(2)
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romagnetically coupled spins, resulting in a shift of the hysteresis
loop to negative H.

Exchange bias was also reported for Co3O4 nanocast nanow-
ires consisting of nanocrystals of 8 nm.16 Our measurements
also support the assumption that the surface spins exhibit a spin-
glass-like behavior, resulting in open hysteresis loops at high
fields. Therefore, our results for the nanorods made up of ∼30
nm nanocrystals are in agreement with the exchange coupling
and spin-glass-type behavior also observed in nanowires con-
sisting of 8 nm nanocrystals.16 This indicates that there is
magnetic interaction between the nanocrystals in the nanorods.

However, the results of our ZFC and FC measurements are
also quite different than those of the nanocast nanowires, lacking
any evidence for spin freezing. Instead, our ZFC and FC
measurements closely resemble the ones obtained for nanopar-
ticles between 16 and 75 nm in diameter.23 Our nanorods were
too large to exhibit superparamagnetism, as was observed for
Co3O4 nanoparticles 3 nm in diameter.26 Coupling between the
nanocrystals in the nanorods would also impede superparamag-
netic behavior. Therefore, our samples fall in between those
that exhibit strong interaction between the nanocrystals, resulting
in suppression of superparamagnetism and a ferromagnetic-like
spin glass and those that exhibit no coupling between nanopar-
ticles, resulting in the absence of exchange bias.27

Supercapacitance of the Co3O4 nanorod electrode was mea-
sured via cyclic voltammetry (CV). Figure 7 shows the CV
curves at various sweep rates. All CV profiles have similar
shapes with reduction and oxidation peaks rather than ideally
rectangular shapes. This indicates that the capacitance obtained
was not pure double layer capacitance, but mainly originated
from faradaic pseudocapacitance. The maximum specific ca-
pacitance of 281 F g-1 was obtained at a 5 mV s-1 scan rate in
2 M KOH solution. As a comparison, commercial microcrys-
talline Co3O4 powders were also tested through the same
procedures, giving a maximum specific capacitance value of
43 F g-1. The high supercapacitance of Co3O4 nanorods could
be attributed to the nanoporous structure of nanorods with high
specific surface area.

4. Conclusions

Nanoporous Co3O4 nanorods can be effectively synthesized
in large quantity through the hydrothermal method. TEM and
HRTEM analysis indicated the individual Co3O4 nanorods
consist of aggregated nanocrystals with a nanoporous structure.
The nanoporous Co3O4 nanorods exhibited a low Néel temper-
ature of 35 K. Quite significant exchange bias was observed
for nanoporous Co3O4 nanorods, shifting the magnetic hysteresis
loops by -530 Oe at 5 K. The presence of exchange bias
indicates the existence of magnetic coupling between the
nanocrystals in Co3O4 nanorods. Due to the large specific surface
area induced by the nanoporous structure, Co3O4 nanorods
demonstrated a high supercapacitance of 281 F g-1.
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Figure 7. Cyclic voltammograms of Co3O4 nanorods as electrode
material for supercapacitor application at different scanning rates, from
which the capacitance can be calculated.

Nanoporous Cobalt Oxide Nanorods J. Phys. Chem. C, Vol. 113, No. 11, 2009 4361


	Hydrothermal synthesis and optical, magnetic and supercapacitance properties of nanoporous cobalt oxide nanorodes
	Recommended Citation
	Authors

	Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods

