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Hydroxyethyl cellulose matrix 
applied to serial crystallography
Michihiro Sugahara1, Takanori Nakane  2, Tetsuya Masuda1,3, Mamoru Suzuki1,4, Shigeyuki 

Inoue1,5, Changyong Song6, Rie Tanaka1, Toru Nakatsu7, Eiichi Mizohata8, Fumiaki Yumoto9, 

Kensuke Tono10, Yasumasa Joti10, Takashi Kameshima10, Takaki Hatsui1, Makina Yabashi  1, 

Osamu Nureki2, Keiji Numata11, Eriko Nango1 & So Iwata1,12

Serial femtosecond crystallography (SFX) allows structures of proteins to be determined at room 

temperature with minimal radiation damage. A highly viscous matrix acts as a crystal carrier for serial 

sample loading at a low flow rate that enables the determination of the structure, while requiring 
consumption of less than 1 mg of the sample. However, a reliable and versatile carrier matrix for a wide 
variety of protein samples is still elusive. Here we introduce a hydroxyethyl cellulose-matrix carrier, to 

determine the structure of three proteins. The de novo structure determination of proteinase K from 

single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of the praseodymium 
atom was demonstrated using 3,000 diffraction images.

Serial femtosecond crystallography (SFX) using ultrashort pulses from X-ray free-electron lasers (XFELs) can 
overcome typical radiation damage to protein crystals via the “di�raction-before-destruction” approach1–7. �is 
has been used to obtain crystal structures of interesting proteins at room temperature8–18. Liquid jet injection 
of small protein crystals with continuous �ow at relatively high speed (~10 m sec−1) is frequently exploited for 
serial sample loading19, consuming 10~100 mg of the sample. To reduce sample consumption, micro-extrusion 
techniques of specimens using viscous media such as a lipidic cubic phase (LCP)20, grease21, Vaseline (petro-
leum jelly)22 and agarose23 have been developed. �ese media can maintain a stable stream at a lower �ow rate 
of 0.02~0.5 µl min−1 allowing sample consumption of less than ~1 mg. More recently, synchrotron-based serial 
crystallography has also been developed22, 24, 25, demonstrating that the sample loading technique with a viscous 
media becomes even more important in serial crystallography. �is method with viscous media is technically 
simple, but some media produce stronger X-ray scattering that increase background noise. For data collection 
from small crystals (~1 µm), at atomic resolution, and de novo phasing with weak anomalous signals, a crystal 
carrier with low background scattering is essential to improve the signal-to-noise ratio23. To reduce background 
scattering from the carrier media, we introduced a hyaluronic acid matrix in SFX26. At the SPring-8 Angstrom 
Compact Free Electron Laser (SACLA)27, we operate an injector system under a helium atmosphere at 1 atm dur-
ing micro-extrusion of the matrices28. However, hyaluronic acid matrix is strongly adhesive, resulting in frequent 
clogging of the sample-vacuum nozzle which acts as a sample catcher22 in our injector system. In addition, the 
general adaptability of hydrogel matrices to de novo phasing with heavy atoms is still unclear.
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Here we introduce hydroxyethyl cellulose (cellulose matrix) for serial sample loading. We demonstrate the 
cellulose matrix as a protein carrier for SFX using small and large sized crystals (1 × 1 × 1 to 20 × 20 × 30 µm). 
In addition, we demonstrate the successful de novo phasing in SFX by applying praseodymium (Pr)-SAD, 
single-isomorphous replacement (SIR) and SIR with anomalous scattering (SIRAS) phasing to determine the 
structure of proteinase K. Furthermore, to reduce background scattering, a novel grease matrix, Super Lube 
nuclear grade grease (nuclear grease), was introduced in this study.

Results and Discussion
Crystal structures for lysozyme and thaumatin. We performed SFX experiments using femtosecond 
X-ray pulses from SACLA. Using lysozyme (1 × 1 × 1 µm) and thaumatin (2 × 2 × 4 µm) crystals (Supplementary 
Fig. 1a,b) dispersed in a cellulose matrix, we were able to collect 100,000–150,000 images in approximately 60–80 
min at a wavelength of 1.24 Å (Table 1). At a �ow rate of 0.43 and 0.47 µl min−1, a total sample volume of about 
30–40 µl was used with a crystal number density of 5.8 × 108 crystals ml−1 for lysozyme, and 4.3 × 108 crystals 
ml−1 for thaumatin. We indexed and integrated 30,000–40,000 images for both the lysozyme (space group P43212) 
and thaumatin (space group P41212) crystals. �e lysozyme and thaumatin crystals yielded data sets at 1.8-Å and 
1.55-Å resolution with a completeness of 100% and a CC1/2 of 0.992 and 0.988, respectively. We determined and 
re�ned the crystal structures of lysozyme [Protein Data Bank (PDB) ID: 5wr9] and thaumatin (PDB ID: 5wr8) at 
1.8-Å and 1.55-Å resolution (Fig. 1a,b), respectively. For the larger lysozyme crystals of the size 20 × 20 × 30 µm, 
the X-ray wavelength was kept at 0.95 Å. �e microcrystals were used to acquire data sets at 1.45-Å resolution 
with a completeness of 100% and a CC1/2 of 0.995 (PDB ID: 5wra, Table 1).

In this study, 16% (w/v) and 22% (w/v) cellulose matrices were used for the small sized lysozyme (1 × 1 × 1 µm) 
and thaumatin (2 × 2 × 4 µm) crystals, respectively. �e cellulose matrix with randomly oriented crystals was 
extruded through an injector nozzle with an inner diameter (i.d.) of 50 µm. On the other hand, for the larger 
lysozyme crystals (20 × 20 × 30 µm), an 11% (w/v) cellulose matrix was extruded through a 130-µm-i.d. noz-
zle. �e cellulose matrix formed a stable �ow for all protein samples (an example: Supplementary Fig. 2a). �e 
matrix at low cellulose concentrations (less than ~5%) cannot be extruded from our injector system as a con-
tinuous sample column. On the other hand, a matrix at a cellulose concentration (~30%) becomes too hard for 
micro-extrusion. �e cellulose concentration therefore was preferably ~10–20%. �e sample preparation in our 
technique can be performed by simply mixing with matrix medium. Although the medium mixing technique 
using a syringe coupler may prevent crystal dehydration23, 29, the technique could cause mechanical damage to 
brittle crystals by physical contact between the crystals and the coupler interior surface, resulting in a deteriora-
tion of di�raction quality. In such cases, a simple, quick mixing with a spatula on a glass slide21 would be better 
to preserve the crystals. �e cellulose matrix has lower background scattering (Supplementary Fig. 3a) compared 
to the conventional grease matrix, the synthetic grease Super Lube (Supplementary Fig. 3b) generated di�use 
scatterings in the resolution range of 4–5 Å, and LCP14 (Fig. 2), while the cellulose matrix gives a slightly higher 
background scattering in the resolution range of ~3.5–2.5 Å. �ere were no signi�cant di�erences between cel-
lulose and hyaluronic acid matrices26, suggesting that polysaccharide hydrogels tend to have lower background 
scattering. However, the cellulose matrix is less adhesive than the hyaluronic acid matrix and prevents clogging of 
the sample-vacuum nozzle as a sample catcher22 (Supplementary Fig. 2) and adhesion of the matrix to the injector 
nozzle surface in our injector system. In addition, hyaluronic acid is more expensive compared to hydroxyethyl 
cellulose, up to ~1,000 times the price per gram. Hydrogels, LCP and Vaseline can be extruded as a continuous 
column with an approximately same diameter as a 50-µm-i.d. (or less) injector nozzle size. On the other hand, 
grease matrix tends to produce a column larger than the nozzle i.d. A sample column with a smaller diameter 
(~50 µm) contributes to the reduction of sample consumption and background scattering from the matrix26. A 
matrix with low background scattering is important to collect a high-resolution data set from ~1 µm (or less) 
crystals.

De novo phasing. Crystallographic phasing for routine structure determination remains a challenge in SFX. 
In this study, using the cellulose matrix, we attempted the de novo phasing of proteinase K. We collected ~180,000 
images from the microcrystals (size 4 × 4 × 4–5 × 5 × 7 µm) of Pr-derivatized proteinase K (Supplementary 
Fig. 1c) at a wavelength of 1.24 Å (Table 1). We successfully indexed and integrated approximately 31,000 images 
in space group P43212. �e dataset extended to 1.5-Å resolution with a completeness of 100% and a CC1/2 of 
0.990. �e overall <I/σ(I)> of the merged observations was 10.2. Substructure determination and phasing were 
performed by SHELXD and SHELXE30. We succeeded in locating two Pr ions in the asymmetric unit and could 
solve the substructure at 2.0-Å resolution, but not at 2.2-Å resolution. �e two Pr-binding sites were identical 
to those of the calcium ions in the native structure (Fig. 3), indicating that the two calcium atoms were replaced 
by the Pr atoms31. �e coordinates of the heavy atoms were employed for both the re�nement and the phase 
calculation at 1.8-Å resolution in SHEXLE. A polyalanine model of proteinase K was automatically traced by 
SHELXE. Subsequently, 99% (277 of 279 residues) of the structure was automatically modelled with side chains 
by Buccaneer32. Finally, we re�ned the structure at 1.5-Å resolution to an R/Rfree of 17.6/19.3% (PDB ID: 5wrc). 
�e expected magnitude of the anomalous signal (<|∆Fano|>/<|F|>) is ~4.8% at 10 keV based on the formula in 
Hendrickson & Teeter33 and Dauter et al.34.

We found that 3,000 indexed images were su�cient for SAD phasing of proteinase K crystals. In this phas-
ing, we used the �rst 3,000 of 30,930 indexed images, without deliberate selection of the best images. SHELXD 
located only one Pr atom in the asymmetric unit, when 3,000 indexed images were used. A polyalanine model 
from SHELXE at 1.7-Å resolution was completed in Buccaneer. We obtained 99% of the complete model. �e �nal 
anomalous di�erence Fourier maps using 3,000 images in Fig. 3 display signi�cant anomalous peak heights (17.1 
and 11.2σ, obtained from ANODE35) of the two Pr atoms.
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Protein Lysozyme �aumatin

Carrier 16% cellulose 11% cellulose Nuclear grease 22% cellulose

Crystal density (crystals/ml) 5.8 × 108 1.7 × 107 2.4 × 108 4.3 × 108

Crystal size (µm) 1 × 1 × 1 20 × 20 × 30 5 × 5 × 5 2 × 2 × 4

Nozzle size (µm) 50 130 100 50

Flow rate (µl/min) 0.43 0.75 0.42 0.47

Data collection

wavelength (Å) 1.24 0.95 1.77 1.24

Space group P43212 P43212 P43212 P41212

Unit-cell parameter

a = b (Å) 80.0 79.6 79.6 58.5

c (Å) 38.4 38.3 38.2 151.6

Number of collected images 149,938 107,856 105,769 101,383

Number of hits 41,575 58,321 30,929 55,751

Number of indexed images 29,593 40,787 19,271 43,350

Indexing rate from hits (%) 71.2 69.9 62.3 77.8

Number of merged images 29,593 40,787 19,271 43,350

Number of total re�ections 4,823,284 21,187,517 3,440,102 24,822,961

Number of unique re�ections 12,068 22,415 8,750 38,328

Resolution range (Å) 30–1.8 (1.86–1.80) 30–1.45 (1.50–1.45) 30–2.0 (2.07–2.00) 30–1.55 (1.60–1.55)

Completeness (%) 100 (100) 100 (100) 100 (100) 100 (100)

Multiplicity 399.7 (283.0) 945.2 (677.3) 393.2 (81.9) 647.6 (668.5)

Rsplit (%)† 7.1 (51.0) 5.1 (50.4) 8.0 (53.0) 8.6 (33.4)

CC1/2 0.992 (0.764) 0.995 (0.735) 0.988 (0.654) 0.988 (0.760)

<I/σ(I)> 10.2 (2.2) 13.4 (2.2) 10.5 (2.0) 7.7 (2.0)

Total amounts of protein used (mg) 0.7 0.9 0.5 0.5

Re�nement

R/Rfree (%) 17.5/18.4 18.1/19.6 18.1/20.2 12.7/15.1

R.m.s. deviations

Bond lengths (Å) 0.008 0.007 0.008 0.006

Bond angles (°) 1.059 1.071 1.070 0.984

PDB code 5wr9 5wra 5wrb 5wr8

Protein proteinase K

Carrier 16% cellulose (Pr) 16% cellulose (native)

Crystal density (crystals/ml) 9.3 × 107 4.9 × 107

Crystal size (µm) 4 × 4 × 4–5 × 5 × 7 8 × 8 × 8–12 × 12 × 12

Nozzle size (µm) 50 110

Flow rate (µl/min) 0.47 0.38

Data collection

wavelength (Å) 1.24 0.95

Space group P43212 P43212

Unit-cell parameter

a = b (Å) 68.6 68.3

c (Å) 108.8 108.4

Number of collected images 180,000 145,000

Number of hits 40,503 59,246

Number of indexed images 30,930 47,503

Indexing rate from hits (%) 76.4 80.1

Number of merged images 30,000 3,000 1,000 32,000 1,000

Number of total re�ections 16,961,902 1,540,467 520,503 18,624,772 545,845

Number of unique re�ections 42,391 42,386 42,060 42,385 42,273

Resolution range (Å) 32.7–1.50 (1.53–1.50) 27.2–1.50 (1.53–1.50)

Completeness (%) 100 (100) 100 (99.9) 99.2 (93.3) 100 (100) 99.7 (99.6)

Multiplicity 400.1 (151.3) 36.3 (13.4) 12.4 (4.8) 439.4 (312.0) 12.9 (9.1)

Rsplit (%)† 7.8 (44.5) 24.4 (99.7) 43.1 (120.8) 7.1 (40.9) 41.4 (189.7)

CC1/2 0.990 (0.776) 0.896 (0.389) 0.713 (0.272) 0.992 (0.810) 0.761 (0.124)

<I/σ(I)> 10.2 (2.3) 3.7 (1.3) 2.5 (1.5) 10.9 (2.8) 2.3 (0.9)

Total amounts of protein used (mg) 0.9 0.09 0.03 0.4 0.01

Re�nement

R/Rfree (%) 17.6/19.3

R.m.s. deviations

Bond lengths (Å) 0.009

Bond angles (°) 1.004

PDB code 5wrc

Table 1. Crystallographic statistics. Values in parentheses are for the outermost shell. † =
∑ −

∑ +
R 1/ 2s

I I

I Iplit 1 / 2
hkl even odd

hkl even odd

.
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Next, we employed single-isomorphous replacement (SIR) and SIR with anomalous scattering (SIRAS) for 
phasing. We obtained a data set (32,000 indexed images) from native crystals of proteinase K at a wavelength 
0.95 Å36, at a di�erent beam time using di�erent crystallization batches, at 1.5-Å resolution with a completeness 
of 100%, a CC1/2 of 0.992. Only 2,000 images in total (native/derivative: 1,000/1,000) were su�cient for SIR and 
SIRAS phasing of proteinase K, while SAD phasing required 3,000 images. �e CC1/2 value of the 1,000-image 
derivative dataset was only 71.3% (27.2% for 1.53–1.50 Å), while that of the full dataset was 99.0% (77.6% for 
1.53–1.50 Å) (Supplementary Fig. 4). As shown in Fig. 4, a combination of the native dataset with the derivative 
dataset boosted the peak heights in the anomalous di�erence map and allowed phasing from fewer images than 
using derivative images alone. �is is in good agreement with the result from the previously reported I-SAD 
phasing of a membrane protein bacteriorhodopsin using an iododetergent37.

In SFX, de novo phasing for heavy atom-derivatized proteions has been demonstrated16, 37–42. In addition, 
native sulfur SAD phasing was also achieved40, 43, 44. �ese results indicate that de novo phasing is now routinely 
available for SFX. Our cellulose matrix with low background scattering noise is compatible with the accurate 
measurement of weak anomalous signals essential for de novo phasing from SFX data.

A novel grease matrix with low background scattering. To reduce background scattering from con-
ventional grease matrix21, 26, we introduced a novel grease matrix, Super Lube nuclear grade approved grease 
(nuclear grease). For lysozyme crystals (5 × 5 × 5 µm), we were able to collect ~100,000 images in approximately 
1 hour at a wavelength 1.77 Å (Table 1). We indexed and integrated ~19,000 images for the lysozyme crystals. �e 
crystals yielded data sets at 2.0-Å resolution with a completeness of 100% and a CC1/2 of 0.988. We determined 
and re�ned the crystal structure of lysozyme (PDB ID: 5wrb) at 2.0-Å resolution.

Figure 1. Electron density maps of lysozyme and thaumatin. Close-up views of (a) the lysozyme structure at 
1.8-Å resolution and (b) the thaumatin structure at 1.55-Å resolution for the sample delivered in a cellulose 
matrix and (c) the lysozyme structure at 2.0-Å resolution for the sample delivered in a nuclear grease matrix 
with 2Fo – Fc electron density maps contoured at the 1.0 σ level (coloured blue). An anomalous di�erence 
Fourier map contoured at the 4.0 σ level (coloured magenta) shows the sulfur atom of Met105 in (c). �ese 
�gures were drawn with PyMol (http://www.pymol.org).

Figure 2. �e average background scattering intensities of ~2,000 images from each matrix. Super Lube 
synthetic grease, Super Lube nuclear grease, 16% (w/v) hydroxyethyl cellulose solution and LCP are depicted by 
the black, blue, green and cyan lines, respectively.
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�e conventional grease matrices (mineral-oil based AZ grease and untreated Super Lube synthetic grease 
without grinding treatment) extruded through a 110-µm-i.d. nozzle tended to produce a larger-diameter grease 
column (approximately ~210 µm) about the size of the outer diameter (o.d.) of the nozzle21, 26. On the other 
hand, the nuclear grease matrix was extruded as a continuous column with a diameter of ~100 µm through a 
100-µm-i.d. nozzle (Supplementary Fig. 2b). �e Super Lube synthetic grease tended to give a stronger di�rac-
tion ring at ~4.8-Å resolution in about 30% of all di�raction images (Fig. 2 and Supplementary Fig. 3b)26. Weaker 
background scattering was noted when using nuclear grease compared with Super Lube synthetic grease (Fig. 2 
and Supplementary Fig. 3c). In the lysozyme structure with the nuclear grease matrix, we observed a weak anom-
alous scattering signal from sulfur atoms (e.g. the sulfur atom of Met105, Fig. 1c). On the other hand, an anoma-
lous signal from the sulfur atoms in the proteinase K structure from ~20,000 indexed images was not discernible 
when using the conventional Super Lube synthetic grease matrix26. Using a wide variety of proteins, the adapt-
ability of grease matrix has been demonstrated in SFX15, 16, 18, 21, 26, 37, 39, 43, 45. �ese results suggest that grease has 

Figure 3. Electron density maps of proteinase K. (a,b) Close-up views of Pr ion binding sites with 2Fo – Fc 
electron density maps contoured at the 1.0 σ level (coloured blue). Bound Pr ions are depicted as a green sphere. 
�e anomalous di�erence Fourier maps using 3,000 images (contoured at the 6.0σ level) are shown in magenta. 
�ese �gures were drawn with PyMol (http://www.pymol.org).

Figure 4. Improvement of anomalous di�erence peak heights with the number of derivative images. �e plot of 
the sum of the anomalous peak heights from two Pr atoms. SAD, SIR and SIRAS phasing are shown in the black, 
blue and red lines, respectively. For SIR and SIRAS phasing, the number of native images were varied from 500 
to 32,000. Filled circles indicate the minimum number of derivative images necessary for each phasing method 
and number of native images.
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potential as a versatile matrix carrier, but some crystals are incompatible with the grease matrix. �e cellulose and 
hyaluronic acid matrices provide alternatives for grease-sensitive protein crystals. Grease and hydrogel crystal 
carriers are thus complementary (Table 2).

Using the cellulose matrix as a general protein carrier, we obtained the structures of soluble proteins beyond 
1.8-Å resolution at room temperature. We have successfully applied Pr-SAD, SIR and SIRAS phasing to SFX, 
using 3,000 indexed images for SAD and 2,000 images for SIR and SIRAS, demonstrating that we can accurately 
measure anomalous signals. Matrix carriers with a stable sample �ow and a small diameter sample column have 
various application in SFX experiments such as femtosecond to millisecond time-resolved studies of light-driven 
structural changes, and chemical dynamics using pump-probe techniques14, 18, 46–50.

Materials and Methods
Sample preparation. Using a 20 mg ml−1 lysozyme solution, the crystals with a size of 1 × 1 × 1 µm, 
5 × 5 × 5 µm and 20 × 20 × 30 µm were prepared following previously reported protocols21, except for the incu-
bation temperature during crystallization at 12, 17 and 26 °C for 10 min, respectively. �aumatin I was puri�ed 
from crude thaumatin powder as described previously51. �aumatin crystallization was performed using the 
batch method. Microcrystals (2 × 2 × 4 µm) were obtained by mixing in an ice bath an equal volume of the 40 
mg ml−1 protein solutions and the reservoir solution, which consisted of 20 mM N-(2-acetamido) iminodiacetic 
acid (ADA) and 2.0 M potassium sodium tartrate (pH 7.3). Proteinase K from Engyodontium album (No. P2308, 
Sigma) at a concentration of 40 mg ml−1 was crystalized by previously reported protocols26. For Pr-derivatized 
proteinase K, a 100 µl sample of the crystal solution was added to a 100 µl heavy-atom solution comprised of 50 
mM PrCl3, 0.5 M NaNO3 and 50 mM MES–NaOH (pH 6.5). �e solution was then incubated at 20 °C for 90 min. 
To determine a crystal number density of the crystal solution, we counted the number of crystals in the solution 
using a hemocytometer (OneCell, cat. no. OC-C-S02) under a Hirox digital microscope (Hirox, KH-8700). �e 
crystal number density was adjust to an approximately 107–108 crystals ml−1.

In this study, we used hydroxyethyl cellulose (mw ~250,000, No. 09368, Sigma) as the crystal carrier matrix. 
Protein microcrystals were prepared according to the following procedures. For lysozyme and proteinase K crys-
tals, a�er a 100-µl sample of storage solution was centrifuged at ~1,300–3,000 × g for 10 sec using a compact 
tabletop centrifuge, a 40-µl aliquot of supernatant solution was dispensed into 50 µl of 32% (w/v) hydroxyethyl 
cellulose aqueous solution for lysozyme (1 × 1 × 1 µm) and proteinase K, or 22% (w/v) hydroxyethyl cellulose 
aqueous solution for lysozyme (20 × 20 × 30 µm) on a glass slide and then mixed with a spatula for ~15 sec. A�er 
a 50-µl aliquot of the remaining supernatant solution was removed, a 10-µl aliquot of the crystal solution was 
dispensed into 90 µl of the hydroxyethyl cellulose solution and then mixed for ~15 sec. For thaumatin crystals, 
a�er a 100-µl sample of storage solution was centrifuged at ~1,300–3,000 × g for 10 sec using a compact tabletop 
centrifuge, a 90-µl aliquot of supernatant solution was removed. A 10-µl aliquot of the crystal solution was dis-
pensed into 90 µl of 24% (w/v) hydroxyethyl cellulose aqueous solution on a glass slide and then mixed for ~15 
sec. For the grease matrix, the lysozyme crystals (5 × 5 × 5 µm) were mixed with the Super Lube nuclear grade 
grease (No. 42150, Synco Chemical Co.) using the same procedure reported by Sugahara et al.21 �e grease was 
�ltered through 10 µm mesh (No. 06-04-0041-2314, CellTrics) before mixing with protein crystals to remove 
salt-like impurities in the grease. We performed this matrix preparation immediately before SFX experiments.

Data collection. We carried out the experiments using femtosecond X-ray pulses from SACLA27. �e X-ray 
wavelength was 0.95, 1.24 or 1.77 Å (13, 10 or 7 keV) with a pulse energy of ~200 µJ. Each X-ray pulse delivers 

Media Advantages Disadvantages References

Oil general versatility higher background 
scattering

Nuclear grade grease
lower background 
scattering among grease 
matrices

salt-like impurities in grease this study

Synthetic grease higher versatility gives a stronger di�raction 
ring at ~4.8 Å 26

Mineral-oil based grease higher versatility a larger diameter sample 
column 21

Vaseline (petroleum jelly) a smaller diameter sample 
column (~40 µm)

gives stronger di�raction 
rings at 4.2 and 3.8 Å 22

Hydrogel lower background 
scattering

damage to crystals by 
osmotic shock

Hydroxyethyl cellulose simple preparation adhesive this study

Hyaluronic acid simple preparation strongly adhesive, expensive 26

Agarose compatible with proteins
requires heat treatment at 
temperatures higher than 
85 °C as a pre-preparation

23

Other

LCP (e.g., monoolein) applicable to soluble and 
membrane proteins

higher background 
scattering, but lower than 
grease in the resolution 
range of 4–5 Å

20, 22, 23

Table 2. Crystal carrier media for serial sample loading.
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~7 × 1010 photons within a 10-fs duration (FWHM) at a wavelength of 1.77 Å (7 keV) to the matrices. Data were 
collected using focused X-ray beams of 1.5 × 1.5 µm2 by Kirkpatrick-Baez mirrors52. �e crystals in a cellulose 
or grease matrix were serially loaded using a high viscosity micro-extrusion injector system installed in a helium 
ambiance, di�raction chamber. �e experiments were carried out using a Diverse Application Platform for Hard 
X-ray Di�raction in SACLA (DAPHNIS)28 at BL353. �e microcrystals embedded in the matrix were kept at a 
temperature of approximately 20 °C in the micro-extrusion injector. �e sample chamber was kept at a tempera-
ture of ~26 °C and a humidity greater than 50%. Di�raction images were collected using a custom-built 4M pixel 
detector with multi-port CCD sensors54. �e matrix with randomly oriented crystals was extruded through injec-
tor nozzles with inner diameters (i.d.) of 50, 100, 110 or 130 µm (Table 1). Data collection was guided by realtime 
analysis by the SACLA data processing pipeline55.

Background intensity determination. �e background intensities from Super Lube synthetic grease, 
Super Lube nuclear grease and hydroxyethyl cellulose through a 100-µm-i.d. nozzle at 1.77 Å and that from 
LCP14 through a 75-µm-i.d. nozzle at 1.61 Å were determined by a procedure similar to that used in Conrad et 
al.23 Details of the calculation have been described previously26. Di�raction images for LCP were retrieved from 
CXIDB56 (http://www.cxidb.org/) #53.

Structure determination. Di�raction images were �ltered and converted by Cheetah57 adapted55 for the 
SACLA data acquisition system58. Di�raction peak positions were determined using the built-in Zae�erer algo-
rithm and passed on to DirAx59 for indexing. No sigma cuto� or saturation cuto� were applied. Measured dif-
fraction intensities were merged by process_hkl in the CrystFEL suite60 with scaling (–scale option). �e structures 
of lysozyme and thaumatin were determined by di�erence Fourier synthesis using search models (PDB: 3WUL 
for lysozyme, and 3X3P for thaumatin). For Pr-derivatized proteinase K, substructure search, phasing and phase 
improvement were carried out using the SHELX C, D and E programs30. �e autotraced model from SHELXE 
was fed into Buccaneer32 from the CCP4 suite61. Manual model revision and structure re�nement were performed 
using Coot62 and PHENIX63, respectively. Details of the data collection and re�nement statistics are summarized 
in Table 1.
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