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Abstract 

Here we present a thorough density functional study combining experiments on ZnO 

nanostructures aimed at the identification, by means of Infrared (IR) spectroscopies, of 

hydroxyl and hydride species formed on most stable low-index Miller surfaces of würtzite 

ZnO; namely, Zn- and O-terminated (0001) and (0001) polar surfaces, and nonpolar (1010) 

and (1120) surfaces. The Perdew-Burke-Ernzerhof functional was employed on the periodic 

slab calculations, and all possible H and OH adsorption modes were studied at medium and 

full coverage, while IR spectra were simulated for most favourable situations. This 

information was used to model the most likely surface arrangements when exposed to either 

H2 or H2O. IR experiments on ZnO surfaces and nanoparticles are discussed based on the 

calculated adsorption energy values and simulated IR spectra. The study emphasizes the 

detailed assignment of OH moieties with the help of IR and their interpretation as fingerprints 

of surface morphology, allowing for a consistent interpretation of water adlayers stability and 

their corresponding vibrational fingerprints as a function of coverage, low-index Miller 

surface, and hydrogen source. 

Keywords: density functional calculations • IR spectroscopy • catalysis • surface hydroxyls • 

würtzite ZnO 
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1. Introduction 

Würtzite Zinc Oxide (or zinczite) is a material that has driven very much research 

interest in the last decades, mostly due to its optical and electronic properties. It displays high 

electron mobility and thermal conductivity, and a direct bandgap (~3.4 eV) with large exciton 

binding energies (~60 meV).
1,2

 These properties have spurred its usage in semiconductors,
3
 

field-effect transistors,
4
 photodetectors,

5
 blue- and ultraviolet-light (UV-light) emitting and 

laser diodes,
6,7

 gas sensors,
8
 piezoelectric generators,

9
 transparent electrodes,

10
 and cells for 

solar light harvesting.
11,12

  

In chemistry, ZnO has recently become the focus of many researches addressing its 

usage as a catalyst for a variety of reactions; from being an active phase in methanol synthesis 

using the ternary Copper-based Cu/ZnO/Al2O3 catalyts,
13-15

 to water
16

 and sulphur hydride
17

 

dissociations, desulfurization processes,
18,19

 the water gas shift reaction,
20

 the activation of 

CO2,
21

 and finally, the conversion of maleic anhydride into 1,4-butanediol.
22

 Furthermore, the 

above-commented UV-light absorption capability has unfolded its use in light-triggered 

catalysis, such as for dye decomposition,
23,24

 the treatment of volatile organic compounds,
25

 

the peroxide synthesis,
26

 water splitting,
27

 and alcohol photodegradation.
28,29

 
 

Nevertheless, these catalytic or photocatalytic processes are far from being well 

understood and efficiently mastered, and the aspects on which the catalytic activity and 

selectivity hang are still a matter of debate. Many experimental works have addressed the 

point by relating the catalytic activity with structural factors, this is sampling a variety of ZnO 

morphologies —including single crystal surfaces,
30

 thin films,
24

 nanostructures,
31,32

 and well-

faceted nanoparticles
23,33

— with distinct polar/nonpolar facet ratios. This proportion is often 

argued to be a key aspect on the photochemical catalytic activity: Some working groups 

assign to polar surfaces —the Zn- and O-terminated (0001) and (0001) surfaces— the highest 
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catalytic activity,
23,31

 whereas other point to nonpolar surfaces —the (1010) and (1120) 

surfaces.
30

   

Along this line there is also an open discussion on the role of surface hydroxyl and 

hydride species on most of the aforementioned catalysed reactions. This is because in many of 

them one or more reaction steps involve hydrogenation/dehydrogenation of reaction species, 

likely to be carried out by these surface moieties.
34

 For instance, previous works pinpoint that 

the hydroxyl scavenger character of isopropanol is decisive in its degradation.
35,36

 In another 

related study, the pivotal role of acid/basic sites on the catalytic activity and specificity is 

highlighted.
37

 Indeed, in many of the commented processes either heterolytic dissociation of 

H2 or water splitting is actually considered the rate-determining step.  

Clearly, the unambiguous identification of the reacting hydroxyl or hydride species 

under working conditions is vital for the real-time observation of the catalytic process and the 

outline of the reaction mechanism, eventually allowing for a posterior improvement of the 

reaction setup. This is usually experimentally tackled by a combination of spectroscopic and 

microscopy techniques. Vibrational spectroscopies can be highlighted as prototypical 

techniques among them due to their (experimental and theoretical) simplicity and potential 

use in all conditions (e.g. ex and/or in situ conditions), providing additionally information of 

the conformation and bond strengths of surface species with direct relation to surface/catalytic 

phenomena.
38,39

 However the assignment of the vibrational fingerprints is by no means easy, 

and often assumptions based on common knowledge —e.g. vibrational fingerprints of 

transition metal complexes— drive to misassignments and, therefore, to erroneous 

interpretations.
40,41

 Fortunately there are many examples in the literature where the 

combination of Infrared (IR) spectroscopies under controlled conditions and Density 

Functional (DF) calculations on proper models solved the problematic and permitted the 

unequivocal assignment of complex vibrational features.
40,42,43
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In the case of würtzite ZnO there is quite a number of recent experimental studies 

aimed at this issue. It is worth to highlight the paramount works of Wang et al. using High-

Resolution Electron Energy Loss Spectroscopy (HREELS) on (1010) and (0001) single crystal 

surfaces,
44-46

 and the recent studies of Noei et al. applying Fourier Transform Infrared 

Spectroscopy (FTIR) or Diffusive Reflectance Infrared Fourier Transform Spectroscopy 

(DRIFTS) on ZnO nanoparticles.
34,47

 In both research lines assignments of different features 

to specific surface hydroxyl or hydride groups are posed, yet some surfaces remain 

unexplored, and even the studied assignment seems to contradict earlier and recent 

experiments.
34,48-50

 From the theoretical point of view the matter is far more shaky. Despite 

there is also a number of DF studies addressing the structure and stabilization mechanisms of 

the bespoken surfaces saturated with either water or hydrogen,
51-55

 these computational 

studies did not address their vibrational identification. To the best of our knowledge, there is 

no previous DF theoretical study consistently addressing the assignment of vibrational 

spectroscopy features to surface hydride or hydroxyl moieties when exposing ZnO systems to 

either H2 or H2O. 

In the present work we study, by means of state-of-the-art DF calculations on proper 

slab models, the stability of polar —(0001) and (0001)— and nonpolar —(1010) and 

(1120)— surfaces of würtzite ZnO exposed to H2 or H2O. Simulated IR vibrational spectra 

are gained for the most stable surface adsorbate arrangements as a function of coverage and 

hydrogen source. A full analysis of hydroxyl-related species at surface model systems as well 

as on ZnO nanoparticles is presented.  

2. Methodology 

2.1 Computational Details and Models 

Current DF calculations were performed with the VASP code,
56

 carrying out periodic 

Kohn-Sham calculations. The projector augmented wave method has been used to represent 
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the atomic cores,
57

 allowing for obtaining converged results —variations in energy below 

0.01 kJ mol
-1

— with a cut-off kinetic energy of 415 eV for the plane-wave basis set. 

Geometry optimizations were performed using a conjugated gradient algorithm and applying 

a tetrahedron smearing method with Blöchl corrections with a 0.2 eV width, although final 

energy values were corrected to 0 K (no smearing). The structural optimization was finalized 

when forces acting on atoms were below 0.01 kJ mol
-1

 pm
-1

. Unless stated otherwise, all 

calculations were carried out in a non spin-polarization fashion. All DF calculations have 

been carried out using the Perdew-Burke-Erzenhof (PBE) exchange correlation functional,
58

 

proven to deliver a realistic description of bulk ZnO and low-index Miller surfaces,
59,60

 as 

well as to properly capture the interactions of atomic hydrogen, hydroxyl moieties, and water 

molecules upon.
16,61

  

From previous X-Ray Diffraction (XRD) studies
11,23,25,29,32

 it is clear that würtzite ZnO 

preferentially displays the nonpolar (1010) and (1120) surfaces, and the Zn- and O-terminated 

(0001) and (0001) polar surfaces. The latter ones are simultaneously created when cutting the 

crystal along a basal plane, see Figure 1. Nonpolar surfaces exhibit perfectly stable 

unreconstructed terminations. Polar surfaces feature a surface energy instability issue 

originated from their different charged terminations, which exert a net dipole moment that, de 

facto, increases with the separation between them. This introduces an electrostatic component 

to the surface energy which diverges with the surface separation.
62,63

 The stabilization 

mechanisms to nullify this dipole moment are nowadays a hot topic, with some experiments 

suggesting the existence of unreconstructed polar surfaces,
64

 implying a charge transfer 

among the two polar surfaces,
59,64,65

 whereas other studies suggesting the formation of 

vacancies regularly found on the surface,
66,67

 or concentrated at step edges.
51,53

  

Regardless of the previous, when fully hydrogenated/hydrated both polar surfaces 

show a perfect (1×1) arrangement with apparently no surface vacancies.
67,68

 Moreover, 

unreconstructed polar surfaces can be perfectly stable in oxide nanoparticles. Thus, we 
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decided to use unreconstructed and vacant-free surface supercell slab models to simulate ZnO 

single crystals and the facets of nanoparticles. Last but not least, note that when fully 

hydrogenated/hydrated, nonpolar surfaces also display a (1×1) periodicity —with the caveat 

of H2O on (1010) which, according to previous simulations and experiments, may display a 

(2×1) pattern.
16,69

  

Towards this end, 8-layer slab —constructed from the orthogonal unit cell instead of 

the primitive hexagonal unit cell, see Figure 1— (1×1) supercell models have been used for 

each of the four surfaces, in which the upmost four layers are completely allowed to relax, 

and the bottommost four layers are kept fixed as in the bulk-optimized positions. Note that 

cell contains a single surface ZnO pair for the (1010) surface, but two units for polar and 

(1120) surfaces. To correctly study the (1010) surface a (2×1) unit cell has been used when 

needed. Present tests and several past studies reveal that the employed slab width and 

relaxation approximation is enough to ensure converged results of surface properties,
52,59-

61,64,65,70-72
 except for cleavage energies of polar surfaces, which should be derived with an 

extrapolation to infinite slab thickness.
52,59,60,64

  

A minimum vacuum of 1 nm was applied in the surface direction to avoid interaction 

between repeated slabs. Optimized slabs with larger vacuum gap showed deviations in the 

total energy below 0.02 kJ mol
-1

. To compensate the long-range dipole-dipole interactions 

among translationally repeated slabs a counterdipole is placed in the middle of the vacuum 

gap. An optimal Monkhorst-Pack k-points grid of 17×17×1 has been used for the ZnO surface 

calculations. This guarantees a convergence of the energy to values below 0.01 kJ mol
-1

 as 

tested using denser grids.  

The adsorption energy, 𝐸!"#, of a species A —H2O, OH, or H— on a substrate B —

either the polar (0001) or (0001) surfaces, or the nonpolar (1010) or (1120) surfaces— is 

defined according to the following equation; 
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𝐸!"# = −𝐸!/! + (𝐸! + 𝐸!)     (1) 

where EA/B is the energy of the complete system where A is adsorbed on the surface B, and EA 

and EB are the energies of the isolated species A and surface B, respectively. Note that with 

this definition the adsorption energy is positive if the adsorbate is bound to the substrate, with 

larger adsorption energy indicating stronger bonding. H2 is experimentally found to 

molecularly adsorb on würtzite only below 90 K, and so, it has not been considered as an 

adsorbate in the present study, as it would be either decomposed or desorbed in normal 

catalytic conditions.
73,74

 The isolated H atomic reference and the molecular OH and H2O 

species were optimized in an asymmetric box of 0.9×1.0×1.1 nm
3
 dimensions, carrying out Γ-

point spin-polarized calculations for H and OH in order to properly describe their doublet 

character. A Gaussian smearing of 0.01 eV width was applied in these calculations.   

Harmonic frequencies were obtained through numerical calculation and 

diagonalization of the Hessian matrix taking into consideration only the adsorbate molecules 

and, in the case of atomic H, the surface species it is bonded to. The Hessian matrix is 

constructed from finite differences of analytical gradients by calculating energy changes due 

to independent displacements of 3 pm of every atom in each direction of the unit cell vectors. 

Shorter displacements lead to frequency shifts below 4 cm
-1

, i.e. below standard experimental 

resolution.
47

 Negligible coupling with substrate phonons is expected since the latter exhibit 

distinctive lower frequencies, typically ranging 100-600 cm
-1

, according to Raman 

spectroscopies.
75-77

 Test calculations of the adsorbate harmonic frequencies accounting for 

variables of influence, such as phonon coupling, different k-points grids, and the absence of a 

counterdipole resulted in frequency variations below 2 cm
-1

.  

Simulated IR spectra have been obtained estimating the intensity of a band through the 

change of the dipole moment component normal to surface accompanying a given vibration. 

The spectra have been drawn by smoothing the peaks with a Gaussian function of 100 cm
-1
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half width. This procedure has been widely used in the past for calculations of adsorbate 

spectra on solid metal surfaces.
40,42,43,78-80 

There, only vibrations with a dipole component 

normal to the surface are detected, since the parallel component is cancelled by a specular 

counterdipole created by the metal surface electron density cloud. On ionic composites such 

polarization of the electron sea cannot happen, although the electron densities surrounding the 

atomic nuclei are indeed polarizable to a certain extent, and therefore, given a sufficient 

material width, they may likewise counteract the parallel component of an adsorbate 

vibration. This has been experimentally confirmed, e.g. by performing sum frequency 

generation vibrational spectroscopies of adsorbates on TiO2 and SiO2,
81,82

 here justifying to 

measure the intensity normal to the surface alone for adsorbate vibrations on oxides. 

2.2 Experimental Details 

Materials were prepared using a microemulsion method using n-heptane (Scharlau) as 

organic media, Triton X-100 (C14H22O(C2H4O)n) (Aldrich) as surfactant and hexanol 

(Aldrich) as cosurfactant. Zn was introduced from the nitrate from (Aldrich). Water/Zn molar 

ratio was fixed at 110 and water/surfactant molar ratio was varied from 18 (sample A) to 9 

(sample B). After introduction of Zn into the aqueous phase and 30 min of stirring, a double 

quantity of tetramethylammonium-hydroxide was introduced from the aqueous phase of a 

similar microemulsion. The resulting mixture was stirred for 24 h, centrifuged, and the 

separated solid precursors rinsed with methanol and dried at 110 
º
C for 12 h. The Brunauer-

Emmett-Teller (BET) surface areas and average pore volume and sizes were measured by 

nitrogen physisorption (Micromeritics ASAP 2010). Samples present a BET area of 25 and 23 

m
2
 g

-1
 for A and B materials, respectively. 

High-Resolution Transmission Electron Microscopy (HRTEM) was recorded on a 

JEOL 2100F TEM/STEM microscope. Specimens were prepared by dripping an ethanol 

suspension of the samples to be investigated onto a copper grid supporting a perforated 
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carbon film. Diffuse Reflectance IR spectra were obtained with a Bruker Vertex 80 after 

overnight treatment at 150 
º
C or 350 ºC of the samples under a nitrogen atmosphere. Spectra 

are an accumulation of 50 spectra (30 seconds each) with a nominal resolution of 4 cm
-1

. 

Analysis of the spectra was carried out considering the derivative spectra to extract the 

number of components. Fitting was performed with the peakfit program using Gaussian 

shapes for the components. 

3. Results and Discussion 

3.1 H Adsorption 

 First we examined the adequacy of the computing level by analyzing ZnO bulk and 

surface properties (see Supporting Information). In summary, a very good agreement is found 

between present PBE results and most recent experimental bulk structural parameters,
83

 with 

a slight overestimation of the bond strength per ZnO unit of ~20 kJ mol
-1

 compared to the 

experimental value,
84

 in the order of standard DF methods accuracy. The relaxed surface 

structure of (1010) is in excellent agreement with very recent aberration-corrected HRTEM 

images,
85

 and earlier experiments.
86-88

 Additionally, the relaxation of polar (0001) surface is 

also in excellent agreement with structural data derived from Surface XRD (SXRD) and 

Grazing Incidence X-Ray Diffraction (GIXD) experiments.
64,89

 Thus, we conclude that the 

employed methodology appears to be suited for the description of the systems under scope.   

Concerning the adsorption of species, we tackled firstly the simplest atomic H 

adsorption at two different coverages (θ), this is, at half and full coverage, hereafter also 

referred as 0.5 and 1 monolayers (ML). All possible adsorption sites on the modeled surfaces 

have been sampled, yet only the most stable case on each surface is further discussed. For 

(0001) surface only the H on-top of an O surface atom (Os) conformation was found. For the 

other surfaces many situations are possible, although considerably less stable —by at least 30 

kJ mol
-1

—, and so, not further considered unless explicitly invoked. In all surfaces H attaches 
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to surface O atoms, with the caveat of the (0001) surface where it attaches on-top of surface 

Zn atoms forming hydride entities. Structural, energetic, and vibrational calculated data are 

listed in Table 1, while views of the adsorbed conformations together with their simulated IR 

spectra are illustrated in Figure 2. Note that when taking H2 molecule in vacuum as the energy 

reference the adsorption energies shown in Table 1 must be lowered by 218 kJ mol
-1

, 

accounting for half the dissociation energy of H2. Therefore, adsorption energies larger than 

this latter value indicate an exothermic H2 adsorption process, and vice versa.   

 (0001) surface: Values in Table 1 confirms that the polar (0001) surface is the most 

active one for H adsorption, with large dissociative adsorption energies, especially when H is 

adsorbed on-top of every second surface O atom, i.e. θ = 0.5 ML. Current values match —

discrepancies of ~ 4 kJ mol
-1

— previous PBE results by Meyer,
52

 and support previous claim 

pointing that the most stable situation for (0001) under normal conditions is that forming a 

(1×2) surface periodic arrangement, 
52,55

 recently corroborated based on depth profile X-Ray 

Photoelectron Spectroscopy (XPS) measurements.
55

 Note that the desorption energy of a H2 

molecule at θ = 0.5 ML, 388 kJ mol
-1

 —calculated as twice the atomic H desorption energy 

reported in Table 1 but accounting for half H2 dissociation energy, as above-commented—, is 

far larger than that for H2 at θ = 1 ML (152 kJ mol
-1

). When we compare the adsorption 

energy per unit cell —proportional as if done per surface area—, the desorption energy at half 

coverage is 194 kJ mol
-1

 —note that at this coverage two unit cells with an adsorbed H atom 

are needed to desorb a H2 molecule— reflecting that more energy is released —about 40 kJ 

mol
-1

— when covering half of the (0001) surface with atomic H instead of a full coverage, 

and so, such a (1×2) arrangement is thermodynamically clearly preferred.  

The 1 ML situation is still exothermic, and so, a (1×1) periodicity is actually feasible. 

Indeed, previous experiments combining LEED and He-Atom Scattering (HAS) experiments 

detected such a (1×1) arrangement.
67

 In this latter study the activation energy for H2-
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desorption was found to be 141 kJ mol
-1

, in perfect line with the present estimate for the 

desorption energy of 152 kJ mol
-1

 at θ = 1 ML, corroborating the possible existence of a (1×1) 

arrangement. This is also back-supported by previous XPS simulations and calculations 

showing that core level O 1s signals assigned to surface hydroxyl groups can only be 

explained when having full hydrogen coverage.
67,90

  

When addressing the arrangement issue from the point of view of IR techniques one 

encounters a few discrepancies in the literature. Previous IR studies on the H(1×1)-

ZnO(0001) pattern formed after exposing the ZnO single crystal surface to water vapor at 

room temperature found a peak at 3572 cm
-1

, assigned to the hydroxyl stretching vibration,
91

 

whereas a more recent HREELS study assigned a peak at 3621 cm
-1

 to the aforementioned 

hydroxyl vibration after exposing 2 Langmuir (L) of H2O to the single crystal surface, also at 

room temperature.
44 

Indeed, a simpler explanation for this discrepancy is that values were 

obtained at moderate
91

 and low
44

 water partial pressure. Previous theoretical studies show that 

in H-rich conditions (high pressure) and high temperature (800 K) coverage above 0.5 ML 

and even the full coverage situation approach in stability to the (1×2) arrangement.
52

 However 

at such elevated temperature values surface H is known to recombine and desorb as H2, as 

found already to happen at 547 K for a (1×1) situation.
67

 Nevertheless the full coverage phase 

at H-rich conditions could be plausible at lower room temperature.    

Present IR simulations on Figure 2 show that at 1 ML coverage only the OH 

symmetric stretching vibration is active, centered at 3486 cm
-1

, sensibly below the peak found 

when exposing the single crystal surface to water. An important point here is that there is a 

very large difference between this IR fingerprint and that of coverage 0.5 ML. When 

decreasing the coverage to the (1×2) pattern, the hydroxyl structure is only very weakly 

modified, with OH bond length decreased by only 2 pm, and the hydroxyls slightly less 

normal to surface. However, the bonding energy is increased by more than 100 kJ mol
-1

, 

which has a critical impact on the hydroxyl stretching frequency, which blue-shifts more than 
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250 cm
-1

 to reach a value of 3744 cm
-1

. This last stretching frequency should be assigned to 

the 3621 cm
-1

 peak observed at low pressures,
44

 where the formation of a (1×2) pattern seems 

to be clear. The additional experimental peak
91

 at 3572 cm
-1

 appears at a somewhat larger 

value than the one calculated at saturation coverage, and so probably belongs to an 

intermediate situation, e.g. 
2
/3 or 

3
/4 ML, as previously found to be also energetically 

competitive situations.
52

 

(0001) surface: Previous HAS studies showed that when this surface is exposed to 

hydrogen, a weakly bound (1×1) hydride pattern is formed. Reports combining Scanning 

Tunneling Microscopy (STM) images and DF calculations showed that such a single crystal 

surface displays triangular pits,
51,53

 and recent theoretical surface phase diagrams assign the 

(1×1) pattern to a situation with full hydride coverage on triangular pits and islands.
92

 Current 

computed adsorption sites and energies are in perfect agreement with those of Kresse and 

coworkers,
53

 showing an essentially isothermic adsorption at θ = 0.5 ML and a disfavored 

adsorption process at 1 ML, also in line with a previous experimental report showing a H2 

desorption energy of a few kJ mol
-1

. Probably the instability at full coverage is at the origin of 

the observed reconstruction and formation of a rough surface.
93

 In any case, the predicted 

arrangements are similar to those of (0001) surface, but with a sensibly larger ZnH bond 

length of 155-160 pm, in very good agreement with recent DF calculations at Local Density 

Approximation (LDA) level.
94

 The IR simulated spectra signals are attenuated by ~30 times 

compared to the OH stretching vibrations found on (0001) surface, here the peaks situated 

around 1833 and 1499 cm
-1

 at half and full coverage, respectively, allowing also for a clear 

distinction of the degree of coverage based on IR measurements,. 

(1010) surface: The interaction of hydrogen with the nonpolar (1010) surface has 

driven lately very much attention due to the so-called surface metallization effect appearing 

when exposing this surface to hydrogen at room temperature.
45,95-97

 This is found to happen 

when all surface oxygen atoms are bonded to a H adatom. HREELS experiments detected a 
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peak at ~3645 cm
-1

,
45

 which could belong to presently simulated IR at 3586 cm
-1

. At low 

temperatures (below 200 K), another vibrational signature is observed at 1613 cm
-1

, assigned 

to a Zn-H hydride stretching. This would correspond to a full saturation coverage in which 

both surface Zn and O atoms are attaching hydrogen species, i.e. simultaneously forming 

hydride and hydroxyl species. This arrangement has been observed by atomic-resolved 

STM,
95

 and it has also been found not to induce a metallization of the (1010) surface.
45,98

 

According to present calculations, the adsorption of H to form surface hydroxyls 

would be, similarly to (0001) surface, an isoenergetic process when taking H2 in vacuum as 

the energy reference. The formation of sole ZnH hydride species was found to be 

thermodynamically prohibitive. Concerning the IR simulated spectra in Figure 2, the surface 

hydroxyl stretching is active and observable, although the intensity is clearly inferior to those 

spectra of (0001) polar surface. The attenuation of the signal is more acute in the θ = 0.5 ML 

case, due in principle to the tightening of the Os-H bond, as found also for the polar surfaces. 

We also studied the (1×1) (1010) unit cell containing hydride and hydroxyl moieties. 

During the geometry optimization the system undergoes a peculiar relaxation, which involves 

an inversion of the ZnO angle —7.1º with respect the surface plane, see Supplementary 

Information— having Zn as the most exposed surface atom, similarly to earlier results 

obtained at B3LYP hybrid functional level.
98

 We found an elongation of 29.5 pm of the 

surface ZnO bond length, and a small contraction of ZnH bond of 2 pm (Table 1). The 

adsorption energy accounting for H2 gas dissociation results in an exothermic process of 43 kJ 

mol
-1

, at variance with previous theoretical studies using pair-potentials, which erroneously 

found such dissociated system to be endothermic by around 500 kJ mol
-1

, a feature arising 

from the limitations of such empirical approach.
99

 When having both species, the overall 

adsorption strength is enhanced, due to the bulk near-tetrahedral coordination geometry 

recovery.
100

 The simulated IR spectra shown in Figure 3 displays two peaks at 1797 and 3601 

cm
-1

 belonging to surface Zn-H or Os-H stretching vibrations, respectively. These would 
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correspond to the observed peaks by Wang et al. at 1613 and 3670 cm
-1

, respectively.
45

 An 

ONIOM study lead to vibrational modes located at 1460 cm
-1

 and 3516 cm
-1

,
100

 a clear 

improvement compared to other embedded cluster studies where stretching modes were 

located at 1540 and 4018 cm
-1

.
99

 Interestingly, according to current results the desorption of 

Zn hydride species would suppose a red shift of 15 cm
-1

 in hydroxyl signal, never mentioned 

in the HREELS experiments, although a close inspection to the spectra seems to support it.
45

  

 (1120) surface: This nonpolar surface is close in surface energy to the (1010) one, with 

past and present estimates of the surface energy showing a difference of only ~0.1 J m
-2

,
99,101

 

and frequently detected in XRD experiments.
11,23,25,29,32

 The interest in the interaction of H2 

with this particular surface is clearly detrimental with respect the others with no previous 

experimental nor DF reports on the interaction of atomic or molecular hydrogen with this 

surface. Present results show a situation somewhat similar to that above described for the 

(1010) surface. One similarity is the clear preference to form hydroxyls: Note that the 

computed Eads to form a Zn-H species at θ = 0.5 ML is presently computed to be 156 kJ mol
-1

, 

48 kJ mol
-1

 less stable than the hydroxyl value listed in Table 1. Note besides that the 

hydroxyl bond lengths are almost equal to those on the parent (1010) nonpolar surface, also 

displaying a reduction in the bond strength and orthogonality to the surface plane when 

reaching 1 ML (Table 1). The IR simulated spectra shown in Figure 2 reveal that stretching 

frequencies are red-shifted with respect those of (1010) surface reflecting a slightly weaker 

bond strength. The result is somehow surprising since a stronger bond would be expected 

given the lower stability of this surface, or, in other words, a higher surface activity. This 

hindered surface activity results in adsorption energies that suggest an endothermic H2 

dissociative adsorption process, by ~44 kJ mol
-1

, exclusively forming hydroxyl moieties.  

Analogously to (1010) surface we computed a (1×1) unit cell model of the 

(1120) surface fully covered with H, containing both hydride and hydroxyl species. The 
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structure evolves in a similar fashion as found for the (1010) surface, with Zn-H and Os-H 

bond lengths remaining similar, although an elongation by 23.3 pm is found for the surface 

ZnO bond, accompanied with an inversion of the angle with respect the surface plane, now 

having an angle of 6.8º but exposing surface Zn atoms (Table 1 and Supplementary 

Information). The process is estimated to be exothermic by 47 kJ mol
-1

. Figure 3 contains the 

corresponding vibrational fingerprint, showing active stretching frequencies located at 1814 

and 3606 cm
-1

. As happened on (1010) surface the full coverage of the (1120) surface with 

Zn-H and Os-H entities leads to a situation with enhanced stability, due mostly to the bulk 

coordination recovery.  

Surfaces and Nanoparticles: Now light is shed in experimental samples containing 

simultaneously two or more of the above discussed surfaces. One particular case would be for 

instance, systems exhibiting both basal polar planes. Concurrent exposition of (0001) and 

(0001) surfaces to hydrogen leads to additive situations: Already at low or high-vacuum 

pressure conditions, the O-terminated (0001) surfaces will firstly display a (1×2) hydroxyl 

pattern, explaining the observed sharp signal at ~3620 cm
-1

.
34,44

 By increasing the 

exposure/pressure, a nearly or fully hydrogen covered (0001) surface is feasible, and so the 

half coverage of (0001) surface. This situation would exhibit hydroxyl and hydride peaks 

located at 3489 and 1833 cm
-1

, which allows one to assign the observed signals at 3450-3500 

cm
-1

 and ~1710 cm
-1

 in the experiments exposing H2 at moderate or large pressures to ZnO 

nanoparticles faceting such polar surfaces.
34,48-50

 Previous Quantum Mechanics/Molecular 

Mechanics (QM/MM) calculations needed to invoke surface vacancies to explain the 

experimentally observed signals.
102,103

  

Note that when studying ZnO nanoparticles one has to consider the ratio between 

polar/nonpolar surfaces. Previous HRTEM and FTIR experiments have shown that, typically, 

on ZnO nanopowder particles, 80% of the surface corresponds to nonpolar faces.
95,104

 In this 

sense, the relatively low IR intensity of nonpolar hydrogenated surfaces is partially 
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counterbalanced by their highest exposure, and so, in principle observable. This is in perfect 

agreement with the FTIR signal at 3672 cm
-1

 observed when exposing ZnO nanoparticles to 

atomic hydrogen in UHV conditions.
34

 In these experiments, the rapid appearance of a 

dominant peak at 3618 cm
-1

 corresponds to the strong hydrogen adsorption on the (0001) 

facets forming a (1×2) pattern of hydroxyls, and only after more exposure the nonpolar 

surfaces are hydrogenated, although (1010) and (1120) become indistinguishable. According 

to present results displayed in Figure 3, a distinction of both surfaces could only be reached 

by scanning the 1650-1850 cm
-1

 region with a high-resolution IR technique. 

3.2 OH Adsorption 

Here we have investigated the adsorption of OH on the different würtzite ZnO 

surfaces. Case studies concerning H2O and co-presence of H/OH moieties are presented in the 

next section, since considering separately both complementary H and OH studies permits one 

to elucidate the stability and arrangement of water scission moieties. Structural, energetic, and 

vibrational data for the most stable adsorption cases of OH on each surface are provided in 

Table 2.  

(0001) surface: Here only one stable site is found, having the hydroxyl adsorbed on a 

3-fold hollow site —connecting three surface Zn species and therefore, a µ
3
 adsorption 

mode— with no ZnO oxygen directly beneath, see Figure 4. The µ
3
 mode with an underneath 

oxygen is destabilized by more than 50 kJ mol
-1

, and therefore has not been further 

considered. In the µ
3
 conformation the adsorption strength is rather high, almost 400 kJ mol

-1
 

at θ = 0.5 ML, and the hydroxyl stays essentially perpendicular to the (0001) surface. By 

reaching full coverage the lateral repulsion reduces the adsorption energy by ~120 kJ mol
-1

, 

with very small structural changes and only a small increase of the molecular perpendicularity 

towards the surface. The vibrational frequency at half coverage of 3755 cm
-1

, gets red shifted 

by ~11 cm
-1

 when reaching a full coverage, providing a noticeable IR signal as seen in Figure 
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4. It is worth to mention that in the earlier study of Wander and Harrison on water adsorption 

on a ZnO(0001)/(0001) slab
72

 the hydroxyls were put directly on top of surface Zn atoms in 

the (0001) surface, although according to present results such mode is found to be unstable. 

Actually, it could well be that in the work of Wander and Harrison the OH was kept on-top 

during optimization simply for symmetry reasons, and thus, its higher energy would explain 

their finding of hydroxylated ZnO(0001)/(0001) slab being less stable than the pristine one,
72

 

contrary to the experimental observation of high reactivity of polar surfaces on water splitting, 

and the easiness of getting them hydroxylated, with water splitting activation barriers being, if 

any, very small.
105

 

 (0001) surface: Here the hydroxyls are less stable than on the (0001) surface, and 

actually, only a minimum energy structure at θ = 0.5 ML is found, which corresponds to a η
2
 

conformation in which OH lies almost planar to the surface, with the O atom connected to a 

surface O atom, and the H atom pointing to a hollow site, maybe forming a H-bond, given the 

distance of 248 pm to neighboring OH group. The moiety planarity makes this particular 

sorption mode almost undetectable by IR techniques, as seen in Figure 4, with vibrations ~4 

times attenuated with respect hydroxyl signals on (0001) surface. At full coverage, the 

isolated adsorption of OH moieties is highly unstable, and actually spontaneous hydroxyl 

disproportionation into water and O adatoms is observed, as seen in sketches of Figure 4. The 

water molecules lay rather planar to the (0001) surface, and so the vibrational fingerprint 

intensities are comparable to those of half coverage situation. Symmetric and asymmetric 

water stretching modes are located at 3506 and 3683 cm
-1

, respectively. Note in passing that 

bending mode is detected as well at 1573 cm
-1

. Overall, IR signals of hydroxyl moieties on 

the polar (0001) surface are rather weak and, if existing, would be shadowed by OH species 

on other surfaces, see below.    
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 (1010) and (1120) nonpolar surfaces: Curiously, for both surfaces, two competitive 

adsorption minima are found. For the (1010) surface these are named µ
1
 and µ

2
 

conformations. In the latter, the OH Oxygen atom attaches bridging two adjacent Zn atoms, 

with its H atom pointing towards the vacuum, see Figure 4. This particular coordination mode 

has been recently found to be a metastable fragment in water dissociation, according to 

B3LYP and PBE DF calculations.
61,106

 At full coverage it has a characteristic OH stretching at 

3736 cm
-1

. By decreasing the coverage to 0.5 ML, there is only a slight increase of surface 

bond strength, although accompanied by a red shift of ~15 cm
-1

, and a slight decrease of the 

hydroxyl perpendicularity which, however, does not perturb the IR intensity, see Figure 4. In 

the µ
1
 mode the hydroxyl is attached to a surface Zn atom, with the H atom pointing towards 

the neighboring hydroxyl species, maybe forming a H-bond, with a separation of 246 pm, in a 

similar fashion to the (0001) case. The µ
1
 mode is only slightly higher in energy, by ~4-6 kJ 

mol
-1

, with respect µ
2
 mode —here both considered isoenergetic— and displays the hydroxyls 

rather parallel to the surface, with an angle of 0.7º at θ = 0.5 ML. This makes the µ
1
 mode 

undetectable by IR signal. At 1 ML coverage, hydroxyls are essentially parallel to the (1010) 

surface, and their stretching vibrations, estimated to be centered at ~3631 cm
-1

, could be 

experimentally observed. Other OH conformations on (1010) either evolved to any of these 

two situations, or where higher in energy by at least 20 kJ mol
-1

.      

On the (1120) surface the most stable adsorption conformation, hereafter referred to 

η
2
, corresponds to a situation where the hydroxyl moiety is attached to a surface Zn atom, 

although with the H atom oriented towards a surface O atom of a vicinal zig-zag stripe, see 

Figure 4. Here the H-bond is more evident, with an interatomic distance of 212 pm at θ = 0.5 

ML. However, as happened with the µ
1
 mode on the (1010) surface, the high planarity makes 

the η
2
 mode stretching IR-inactive. Curiously, at θ = 1 ML, the adsorption strength slightly 

increases by 11 kJ mol
-1

, revealing an adsorption synergy directed by H-bonds formation, 
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given the shorter distances 191 pm in between surface hydroxyls. As seen in Figure 4, 

hydroxyls align themselves along the (1120) surface grooves, staying also highly planar to 

surface. Therefore, its IR peak located at 3366 cm
-1

 displays low intensity, and would be 

observed as a broad peak in experiments. As seen below, this particular arrangement is a clear 

precursor of the fully hydrated (1120) surface. The other mode, named η
1
, simply corresponds 

to a hydroxyl adsorption on a surface Zn atom, with H pointing towards the vacuum. This 

conformation is only 2 kJ mol
-1

 less stable and so considered isoenergetic to the η
2
 mode. 

This mode is IR-active, with a stretching frequency at 3733 cm
-1

 at half coverage. At full 

coverage, the hydroxyls align, maybe making H-bonds (267 pm), with a characteristic peak 

situated at 3660 cm
-1

.    

3.4 Full Analysis of H/OH/H2O Species on Polar and Nonpolar Surfaces 

The information of the preferential adsorption of -OH and -H moieties has been used 

to sample different arrangements of split water molecules on the different surfaces. Let us 

consider first of all ZnO slabs simultaneously exhibiting (0001) and (0001) surfaces. 

According to Tables 1 and 2, hydroxyl attachment is highly preferred over hydrogen on the 

Zn-terminated (0001) surface, while the opposite applies for O-terminated (0001) surface, 

following the situation posed by Wander and Harrison.
72

 Accounting for this and also 

considering that, according to present calculations, the scission of a H2O molecule into OH 

and H in vacuum has an energy cost of 519 kJ mol
-1

, one may discuss the possibility of 

simultaneously adsorbing H and OH on their respective surfaces at different coverage. Filling 

half the (0001) surface with hydroxyls and half of the (0001) surface with hydrogen atoms 

leads to a final value of released energy of 286 kJ mol
-1

 per surface supercell unit. 

This tremendous exothermicity explains the easiness of detecting hydroxyls on both 

surfaces.
105

 At θ = 1 ML the degree of exothermicity largely reduces to 96 kJ mol
-1

, revealing, 

in a similar fashion to H2 adsorption discussed in the previous point, that a (1×2) pattern is 
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thermodynamically clearly preferred. The full coverage is not thermodynamically hindered 

though, and could be achievable by increasing the H2O vapor pressure, although the stability 

difference of almost 200 kJ mol
-1

 makes it rather costly. The vibrational fingerprint at θ = 0.5 

ML is shown in Figure 5 for both polar surfaces. The small difference of 11 cm
-1

 between 

frequencies of hydroxyls of different polar surfaces (Tables 1 and 2) makes their 

identification rather cumbersome, accentuated by their high difference in IR intensity. Indeed, 

signals on the (0001) face are a priori a hundred times more intense, and likely to be the ones 

to be observed, being the OH stretching from (0001) surface hidden in the peak tail.   

 On the (1010) surface, a previous study by Meyer et al. showed by combining PBE 

slab calculations and STM images, the existence of a partially dissociated water (2×1) 

monolayer after exposing the single crystal surface to 1 L of H2O.
16

 The stability of this 

peculiar arrangement was compared to the non-dissociated water monolayer, and also to the 

completely dissociated case.
16,54,61

 Notice that H2O molecules can be adsorbed on the ZnO 

dimer stripes, above the surface grooves, or alternatively sampling stripe and groove 

positions. In addition, the distinction between stripe and groove positions affects the number 

of possibilities for the mixed dissociated case. Furthermore, as shown in Table 2, the hydroxyl 

moieties can display µ
1
 and µ

2
 conformations. All possible moiety combinations meeting the 

(2×1) surface pattern have been optimized, the most stable one being precisely that previously 

proposed.
16,54,61

 Within this arrangement every second H2O molecule is adsorbed over the 

surface groove, and the other half becomes dissociated into hydroxyl and hydrogen atoms, see 

Figure 5, in line with a very small dissociation energy barrier of 5-8 kJ mol
-1

.
61,106

 The rest of 

adsorption conformations lay 20 kJ mol
-1

 or higher in energy. As happened when dissociating 

H2, the surface atoms recover a near-tetrahedral geometry,
100

 in which ZnO surface units 

elongate their bonds by 18.7 pm, and surface rumpling essentially vanishes. 
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The same procedure was carried out for the (1120), accounting for both η
1
 and η

2
 

adsorption modes. Here, in accordance to previous simulations at LDA level,
54

 the completely 

dissociated arrangement is clearly preferred over mixed situations by ~15 kJ mol
-1

. This 

particular arrangement resembles the η
2
 conformation at θ = 1 ML, but with hydroxyls 

involving surface O atoms, Os, see Figure 5. Here, an elongation of surface Zn-O bond 

lengths of 14.8 pm is found and also, an inversion of the surface angle (7.6º) now exposing 

more the surface Zn atoms. Structural, energetic, and vibrational data of the partially 

dissociated (2×1) pattern of H2O on (1010) and of the completely dissociated (1×1) pattern on 

(1120) surface are gathered in Table 3, and their vibrational fingerprints are shown in Figure 

5. On both nonpolar surfaces a distinction is made for hydroxyls arising from water splitting 

(-OH), and those formed by the adsorption of a H adatom on a surface Oxygen atom (Os-H).  

 Considering the (1010) surface, the simulated IR spectra are governed by two peaks, 

located at 3155 and 3765 cm
-1

. The experimental HREELS by Wang et al. showed that after 

exposing the (1010) surface to water, two main features were detected; a broad band at 3195 

cm
-1

, assigned, in principle, to a water -OH implied in a H-bond, and another at 3670 cm
-1

 

assigned to a partially dissociated H2O molecule.
46

 However, in light of the present results, 

this assumption is proven to be only half true. Whereas the peak at 3670 cm
-1

 would actually 

belong to an O-H stretching from a partially dissociated water molecule —the 

underestimation of ~100 cm
-1

 in our calculations is mainly due to the lack of description of 

anharmonicity, as shown below— the peak at 3195 cm
-1

 is, according to present model 

calculations, due to Os-H hydroxyl stretching. In the HREELS experiments a shoulder of the 

3670 cm
-1

 signal —specified as a peak located at 3700 cm
-1

— was assigned to a non-H-

bonded OH from the intact water molecules. However, as observed in Figure 5, these modes 

are actually located below 3000 cm
-1

.  
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Note that water molecule lays rather planar to the surface, and consequently its IR-

active vibration modes are rather weak in intensity. Indeed, its stretching modes are found to 

be slightly coupled with the Os-H mode, and it is because of this that they have an appreciable 

intensity. All these modes are responsible of the broad band centered at 3195 cm
-1

 as found by 

Wang et al.,
46

 which indeed could be composed of many superimposed contributions. Last but 

not least, according to present calculations, there is no explanation for the peak at 3700 cm
-1

, 

suggesting that such a peak might be apparent, and in reality not belonging to any particular 

vibrational mode. This statement is supported by FTIR UHV experiments of Noei and 

coworkers
47

 on ZnO nanoparticles, who did not detect such a signal, despite (1010) surface, 

due to its stability, is the dominant surface on many ZnO nanoparticles. Although not shown 

on Figure 5, the (1010) surface displays a water scissor mode calculate to be at 1651 cm
-1

 

displaying a low intensity, in accordance to FTIR experiments by Noei et al who detected 

such mode at 1617 cm
-1

.
47

       

 
As far as the (1120) nonpolar surface is considered, there is, regretfully, no IR 

experiments —to the best of our knowledge— carried out on single crystal surfaces. 

However, present estimates point for a clear identification of such a surface, with its IR 

signals at ~2590 and ~3400 cm
-1

, being the Os-H and OH moieties, respectively. Note that 

both kind of hydroxyls are involved in H-bonding, and so, the experimental peaks may 

display certain broadness. Despite the lack of experimental input, the (1120) signals can be 

detected in ZnO nanoparticles mainly exposing nonpolar surfaces, given the similar stability 

to (1010) surface. DRIFTS and FTIR spectra by Noei et al. showed that when exposing ZnO 

nanoparticles to H2O, two peaks at ~3620 and ~3670 cm
-1

 appeared, belonging to (1010) and 

(0001) hydroxyl stretching modes,
47

 in accordance to simulated IR shown in Figure 5 —the 

experimental peak difference of 50 cm
-1

 is somewhat underestimated by 30 cm
-1

 according to 

present calculations. Curiously, UHV-FTIR experiments revealed an emerging peak at ~3440 
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cm
-1

, which, according to present calculations, would well belong to the OH stretching modes 

on the nonpolar (1120) surface. The exact assignment of the contribution located around 

3400-3450 cm
-1

 is however complex, and is further analyzed in the following section. 

3.5 Surface Species at ZnO Nanoparticles Interacting with H2O 

To analyse the significance of our IR study for water-related species at ZnO 

nanostructures, we synthesized two materials: One dominated by nonpolar facets (sample A) 

and another by polar facets (sample B). In the first case, sample A, HR-TEM image and the 

corresponding FFT diffraction pattern (Figure 6) indicate the presence of well-defined 

elongated nanostructures along the c crystallographic orientation displaying a [0110] zone 

axis. This brick-like structure is representative of sample surfaces dominated by nonpolar 

surfaces. Figure 6 also presents HR-TEM images for sample B and the corresponding FFT 

diffraction pattern of the selected zone of the needle entities. The analysis unequivocally 

identifies a [0001] zone axis. Therefore the nanostructure grows in a direction perpendicular 

to the crystallographic c axis mainly exposing polar (0001)/(0001) facets along the needle 

particulate surface layer. 

The experimental DRIFTS data of the samples and corresponding hydroxyl-related 

contributions are presented in Figure 7. Two different spectra are presented for samples A and 

B, obtained after dehydration treatments at 150 and 350 ºC. For any of the shown cases the 

spectra can be divided in three different regions defined by cut off levels at circa 3100 and 

3370 cm
-1

. The first region contains relatively small contributions which are presumably 

dominated by interacting OH species as well as molecularly adsorbed water contributions.
107

 

The next two regions contain contributions for isolated OH species
47-50,107

 and have variable 

importance in the two samples. Such issue becomes visually evident by the different colour-

code used in Figure 7 for the analysed ZnO surfaces. The fitting here illustrated using 8 

contributions is suggested by the derivative of the spectra (shoulders during the slow decay 
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are particularly evident in sample B) as well as theoretical predictions previously discussed. 

Furthermore, larger differences between the IR spectra of both samples are noteworthy for the 

higher dehydration temperature, as the masking contribution from adsorbed water is 

significantly decreased, highlighting alongside the predominance of the peak at ~3400 cm
-1

 on 

sample B. Last but not least, the higher dehydration temperature unveils a peak located at 

~3670 cm
-1

, which could belong to either (1010) or (0001) hydroxyl stretching modes, in 

accordance to previous DRIFTS and FTIR experiments.
47

 Note that bands in Figure 7 for 

different samples/treatments are not exactly at the same frequency due to 

morphology/coverage differences influencing the coupling between vibrational modes of 

individual molecules within a layer of adsorbates (i.e. H bonding). Details of this issue for 

ZnO extended surfaces and nanoparticles can be found in refs. 34, 47, 107. The Supporting 

Information gives details about the statistical significance of using 8 contributions, as well as 

additional physical insights. More importantly, rather than the existence and/or definitive 

assignment of each band presents in an experimental spectrum, the dominance of polar or 

nonpolar surfaces at one specific frequency region (above or below the two cut-off points 

mentioned) would be the key factor in interpreting the IR-derived morphology information at 

nanoparticles.  

The detailed interpretation of the IR active species experimentally detected is therefore 

presented in Figure 8. Such interpretation comes from analysing the relative contribution of 

the IR bands observed in Figure 7 and confronting such result with the theoretical expectation 

derived from Figure 5. Note that this latter figure displays the intensity as well as the 

frequency of the corresponding surface moieties, allowing a meaningful description of the 

vibrational features arising from surface species. Most important differences between our 

theoretical and experimental results would be related to a frequency shift between them; 

experimental results presenting always lower frequency values than theoretical ones, as 

expected due to anharmonic contributions not considered in the calculations and to an 
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inevitable inaccuracy of DF calculations too. In particular, the computed water harmonic 

symmetric and asymmetric stretching vibrations (3867 and 3753 cm
-1

, respectively) are ~100 

cm
-1

 overestimated compared to anharmonic experimental values (3756 and 3657 cm
-1

).
108

     

Although real samples have contributions from many different surface planes, the 

study of the four model surfaces in the previous sections is able to provide a nearly complete 

description of the IR spectrum at the hydroxyl region. Starting from the low wavenumber 

region, below 3100 cm
-1

, of Figures 7 and 8, the study mostly indicates the dominant presence 

of water species present at the (1010) nonpolar surface. Of course, we cannot discard the 

presence of physisorbed water species at several surfaces which would be hardy 

distinguishable among them due to the fact the frequency would be dominated by adsorbate-

adsorbate interactions rather than adsorbate-surface interactions. Furthermore, this would be 

the region where a broad band belonging to Os-H stretching vibrations of (1120) surface 

would be detected. Still the above-mentioned theoretical results indicate the stability of H2O 

absorbed species at the (1010) nonpolar surface and thus the predominance in our 

experimental conditions where desorption of physisorbed water molecules is favoured. The 

assignment of the zones above 3100 cm
-1

 provides however conclusive evidence of the 

presence of specific surface planes in the ZnO nanoparticle samples. First it can be seen in 

Figure 8 that this is a zone dominated by surface contributions of nonpolar surfaces (e.g. 

bands between 3100 and 3370 cm
-1

). In agreement with this, we can see that the brick-type A 

sample presents a significantly larger intensity contribution than needle-type B sample.  

The zone around 3370-3450 cm
-1

 displays an important single contribution. As it 

presents more significant intensity in sample B —mainly exposing polar (0001)/(0001) 

facets— than sample A it could be expected to be related to polar surfaces. We may suggest 

that it would correspond to Os-H species on (0001) polar surfaces. This correlates well with 

the features presented in Figure 2 and Table 1 considering that the exact peak position for 

such adspecies depends critically on coverage (as it was discussed above, contributions 
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located between the two frequencies presented in Figure 2 are possible in experimental 

studies in dependence on the exact coverage of the surface). Note in passing that, as above 

explained, coverage beyond 0.5 ML is achievable depending on the water exposure. 

Furthermore, even coexistence of domains with different local coverage cannot be discarded. 

According to Figures 2 and 5, the Os-H(0001) species assignment seems the only possible 

from our data and it should be noted that contributions in the 3370-3450 cm
-1

 have been 

frequently observed at ZnO nanoparticles faceting polar surfaces.
34,48-50

 Nevertheless other 

unexplored situations (such as edges, kinks, etc.) were previously claimed as a possibility to 

assign such contribution. Thus, the assignment of the 3410 cm
-1

 presented in Figure 8 to a 

polar contribution seems highly likely although not conclusive.  

Above 3500 cm
-1

 we can see signals from both polar (0001) and nonpolar (1010) 

surfaces although the latter seems more important at higher wavenumbers. This fact becomes 

more evident with the treatment at higher temperature. However the high frequency peak 

displays relative small intensity and would require further analysis for definitive analysis of 

this region. Thus the uncertain assignment of peaks at this zone has been visually translated in 

overlapping colours in Figure 8. 

4. Summary and Outlook 

The present work presents an extensive and systematic computational study aimed at 

the identification, by means of simulated IR spectra, of hydroxyl and hydride species formed 

on the most stable low-index Miller surfaces of würtzite ZnO, namely, the Zn- and O-

terminated (0001) and (0001) surfaces, and the nonpolar (1010) and (1120) surfaces. DF 

calculations at PBE level on slab models are found to adequately describe the surface 

structure and energetics, and to capture the interactions of atomic hydrogen, hydroxyl 

moieties, and water molecules adsorbed upon. All possible adsorption modes for H and OH 

moieties were studied on all surfaces at half and full coverage, and IR spectra were simulated 
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for the most energetically favourable situations. The gained information was combined to 

study the most likely surface arrangements when ZnO systems are exposed to H2 or H2O.    

When dosing H2 to ZnO surfaces, both hydride and hydroxyl species are formed on 

the nonpolar surfaces, being an exothermic process by ~50 kJ mol
-1

, and with IR-active peaks 

at ~1800 and ~3600 cm
-1

, being both nonpolar surfaces nearly indistinguishable. The O-

terminated (0001) surface is strongly attaching H adatoms, being the adsorption process 

exothermic by 194 kJ mol
-1

 and 152 kJ mol
-1

 at half and full coverage, respectively, with 

dominant IR Os-H stretching peaks. The half coverage situation forming a (1×2) pattern is 

thermodynamically preferred, with a signal at 3744 cm
-1

, although a full coverage situation is 

feasible at moderate/high H2 pressures, with an estimated IR frequency of 3489 cm
-1

. Last but 

not least, formation of hydrides arranging in a (1×2) pattern is an isoenergetic process on 

(0001) surface, with Zn-H stretching IR peaks at 1833 cm
-1

, while full coverage is an 

endothermic process, and so, a metastable situation with IR signal located at 1499 cm
-1

.  

When dosing H2O, the situation changes; a (1×2) pattern is clearly preferred —

adsorption energy of 286 kJ mol
-1

— having hydroxyl and hydride moieties on (0001) and 

(0001) surfaces, respectively. This leads to additive IR signals at 3744 and 3755 cm
-1

, 

although the former signal is ~100 times more intense, and the only thought to be detectable. 

In any case, when dosing H2O to these surfaces, hydroxyl signals on nonpolar surfaces are the 

most intense: On the (1010) water arranges in a mixed dissociated state, with an adsorption 

energy of 112 kJ mol-1, in which the hydroxyls formed from water splitting feature a 

stretching frequency at 3765 cm
-1

, this is, an IR signal blue shifted from the polar surfaces. 

Furthermore, H adatoms formed from H2O partial dissociation produce surface hydroxyls 

with a characteristic IR stretching at 3159 cm
-1

. This mode is coupled with non-dissociated 

H2O stretching modes —2864 and 2994 cm
-1

— forming a broad band. Finally, water is 

completely dissociated on the (1120) surface, revealing two clearly distinguishable peaks at 
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2587 and 3399 cm
-1

, belonging to surface OH, and hydroxyls from dissociated water, 

respectively.      

 The combination of experimental and theoretical methods does not only allow one to 

discriminate among different water-related species in IR studies concerning model surfaces, 

but also in photocatalytically relevant ZnO nanoparticles. A very important finding is that 

experimental frequency regions between 3100-3370 and 3370-3500 cm
-1

 seems distinctive of 

nonpolar and polar surfaces, respectively, and would thus allow to identify the dominance of 

such type of surfaces at in situ conditions where the application of microscopy or other 

techniques is rather complex. This indicates that IR is a powerful tool in describing shape and 

surface morphology of ZnO nanostructures and allows to follow active surface sites under 

reaction conditions. 
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Table 1: Structural (bond length δ, and angle respect to surface plane α), energetic 

(adsorption energy Eads), and vibrational (frequency ν) data for the H adsorption on ZnO 

surfaces as Zn-H or Os-H moieties at different coverage. Notice that coadsorption situation 

belongs to cases where Zn-H and Os-H species are simultaneously coexisting, both at full 

coverage.  

 

  δ  α  Eads ν  

 pm º kJ mol
-1

 cm
-1

 

  0.5 ML 

Zn-H (0001) 155 88.6 216 1833 

Os-H 

(0001) 97 88.6 412 3744 

(1010) 98 74.5 231 3630 

(1120) 98 55.8 202 3569 

  1 ML 

Zn-H (0001) 160 89.6 119 1499 

Os-H 

(0001) 99 89.9 294 3489 

(1010) 98 66.1 208 3586 

(1120) 99 49.2 196 3495 

  Coadsorption 

Zn-H 
(1010) 156 67.8 261 1797 

(1120) 156 56.7 265 1814 

Os-H 
(1010) 98 63.6 261 3601 

(1120) 98 53.0 265 3606 
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Table 2: Structural (bond length δ, and angle respect to surface plane α), energetic 

(adsorption energy Eads), and vibrational (frequency ν) data for the adsorption of OH moieties 

on ZnO surfaces at different coverages. 

 

  0.5 ML 1.0 ML 

 δ  α  Eads ν  δ  α  Eads ν  

 
pm 

º kJ 

mol
-1

 
cm

-1
 pm 

º kJ 

mol
-1

 
cm

-1
 

(0001) µ
3
 97 83.0 393 3755 97 89.8 274 3744 

(0001) η
2
 99 11.9 148 3552 98

a
 104.4

a
 144 3683/3506 

(1010) 
µ

2
 98 38.3 172 3721 97 49.4 163 3736 

µ
1
 98 0.7 166 3699 98 20.2 159 3631 

(1120) 
η

2
 99  -16.3  133  3503  99  12.8  144  3366  

η
1
 97 43.3 131 3733 98 15.6 130 3660 

a 
Spontaneous H2O formation, and O-Os bond of 134 pm. 
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Table 3: Structural (Hydroxyl bond lengths δ, water bond lengths δ1 and δ2, hydroxyl angle 

respect to surface plane α, and water molecule angel β), energetic (adsorption energy Eads), 

and vibrational (frequency ν) data for partially- and fully-dissociated H2O adsorption 

situations on non-polar (1010) and (1120) surfaces, respectively.  

 

  H2O OH OsH 

Eads δ 1 δ 2 β  ν  δ  α  ν  δ  α  ν  

kJ mol
-1

 pm pm º cm
-1

 pm º cm
-1

 pm º cm
-1

 

(1010) 112 101 102 103.5 2864/2994 97 54.8 3765 100 55.9 3155 

(1120) 92 — — — — 99 23.3 3399 104 40.2 2587 
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Figure 1: Crystallographic ZnO würtzite structure. Preferential surface orientations are 

displayed with coloured planes and direction vectors for the hexagonal (upper image) and the 

orthorhombic (bottom image) unit cells. Orange and iceblue spheres denote Oxygen and Zinc 

atoms, respectively.  
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Figure 2: Simulated IR spectra of H adsorption on different ZnO surfaces at 0.5 (right peaks) 

and 1 ML (left peaks) coverage. Vibrational frequencies (numerical values summarized in 

Table 1) of Zn-H are referred to the top blue axis while for Os-H species to the down black 

axis. Weak peak intensities have been zoomed by a factor shown at each panel. H atoms are 

represented by white spheres. 
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Figure 3: Simulated IR spectra for full H coverage situation having both Os-H and Zn-H 

moieties on (1010) —top panel— and (1120) —bottom panel— non-polar surfaces. Note that 

both intensity scales are twice larger than those on Figure 2.  Vibrational frequency values are 

summarized in Table 1. 
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Figure 4: Simulated IR spectra of OH vibrational frequencies at 0.5 (dashed peaks) and 1 ML 

(solid peaks) coverages for (0001), (0001), (1010), and (1120) surfaces. Weak peak intensities 

have been zoomed by a factor shown at each panel. Blue lines belong to µ
2
 and η

2
 modes. 

Top and side views of the most IR-intense conformations are displayed in each panel nearby 

the conformation mode. Vibrational frequencies are gathered in Table 2.   
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Figure 5: Simulated IR spectra for OH species at half coverage for polar surfaces and full 

coverage for (1010) and (1120) nonpolar surfaces. 
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Figure 6: HR-TEM images and FFT diffraction patterns corresponding to samples A and B. 
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Figure 7: DRIFTS spectra at the hydroxyl region and bands attributable to surface species for 

samples A (left) and B (right). A/B sample treated at 150 ºC; C/D samples treated at 350 ºC. 

Colour-code is the same as the used in Figure 1 labelling the surfaces 
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Figure 8: Intensity of the contributions presented in Figure 7 A/B and ascription to different 

surface planes. Colour-code is the same as those in Figure 1 to label the surfaces.  
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