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factor-1 (HIF-1). EPO is produced primarily within
a rare cell type in the kidney. However, HIF-1 is
expressed in all cell types and functions as a master
regulator of oxygen homeostasis by playing critical
roles in both embryonic development and
postnatal physiology. HIF-1 has been identified in
all metazoan species that have been analyzed from
Caenorhabditis elegans to Homo sapiens (organ-
isms whose cell numbers differ by more than 10
orders of magnitude), suggesting that the
appearance of HIF-1 represented an adaptation
that was essential to metazoan evolution.

The expression of over 70 genes is known to be
activated at the transcriptional level by HIF-1, and
specific HIF-1 binding sites have been identified
for many of these genes. Although the list of HIF-1
target genes is extensive (FIGURE 2), it probably
underestimates the total number of genes regulat-
ed by HIF-1 by at least an order of magnitude. The
battery of genes regulated by HIF-1 is different in
each cell type, and, for some genes, expression can
be induced or repressed by HIF-1 depending on the
cell type (34). Among the critical physiological
processes regulated by HIF-1 target genes are ery-
thropoiesis, angiogenesis, and glycolysis, which are
examples of systemic, local tissue, and intracellular
adaptive responses to hypoxia, respectively (30).

HIF-1 is a heterodimeric protein that is com-
posed of HIF-1� and HIF-1� subunits. The amino-
terminal half of each subunit consists of basic
helix-loop-helix and Per-ARNT-Sim (PAS) domains
that mediate heterodimerization and DNA bind-
ing. The carboxy-terminal half of HIF-1� contains
two transactivation domains that mediate interac-
tions with coactivators such as CREB binding pro-
tein (CBP) and p300 (30, 31, 59). Coactivators inter-
act with both sequence-specific DNA binding pro-
teins such as HIF-1 and with the general transcrip-
tion factors associated with RNA Polymerase II
(reviewed in Ref. 69). Coactivators also have his-
tone acetyltransferase activity that is required to
make the DNA embedded in chromatin accessible
to the polymerase complex for transcription into
RNA.

The HIF-1� subunit is constitutively expressed,
whereas the expression and activity of the HIF-1�

subunit are precisely regulated by the cellular O2

Multicellular life on Earth is based on the use of O2

for the efficient generation of high-energy
compounds, and O2 consumption increases with
the mass and metabolic activity of the organism.
However, exposure to O2 must be limited due to the
damaging effects of reactive oxygen species (ROS)
on cellular macromolecules. Thus all of the major
physiological systems of mammals participate in
complex homeostatic mechanisms that are
designed to maintain the O2 concentration to
which each cell is exposed within a narrow range
(FIGURE 1). The study of these systems has
occupied physiologists for centuries. During the
course of the past century, these studies have been
extended to the cellular level. Finally, research over
the past decade has produced dramatic insights
into the molecular mechanisms underlying oxygen
homeostasis during both prenatal and postnatal
life.

Control of Oxygen-Regulated Gene
Expression by HIF-1

Physiological responses involve changes in gene
expression. The blood O2-carrying capacity is
maintained by the O2-regulated production of
erythropoietin (EPO), which stimulates the
proliferation and survival of red blood cell
progenitors. Analysis of cis-acting sequences
required for increased transcription of the EPO
gene in response to hypoxia led to the
identification (70), biochemical purification (81),
and molecular cloning (79) of hypoxia-inducible

The ability to sense and respond to changes in oxygenation represents a fundamen-

tal property of all metazoan cells. The discovery of the transcription factor HIF-1 has

led to the identification of protein hydroxylation as a mechanism by which changes

in PO2 are transduced to effect changes in gene expression.
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FIGURE 1. Oxygen homeostasis
All of the major physiological systems partici-
pate in complex homeostatic mechanisms that
regulate O2 supply and demand to maintain
cellular oxygenation within a narrow range
that balances the risks associated with O2
deficiency and excess.
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concentration. HIF-1� accumulates instanta-
neously under hypoxic conditions and on reoxy-
genation is rapidly degraded, with a half-life of <5
min in posthypoxia tissue culture cells (28, 79). This
represents an overestimate of the half-life, because
it includes the time required for O2 to diffuse out of
the culture medium. In an isolated, perfused, and
ventilated lung preparation subjected to hypoxia
and reoxygenation, the half-life of HIF-1� is <1 min
(85). No protein has been shown to have a shorter
half-life.

In addition to HIF-1�, a structurally and func-
tionally related protein designated HIF-2�, which
is the product of the EPAS1 gene, can also het-
erodimerize with HIF-1� (77). HIF-1�:HIF-1� and
HIF-2�:HIF-1� heterodimers appear to have over-
lapping but distinct target gene specificities (22,
73). Unlike HIF-1�, HIF-2� is not expressed in all
cell types, and when expressed it can be inactive as
a result of cytoplasmic sequestration (56). A third
protein, designated HIF-3�, has also been identi-
fied (18). Its role has not been well defined,
although a splice variant, designated IPAS, has
been shown to bind to HIF-1� and inhibit its activ-
ity (45, 46).

Molecular Mechanisms of Oxygen
Sensing

The mechanism underlying the dramatic
regulation of HIF-1� protein expression was a

source of great debate, with several models
proposed that invoked, for example, the
functioning of an O2-binding hemoprotein or an
ROS-generating NADPH oxidase as central to the
oxygen sensing that determined HIF-1� levels
(reviewed in Ref. 66). Among the observations used
to support these models was the finding that HIF-1
DNA binding activity and target gene expression
were induced in cells exposed to the iron chelator
desferrioxamine or to cobalt chloride (80).
Remarkably, HIF-1� transactivation domain
function is also induced in cells exposed to
hypoxia, iron chelation, or cobalt chloride (30, 31,
59), suggesting a common mechanism for
regulating both HIF-1� expression and activity.

The O2-dependent degradation of HIF-1�

involves ubiquitination and degradation by the 26S
proteasome (23, 32, 61). The von Hippel-Lindau
tumor suppressor protein (VHL) is required for this
process (FIGURE 3), because renal carcinoma cells
lacking functional VHL constitutively express HIF-
1� and HIF-1 target genes under nonhypoxic con-
ditions (6, 49). VHL forms a complex with elongin
B, elongin C, cullin 2, and RBX1 to form an E3 ubiq-
uitin-protein ligase capable of functioning with E1
ubiquitin-activating and E2 ubiquitin-conjugating
enzymes to mediate the ubiquitination of HIF-1�

(33).
A region of HIF-1� encompassing amino acid

residues 400–600 is necessary and sufficient for O2-
regulated ubiquitination and degradation (23, 32,
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FIGURE 2. Representative HIF-1 target genes 
Hypoxia inducible factor-1 (HIF-1) activates the transcrip-
tion of genes encoding secreted signaling proteins,
including angiogenic growth factors and survival factors,
cell surface receptors, extracellular matrix proteins and
modifying enzymes, transcription factors, cytoskeletal
proteins, proapoptotic proteins, and glucose trans-
porters and glycolytic enzymes. ADM, adrenomedullin;
ADRA1B, �1B-adrenergic receptor; ALD, aldolase;
ANGPT, angiopoietin; CITED, CREB binding protein
(CBP)/p300-interacting transactivator; COL5A1, collagen
V �1-subunit; CTSD, cathepsin D; CXCR, chemokine
receptor; DEC, differentiated embryo chondrocyte
expressed; EDN, endothelin; ENO, enolase; EPO, ery-
thropoietin; ETS, erythroblastosis virus transforming
sequence; FN, fibronectin; GLUT, glucose transporter;
GPI, glucose phosphate isomerase; HK, hexokinase; KRT,
keratin; LDHA, lactate dehydrogenase A; LEP, leptin;
MMP, matrix metalloproteinase; NIP, BCL2/adenovirus
E1B 19-kDa-interacting protein; NIX, NIP3-like; P4HA1,
prolyl-4-hydroxylase �1-subunit; PFKFB3, 6-phosphofruc-
to-2-kinase/fructose-2,6-bisphosphatase-3; PFKL, phos-
phofructokinase L; PGF, placental growth factor; PGK,
phosphoglycerate kinase; PLAUR, urokinase-type plas-
minogen activator receptor; PROK, prokineticin
(endocrine gland-derived VEGF); STC, stanniocalcin; TF,
transferrin; TFRC, transferrin receptor; TGFA and TGFB,
transforming growth factor-� and -�; TPI, triose phos-
phate isomerase; VEGFR, VEGF receptor; VIM, vimentin.
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74). VHL interacts, via its �-domain, with amino
acid residues 532–585 of HIF-1� (55, 75). Because
the ubiquitination and degradation of other key
regulatory proteins such as I	B are regulated by
phosphorylation, great effort was made to identify
phosphorylatable (serine, threonine, tyrosine)
residues of HIF-1� that were important for regula-
tion of protein half-life, but to no avail. Instead,
Pro-564 is hydroxylated in an O2-dependent man-
ner, and this modification is required for VHL bind-
ing (25, 27, 87). Pro-402 represents a second site of
hydroxylation and VHL binding (48). Pro-402 and
Pro-564 are each contained within a similar amino
acid sequence (LXXLAP, where A is alanine, L is
leucine, P is proline, and X is any amino acid). HIF-
2� and HIF-3� expression are also regulated by
prolyl hydroxylation and VHL binding (20, 49, 50).

Three prolyl hydroxylases were identified in
mammalian cells and shown to use O2 as a sub-
strate to generate 4-hydroxyproline at residue 402
and/or 564 of HIF-1� (2, 13, 24). These proteins are

REVIEWS

homologues of EGL-9, which was identified as the
HIF-1� prolyl hydroxylase in C. elegans by genetic
studies (13). Alternative designations for the three
mammalian homologues include EGL-9 homo-
logue (EGLN), prolyl hydroxylase domain protein
(PHD), and HIF-1� prolyl hydroxylase (HPH) 1–3.
The hydroxylation reaction also requires 2-oxoglu-
tarate (�-ketoglutarate) as a substrate and gener-
ates succinate as a side product. Ascorbate is
required as a cofactor. The prolyl hydroxylase cat-
alytic site contains an Fe(II) ion that is coordinated
by two histidine and one aspartate residue. Unlike
heme-containing proteins, the Fe(II) in 2-oxoglu-
tarate-dependent oxygenases can be chelated or
substituted by Co(II), rendering the enzyme inac-
tive. Most importantly, these prolyl hydroxylases
have a relatively high Km for O2 that is slightly above
its atmospheric concentration, such that O2 is rate
limiting for enzymatic activity under physiological
conditions (13, 20). As a result, changes in the cel-
lular O2 concentration are directly transduced into
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FIGURE 3. Oxygen sensing by hydroxylation of
HIF-1��
The amino-terminal half of HIF-1� consists of basic helix-
loop-helix (bHLH) and Per-ARNT-Sim homology (PAS)
domains. The carboxy-terminal half contains the transac-
tivation domains (TAD-N and TAD-C). The HIF-1� prolyl
hydroxylases (HPH)/prolyl hydroxylase domain proteins
(PHD) 1–3 hydroxylate Pro-402 and Pro-564. Factor
inhibiting HIF-1 (FIH-1) hydroxylates Asn-803. Proline
hydroxylation is required for the interaction of HIF-1�
with the von Hippel-Lindau tumor-suppressor protein
(VHL), which is the recognition component of an E3
ubiquitin-protein ligase that targets HIF-1� for proteaso-
mal degradation. Asparagine hydroxylation prevents the
interaction of HIF-1� with the coactivators CBP and
p300. The enzymes, which contain Fe(II) at the active
site, can be inactivated by desferrioxamine (DFX) and
other iron chelators. O2 appears to be a rate-limiting
substrate for the hydroxylases under physiological condi-
tions, thus providing a mechanism for the direct regula-
tion of the stability and activity of HIF-1� as a function of
the cellular O2 concentration.
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changes in the rate at which HIF-1� is hydroxylat-
ed, ubiquitinated, and degraded. However, a thor-
ough analysis of the relationship between O2 con-
centration and enzyme activity for each of the
PHDs in living cells, and a comparison with the
corresponding dose-response curve for HIF-1�

expression (29), has not yet been reported. In par-
ticular, the plot of HIF-1� protein levels as a func-
tion of O2 concentration in HeLa cells yielded a sig-
moidal curve suggestive of cooperativity (29), a
finding that is not readily explained by the known
biochemistry of the HIF-1� prolyl hydroxylases.

Remarkably, HIF-1� transactivation domain
function is regulated by O2-dependent hydroxyla-
tion of Asn-803, which blocks the binding of the
coactivators CBP and p300 (41). Factor inhibiting
HIF-1 (FIH-1), which was identified in a yeast two-
hybrid screen as a protein that interacts with and
inhibits the activity of the HIF-1� transactivation
domain (44), functions as the asparaginyl hydroxy-
lase (19, 40). As in the case of the prolyl hydroxy-
lases, FIH-1 appears to use O2 and 2-oxoglutarate
and contain Fe(II) in its active site (11, 42, 51),
although it has a Km for O2 that is three times lower
than the prolyl hydroxylases (37).

Spectroscopic analyses of a peptide from the
HIF-1� transactivation domain complexed with
the interacting domain of CBP or p300 revealed
that Asn-803 is present within an �-helix that is
buried deep within the protein interface, where it
participates in multiple hydrogen-bonding inter-
actions that are predicted to stabilize the complex
(9, 12, 15). Hydroxylation of Asn-803 is predicted to
disrupt these protein-protein interactions.
Similarly, hydroxylation of Pro-564 has been shown
to also function as a molecular switch to positively
regulate the interaction of HIF-1� and VHL (21, 53).
Thus hydroxylation provides a mechanism for reg-
ulating protein-protein interactions, similar to the
effect of phosphorylation and other posttransla-
tional modifications. However, what sets hydroxy-
lation apart is that the modification occurs in an
O2-dependent manner, thus establishing a direct
link between cellular oxygenation and HIF-1 activ-
ity.

One remarkable aspect of the O2-sensing system
described above is its plasticity. Although O2 may
be the limiting substrate for hydroxylation under
physiological conditions, it appears that under
pathophysiological conditions iron or ascorbate
may also be limiting (36). Furthermore, the expres-
sion of the PHDs varies from one cell type to anoth-
er as well as in response to various physiological
stimuli, including hypoxia (1, 10, 13, 52). Thus the
O2 dose-response curve may be shifted to the left or
right under different developmental or physiologi-
cal conditions. Alternative splicing of the primary
RNA transcripts for two of the PHDs provides yet

another mechanism for modulating prolyl hydrox-
ylase activity (20). Finally, the transcriptional
response elicited by a hypoxic stimulus also
demonstrates a remarkable degree of plasticity,
because the battery of target genes that is regulated
by HIF-1 is unique to each cell type (34). Thus the
identification of the molecular components of the
O2-sensing system represents a milestone, rather
than a finish line, on the course to defining the
physiology of oxygen homeostasis.

Developmental and Physiological
Consequences of HIF-1 Activity

The identification of HIF-1, VHL, FIH-1, and the
PHDs over the past decade has delineated a
pathway by which cells sense O2 and respond to
changes in oxygenation with changes in gene
expression, a property that is fundamental to the
cells of all metazoan species. Coincident with these
dramatic molecular discoveries have been equally
dramatic discoveries regarding the remarkable
variety of biological processes in which HIF-1 plays
an important role. Analyses of mice, in which
expression of HIF-1� has been lost either in all cells
(germline knockout) or a single cell lineage
(conditional knockout), have identified multiple
aspects of development and physiology that are
dependent on HIF-1 (TABLE 1). Indeed, the study
of HIF-1’s role in development and physiology
provides a basis for unifying these two central areas
of biology. O2 delivery to cells of the developing
embryo becomes limited by diffusion such that
establishment of a functioning circulatory system
is required for embryonic survival by embryonic

TABLE 1. Developmental and physiological roles of HIF-1 as established
by analysis of HIF-1��-null mice and cell lines

Role(s) References

Development

Cardiovascular development. embryonic survival 7, 26, 39, 60

Chondrogenesis/skeletal development 62

Adipogenesis 88

B lymphocyte development 38

Mammary gland development 64

Physiology

Angiogenesis 5, 34, 60

Hypoxia-induced glycolysis 26, 65

Hypoxia-induced apoptosis 5

Hypoxia-induced erythropoiesis 86

Hypoxia-induced pulmonary vascular remodeling 71, 86

Carotid body sensing of arterial PO2 35

Myeloid cell-mediated inflammation 8

Hypoxia-induced myocardial preconditioning 4

Hypoxia-induced cell cycle arrest 17

HIF, hypoxia-inducible factor
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an equally important role in disease
pathophysiology, including ischemic cardio-
vascular disease (3, 67) and cancer (68, 82), the
most common causes of mortality in the US
population. As a result, there is considerable
interest in HIF-1 as a therapeutic target in these
disorders (16, 68, 82). In the case of cardiovascular
disease, increased HIF-1 activity induced as a result
of HIF-1� gene therapy (34, 72, 78), small molecule
inhibitors of prolyl hydroxylase activity (20, 24, 43),
or inhibitors of HIF-1�-VHL interaction (83) may
provide a means to stimulate neovascularization of
ischemic tissue. In contrast, small-molecule
inhibitors of HIF-1 activity may be useful as
anticancer agents (84). However, because HIF-1
functions as a global regulator of oxygen
homeostasis, it may not be a useful therapeutic
target if the treatment results in unintended and
undesirable side effects. An alternative approach
may be to focus on the products of HIF-1 target
genes. For example, erythropoietin administration
may reduce ischemia-induced apoptosis in
patients presenting with acute cerebral or
myocardial infarction (4, 14, 54, 57). The translation
of a rapidly growing body of basic science data into
clinical applications looms as the most challenging
and most important goal in this exciting field. �
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