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Abstract

It has long been known that methylated cytosines deaminate at higher rates than unmodified cytosines and constitute
mutational hotspots in mammalian genomes. The repertoire of naturally occurring cytosine modifications, however,
extends beyond 5-methylcytosine to include its oxidation derivatives, notably 5-hydroxymethylcytosine. The effects of these
modifications on sequence evolution are unknown. Here, we combine base-resolution maps of methyl- and
hydroxymethylcytosine in human and mouse with population genomic, divergence and somatic mutation data to show
that hydroxymethylated and methylated cytosines show distinct patterns of variation and evolution. Surprisingly,
hydroxymethylated sites are consistently associated with elevated C to G transversion rates at the level of segregating
polymorphisms, fixed substitutions, and somatic mutations in tumors. Controlling for multiple potential confounders, we
find derived C to G SNPs to be 1.43-fold (1.22-fold) more common at hydroxymethylated sites compared to methylated sites
in human (mouse). Increased C to G rates are evident across diverse functional and sequence contexts and, in cancer
genomes, correlate with the expression of Tet enzymes and specific components of the mismatch repair pathway (MSH2,
MSH6, and MBD4). Based on these and other observations we suggest that hydroxymethylation is associated with a distinct
mutational burden and that the mismatch repair pathway is implicated in causing elevated transversion rates at
hydroxymethylated cytosines.
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Introduction

In mammalian genomes, most cytosines that occur in a CpG

context are methylated. 5-methylcytosines (5mCs) at CpG

dinucleotides exhibit mutation rates an order of magnitude above

that of unmodified cytosines, a consequence both of their greater

propensity to deaminate and error-prone repair of the resulting

thymine [1]. This mutational liability is evident in higher levels of

single nucleotide polymorphisms (SNPs) segregating at CpGs in

mammalian populations [2–4], higher rates of divergence between

species at these sites [5,6], and higher somatic mutation rates in

many cancer genomes compared to other nucleotide contexts [7].

Recently, it has become clear that the repertoire of naturally

occurring cytosine modifications in mammals extends beyond

5mC to include a series of modifications derived from successive

rounds of 5mC oxidation: 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC), and 5-carboxylcytosine (5caC) [8,9]. 5fC and

5caC have been found to occur at low frequencies in genome-wide

studies in human and mouse (,0.01–0.0001% of cytosines [10]),

consistent with being rapidly converted intermediates in an active

demethylation pathway that involves cumulative oxidation of 5mC

by Tet enzymes and the eventual removal of 5fC or 5caC via base

excision repair (BER) [11]. In contrast, 5hmC has been detected at

relatively high levels (,0.1% of cytosines) in certain cell types

including Purkinje cells, embryonic stem (ES) cells and primordial

germ cells, suggesting that it might be present as a quasi-stable

epigenetic mark rather than merely a transient demethylation

intermediate [12].

In the context of the high mutational burden of 5mC and

considering that 5hmC can be present as a stable epigenetic mark,

we wondered whether methylated and hydroxymethylated sites

might be associated with distinct patterns of sequence evolution,

perhaps as a consequence of divergent mutational biases. For

example, in mammalian systems, repair of 5hmU:G mismatches

(derived from 5hmC deamination) by the glycosylases TDG and

SMUG1 is less error-prone than dealing with 5mC-derived T:G

PLOS Genetics | www.plosgenetics.org 1 September 2014 | Volume 10 | Issue 9 | e1004585

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1004585&domain=pdf


mispairs [13]. As a consequence, residues that spend a significant

proportion of their lifetime in the germline in a 5hmC state might

be less mutagenic than 5mC sites.

Here, to elucidate the evolutionary repercussions of hydro-

xymethylation, we integrate population genomic, inter-species

divergence and somatic mutation data from tumors with publicly

available base-resolution maps of 5hmC and 5mC in human and

mouse ES cells [14–17]. As further discussed below, 5hmC profiles

in ES cells show similarities to 5hmC profiles at different stages of

germline development, making ES cells a relevant model system to

investigate the impact of hydroxymethylation on sequence

evolution.

Results

DNA methylation at single nucleotide resolution is commonly

detected using bisulfite sequencing. While bisulfite sequencing

provides a high-coverage view of methylation across the genome, it

does not discriminate between 5hmC and 5mC modifications: any

site identified as modified by bisulfite sequencing could be 5hmC

or 5mC. However, alternative sequencing strategies, notably Tet-

assisted bisulfite sequencing (TAB-Seq) [15] and oxidative bisulfite

sequencing [18], can, when used in conjunction with traditional

bisulfite sequencing, specifically identify 5hmC residues. We

therefore defined methylated, hydroxymethylated, and unmethy-

lated cytosines as follows: for human ES cells (H1 hESC), we

followed the binary classification into methylated and unmethy-

lated cytosines provided by [16]. For mouse embryonic stem cells

(E14TG2a mESC), to make results more comparable between

species, we decided to emulate these binary calls. To do so, we

examined how the H1 hESC binary classification relates to the

underlying quantitative read data (Figure S1). Sites where less than

20% of the reads support methylation are typically classified as

unmethylated. Accordingly, we classified mouse cytosines as

unmethylated, if the fraction of reads supporting methylation in

mESC [14] was lower than 0.2. For both human and mouse, we

then subdivided the methylated class into 5hmC and 5mC sites,

with sites classified as 5hmC if at least one read from TAB-Seq in

the same cell line [15] supported hydroxymethylation. This simple

categorization allows us to contrast patterns of sequence evolution

associated with different methylation states. In reality, the three

states coincide at a given cytosine across a population of cells and

indeed across the life cycle of the cytosine, with 5mC a necessary

precursor to generate 5hmC.

Elevated C to G transversion rates at hydroxymethylated
sites

We then focussed on residues located outside of repeat regions,

covered by at least ten sequencing reads in the pertinent bisulfite

experiment, and amenable to accurate SNP calling (Materials and

Methods). Further, as cell line genotypes differ from the reference

genomes, we confined analysis to sites with known cell line

genotype, using ENCODE short read data to genotype H1 hESC

(Materials and Methods). For this high-confidence dataset, we

asked what fraction of 5mC, 5hmC, and C sites are associated with

a derived SNP (‘‘SNP rate’’) in the human population and across

17 different laboratory or wild-derived inbred mouse strains. As

shown in Figure 1, there is a small (but significant) reduction in C

to T SNP rates at 5hmC compared to 5mC sites, consistent with

less error-prone repair of 5hmU compared to T as suggested

above. Unexpectedly, however, 5hmC sites in both human and

mouse exhibit substantially higher rates of C to G transversions

than 5mC sites, with C to A rates additionally elevated in human.

Regarding the relative frequency of different base changes,

transitions are an order of magnitude more common than

transversions for both 5mC and 5hmC, likely reflecting high

mutation rates following deamination.

Next, we considered rate differences at the level of divergence

between species. For sites inferred to be cytosines in the human-

chimp ancestral genome (see Materials and Methods), we

examined substitutions along the chimp lineage as a function of

methylation state in human. Consistent with the population

genomic data, transversion rates are higher at 5hmC sites

(Figure 1). Analysis of substitutions in the M. spretus genome –

relative to the M. musculus-M. spretus ancestral genome and M.
musculus methylation state – echoes this result: C to G rates are

higher at 5hmC sites than at 5mC sites (Figure 1).

Different evolutionary regimes at hydroxymethylated
sites are independent of sequence and functional
context

The incidence of 5hmC sites varies according to regional GC

content [15,19], functional context (intron, exon, promoter, etc.)

[20], and chromatin environment, where it is associated with

active transcription and certain enhancer states [21,22]. 5mC and

5hmC sites might therefore exhibit distinct patterns of sequence

change not because of intrinsic (mutational) differences between

the two marks but because they are unevenly represented in

functional elements or genomic regions that are governed by

disparate mutational and/or selective regimes [23,24]. Indeed,

examining derived allele frequencies (DAFs) in the human

population we find a significant excess of rare alleles at 5mC

compared to 5hmC sites (P,10220), suggesting stronger average

purifying selection at 5mC sites (Figure S2).

In order to isolate 5hmC/5mC-specific patterns of evolution

that are independent of functional context and therefore likely

mutational in nature, we adopted the following strategy: for every

5hmC site we selected a 5mC site that matches the 5hmC site with

regard to local (650 nt around the focal site) and regional

Author Summary

Most cytosines that occur in a CpG context in mammalian
genomes are methylated. Methylation has important
functional consequences in the cell but also affects
genome evolution. Notably, methylated cytosines are
prone to deaminate and constitute mutational hotspots
in mammalian genomes. Recently, a series of other
modifications, derived from the oxidation of methylated
cytosines, was shown to exist in various mammalian cell
types including embryonic stem cells. The most abundant
of these modifications is 5-hydroxymethylcytosine. In this
work, we ask whether methylated and hydroxymethylated
cytosines are subject to the same mutational biases or lead
to distinct patterns of genome evolution. To do so, we
examine differences between individuals, between species,
and between normal and cancer tissues alongside high-
resolution maps of DNA methylation and hydroxymethyla-
tion in the human and mouse genomes. Unexpectedly, we
find that hydroxymethylated cytosines are associated with
more cytosine to guanine changes in both human and
mouse populations, in closely related species, and in the
context of somatic evolution in tumors. Based on multiple
lines of evidence, we suggest that the different patterns of
sequence evolution at methylated and hydroxymethylated
sites are owing to differences in how these sites are
handled by the DNA repair machinery.

Evolution at Hydroxymethylated Cytosines
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(6500 nt) GC content, chromatin state, biotype, the upstream

neighbouring nucleotide and the methylation level of the focal

cytosine (see Materials and Methods and Table S1 for details).

Matching for methylation level is particularly important given

previous findings that more highly methylated CpGs in human

sperm are associated with a greater frequency of rare derived

alleles [4], consistent with selection being stronger, on average, at

highly methylated sites.

Concurrently matching across multiple criteria in this fashion is

feasible because 5mC sites vastly outnumber 5hmC sites so that a

match can be found for a large fraction of 5hmCs. We did not

include unmethylated cytosines in this analysis because matching

across three categories severely reduces sample size. As mamma-

lian hydroxymethylation occurs almost exclusively at CpG

dinucleotides [15,20], we focus on sites in the CpG context. All

rate estimates below, including in the context of tumor evolution,

refer to this context.

This matching procedure yields 121604 and 154060 5hmC-

5mC pairs for human and mouse, respectively, which are matched

with regard to various potential confounders and no longer differ

significantly in their DAF spectra (P = 0.1, Figure S2), suggesting a

similar distribution of selective constraints for the two classes of

sites.

Comparing SNP rates across matched sites suggests that

differences in C to T rates between 5mC and 5hmC sites are

indeed minor, and only remain marginally supported in mouse

(Figure 2A, fold difference in rate (5hm/5mc): human: 0.99;

mouse: 0.96). Importantly, however, pronounced differences in C

to G transversion rates remain evident in both mouse and human

(fold difference: human: 1.43; mouse: 1.22). Moreover, faster C to

G rates at 5hmC sites are found across different chromatin states,

biotypes (Figure 2C, Human: P,8*1026, Mouse: P,0.0005;

binomial test, testing for likelihood of all chromatin states showing

enrichment in the same direction), and GC content levels

Figure 1. Evolutionary rates differ according to methylation state. Rates of cytosine loss are given as a function of methylation status (5hmC:
red; 5mC: orange; C: grey), methylation context (CHH, CHG, CG; H = A/C/T) and evolutionary event (derived SNPs in human or mouse population;
substitutions along the chimp or M. spretus lineage; somatic mutations in cancer genomes). Only significant differences between 5hmC and 5mC sites
in a CpG context are highlighted (***P,0.001; **P,0.01; *P,0.05). Error bars are 95% confidence intervals, calculated using Wilson’s interval score for
single proportions.
doi:10.1371/journal.pgen.1004585.g001

Evolution at Hydroxymethylated Cytosines

PLOS Genetics | www.plosgenetics.org 3 September 2014 | Volume 10 | Issue 9 | e1004585



Evolution at Hydroxymethylated Cytosines

PLOS Genetics | www.plosgenetics.org 4 September 2014 | Volume 10 | Issue 9 | e1004585



(Figure 2D) and appear independent of the immediate nucleotide

context (Figure 2B). For many of these subsets, differences are

individually significant and we do not find a single context where

the C to G rate is faster at 5mC sites. Furthermore, the effect is

insensitive to nucleosome occupancy (Figure 2F) and observed in

both open and closed chromatin as defined by the ENCODE

project for H1 hESC (Figure 2E), suggesting that it is not simply a

corollary of differential DNA accessibility, with, for example, more

open chromatin structure facilitating Tet-mediated 5hmC gener-

ation [25] but also rendering DNA more prone to oxidative

damage, a cause of C to G transversions [26].

Embryonic stem cells provide adequate models to assess
the evolutionary repercussions of hydroxymethylation

Having systematically accounted for differences in functional

and sequence context, we reasoned that differences between 5mC

and 5hmC sites likely reflect mutational biases. However, any

mutational bias model rests on the assumption that (hydro-

xy)methylation patterns in ES cells are predictive of patterns in

the germline and can therefore contribute mechanistically to a

5hmC-related mutation signature. To evaluate this assumption

we first considered base resolution 5hmC maps for mouse

neurons (adult frontal cortex) [17]. In particular, we focused on

sites with evidence for hydroxymethylation in neurons but not in

ES cells. Hydroxymethylation that is present exclusively in

differentiated cells such as frontal cortex neurons should have

no bearing on mutation dynamics in the germline. Neuron-

specific 5hmC sites should, in mutational terms, behave like

germline 5mC sites. We repeated the matching procedure

described above, but now pairing neuron-specific 5hmC sites to

sites called as 5mC in both ES cells and neurons. As predicted,

there is no difference in C to G rates between the matched pairs

(Figure 2G) and rates at neuron-specific 5hmC sites are

significantly lower than at 5hmC sites in mESCs (P = 0.0009).

Importantly, hydroxymethylation is more common in neurons, so

this result is not an artefact of reduced power (number of

matched pairs N = 428032).

The genomic incidence of hydroxymethylation has previously

been examined for different stages of mouse spermatogenesis,

using a chemical labelling method followed by enrichment and

sequencing [27]. We find that 5hmC sites in ES cells are

overrepresented in 5hmC-enriched regions in sperm, particularly

at earlier stages of spermatogenesis (Figure S3). In addition, at

multiple stages of spermatogenesis we find significant differences in

C to G SNP rates (calculated for 5hmC and 5mC sites in ES cells)

in 5hmC-enriched regions (Figure S3). In contrast, we never

observe significant differences in regions without 5hmC enrich-

ment. Note that there is high overlap in 5hmC-enriched regions

across different stages of spermatogenesis [27], precluding

statistically meaningful analysis of sites exclusively hydroxymethy-

lated at some stages but not others. Future base resolution data will

be required to establish more precisely to what degree hydro-

xymethylation patterns in the germline and ES cells overlap.

However, based on the data presented and unpublished data

showing high levels of similarity between 5hmC profiles in ES cells

and the early germline (P. Hajkova, unpublished results), we

suggest that ES cells constitute a relevant proxy to study the

evolutionary repercussions of hydroxymethylation.

Hydroxymethylation quantitatively predicts C to G
transversion rates in humans

We reasoned that – if elevated C to G rates are mechanistically

linked to hydroxymethylation – they might be higher at sites where

the 5hmC mark is more prevalent. Hydroxymethylation is non-

stoichiometric and sites classified as 5hmC are typically hydro-

xymethylated in a minority of cells in the population. We therefore

tested whether cytosines with higher levels of hydroxymethylation

exhibit higher SNP rates. This is indeed the case in human

(Figure 3, P = 0.04; test of proportions comparing terminal bins).

Although an increase towards higher rates for highly hydro-

xymethylated sites is also apparent in mouse, the difference is not

significant.

5hmC sites are associated with higher C to G transversion
rates in cancer genomes

If differences at 5hmC sites reflect mutational biases, such biases

might also operate in the context of somatic evolution. To explore

this possibility, we compiled a catalogue of single nucleotide

mutations across 346 diverse fully sequenced cancer genomes (see

Materials and Methods) and compared somatic mutation rates for

the set of matched 5hmC and 5mC sites described above. Again,

we find significantly elevated C to G rates at 5hmC sites (Figure 1).

We then examined the relationship between C to G rates in

tumors and the expression of Tet proteins. Tet proteins catalyse

the oxidation of 5mC to 5hmC and therefore constitute a critical

rate-limiting step for 5hmC generation, as evident in lower

genome-wide levels of 5hmC in mouse ES cells where Tet1/2

protein levels are diminished following shRNA-mediated knock-

down [28]. As Tet expression levels affect the relative abundance

of 5hmC, we predict that Tet expression should positively

correlate with C to G mutation rates, irrespective of low baseline

hydroxymethylation levels in cancer cells compared to ES cells or

neurons. Figure 4A highlights that, considering mutations across

346 cancer genomes, there are positive correlations between the

proportion of all mutations that are C to G (%C2G) and the

transcript levels of Tet1 and Tet3. To ascertain whether

correlations are stronger than expected by chance, we compared

each Tet gene to a bespoke control set of ,1500 genes most

similar in median expression and dispersion across tumors (see

Materials and Methods). As some mutational processes that

operate in cancer genomes are known to exhibit nucleotide

context biases [7], we present correlation coefficients separately for

each upstream neighbouring nucleotide. The results confirm that

expression levels for Tet1 and Tet3, but not Tet2, are strongly

associated with %C2G (Figure 4B, Tet1: P,1.57*10205; Tet2:

P.0.05; Tet3: P,4.58*10207; Stouffer test combining P values

across contexts) and largely insensitive to upstream nucleotide

context, suggesting that we are not dealing with a known, context-

dependent mutational process.

Considering correlations separately for 11 different types of

cancer (colorectal cancers, breast cancers, etc.; see Table S2 for a

complete list), we also predominantly observe positive correlations

Figure 2. Elevated C to G rates at 5hmC sites across different sequence and functional contexts. (A) Genome-wide rates of cytosine loss
at matched 5hmC and 5mC sites in the human and mouse population. (B–F) Elevated C to G SNP rates are evident for different upstream
neighbouring nucleotides (B), chromatin states and biotypes (C), regional GC content (6500 nt around the focal site) (D), open and closed chromatin
(E), and different levels of nucleosome occupancy (scaled nucleosome occupancy as defined in [62]) (F). (G) Neuron-specific 5hmC sites derived from
frontal cortex of adult mice are compared to matched 5mC sites and presented side by side with ESC matched sites (same as in Figure 2A) (***P,
0.001; **P,0.01; *P,0.05). Error bars are 95% confidence intervals, calculated using Wilson’s interval score for single proportions.
doi:10.1371/journal.pgen.1004585.g002
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for Tet1 (35 out of 44 cancer type-context combinations) and Tet3

(32/44) but not for Tet2 (17/44, Figure 4C). In terms of the

variance explained by Tet expression levels, correlations are

comparable in magnitude to the correlation between APOBEC

signature mutations and APOBEC expression recently reported

for breast cancer genomes [29].

To probe further into the putative link between Tet activity,

hydroxymethylation, and C to G transversions, we considered

SNP rates in relation to Tet1 binding footprints, determined on a

genome-wide scale in mouse ES cells [30]. Although coinciding

surprisingly poorly with the distribution of 5hmC sites [30,31], we

reasoned that Tet1 binding can be exploited as a sentinel for

intrinsic hydroxymethylation risk alongside 5hmC/5mC status

itself. 5mC sites can be seen as refractory to hydroxymethylation if

they are located inside a Tet1 binding footprint yet fail to show

signs of hydroxymethylation. Conversely, 5hmC residues located

in Tet1 binding footprints clearly can be hydroxymethylated and

are likely hydroxymethylated more reproducibly across cells and

time given the presence of Tet1. On average, 5hmC sites inside

Tet1 binding footprints should therefore spend more time in a

hydroxymethylated state than 5hmC sites outside footprints. In

line with this scenario, we observe the highest and lowest rate of C

to G transversions at 5hmC and 5mC sites inside Tet1 binding

footprints, respectively (Figure 4D). This finding also argues

against a scenario where elevated transversion rates are simply

the consequence of a locally elevated non-specific oxidation risk

associated with the presence of Tet proteins.

If different mutational dynamics at 5hmC sites are associated

with Tet-mediated oxidation, we might also suspect regions of high

5hmC turnover – where 5hmC is frequently further oxidized to

5fC/5caC and eventually undergoes BER – to show more

pronounced rate differences. Considering the presence of 5fC as

an indicator of high 5hmC turnover, we compared SNP rates

inside and outside regions found to be enriched for 5fC in mESC

[32]. We observe trends in the expected direction for all base

changes, with C to G rates more pronounced for sites located in

5fC-enriched regions (Figure 4E). However, because there are few

5fC-enriched regions and therefore few nucleotides available for

analysis, SNP rate estimates are correspondingly noisy, likely

precluding the detection of a significant differences between 5hmC

sites and residues located in 5fC-enriched regions.

Higher rates of cytosine loss at asymmetrically
hydroxymethylated sites

Yu and colleagues characterized hydroxymethylation as pre-

dominantly asymmetric - that is, at CpG dinucleotides where one

cytosine showed evidence for hydroxymethylation, the cytosine on

the opposite strand typically did not [15]. In contrast, 5mC sites

are highly symmetric, with 99% of CpG dinucleotides – when

methylated – methylated on both strands [16]. Although 5hmC

asymmetry might to some extent be owing to low sequencing

depth [20], several high resolution studies now support asymmet-

ric hydroxymethylation as a genuine phenomenon [15,33,34].

Indeed, asymmetric hydroxymethylation must occur temporarily

given that Tet enzymes oxidize a single 5mC site at a time [35].

We therefore examined SNP rates at symmetrically and

asymmetrically hydroxymethylated CpGs. Because this analysis

requires consideration of consecutive cytosines on opposite

strands, we use the total pool of eligible CpG dinucleotides rather

than the matched set employed previously. In both human and

mouse, rates of cytosine loss at 5hmC sites appear consistently

higher when the 5hmC is found in an asymmetric context

(Figure 5A, P,0.04, binomial test, testing for consistency of

enrichment across mutations and species). Note that symmetrically

hydroxymethylated sites are rare, so our power to detect

differences for transversions is limited.

Discussion

We demonstrate here that hydroxymethylated cytosines in

human or mouse ES cells show different patterns of sequence

variation and evolution compared to their 5mC-methylated

counterparts. They are more likely to give rise to C to G

transversions segregating in the population, more frequently

associated with C to G substitutions in closely related sister species

and exhibit higher rates of C to G mutations in tumors. As rates

correlate with quantitative levels of 5hmC, Tet expression/

binding, and the presence of 5fC, we suggest that rate differences

between 5hmC and 5mC sites – consistently observed across

different functional and sequences contexts – are likely mutational

in origin and mechanistically linked to hydroxymethylation rather

than the result of complex context biases that have escaped

detection. Our results also suggest that hydroxymethylation

Figure 3. Hydroxmethylation levels correlate with C to G rates. Density plots depict the distribution of hydroxymethylation levels at 5hmC
sites for the human and mouse genome. To calculate C to G SNP rates as a function of hydroxymethylation levels (% reads supporting
hydroxymethylation at a given cytosine in [15]), cytosines were assigned to bins (demarcated by vertical lines) according to their hydroxymethylation
levels and a single rate estimate was derived for each bin. Bin sizes were chosen so that each bin contains the same number of C to G changes
(N = 155 for human, N = 138 for mouse). C to G SNP rates were then compared for the terminal bins (*P,0.05). Error bars are 95% confidence intervals,
calculated using Wilson’s interval score for single proportions.
doi:10.1371/journal.pgen.1004585.g003

Evolution at Hydroxymethylated Cytosines
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patterns in ES cells are at least in part predictive of hydro-

xymethylation patterns in an evolutionarily relevant germline

context. Neuron-specific 5hmC sites, which should have no

bearing on mutation dynamics in the germline, exhibit rates

indistinguishable from matched 5mC sites as predicted. Converse-

ly, mESC 5hmC sites overlap more frequently than 5mC sites with

regions that are enriched for 5hmC during different stages of

spermatogenesis.

The results above are consistent with a model where hydro-

xymethylation has a causal role in generating higher C to G rates

at 5hmC sites. A mutational bias associated with hydroxymethyla-

tion might come as a surprise. Several in vitro studies concluded

that 5hmC correctly templates incorporation of G during

replication [36–39], in line with results from structural models

that DNA polymerases cannot distinguish 5hmC from 5mC [40].

Why then, with replication seemingly unaffected, are 5hmC sites

associated with increased transversion rates? One intriguing lead

comes from recent in vitro evidence that 5caC:G pairs stimulate

exonuclease activity of polymerase d and are bound – as strongly

as G:T mismatches – by the mismatch repair (MMR) complex

MutSa, which recognizes post-replicative single-base mismatches

[39]. Thus, base pairs involving oxidized methylcytosines might be

mutagenic despite correctly templating G incorporation if they are

(mis-)recognized as lesions by error-prone DNA repair machinery.

Figure 4. The expression and binding of Tet enzymes correlates with C to G rates. (A) Expression levels of Tet1 and Tet3, but not Tet2,
correlate with C to G somatic mutation rates across 346 cancer genomes. (B) For different upstream contexts, correlation coefficients (Spearman’s rho)
between C to G rates and expression levels were computed for the three Tet genes (red dots) and their respective set of control genes (grey/black,
see main text). Whiskers extend to approximately 1.5*IQR (interquartile range) below/above the bottom/top quartile of the data, (see R
documentation [69] for details). (C) Distribution of correlation coefficients (C to G rates , Tet expression) calculated independently for 44 different
cancer type-upstream context combinations. (D) C to G SNP rates at 5hmC and 5mC sites as a function of Tet1-binding in mESCs. (E) Rates of cytosine
loss for the matched set of sites as a function of location inside or outside 5fC-enriched regions in mESC as defined by [32]. Error bars are 95%
confidence intervals, calculated using Wilson’s interval score for single proportions. TPM: transcripts per million.
doi:10.1371/journal.pgen.1004585.g004
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Figure 5. Elevated C to G rates at asymmetrically hydroxymethylated sites. (A) Rates of cytosine loss in the human and mouse population
as a function of methylation status and symmetry. Only significant differences between rates at symmetrically and asymmetrically hydroxymethylated
5hmC sites are shown (***P,0.001). Error bars are 95% confidence intervals, calculated using Wilson’s interval score for single proportions. Rates for
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That MMR might be implicated in 5hmC-related mutagenesis

is intriguing. MMR operates immediately after replication when it

needs to discriminate the newly replicated from the template

strand, thus exhibiting an intrinsic requirement for asymmetry. In

bacteria this requirement is catered for by transient asymmetric

methylation [41]. How such guidance is achieved in eukaryotes

remains unclear, but it is interesting to speculate that asymmetries

in methylation state might affect and perhaps actively coordinate

mismatch repair in eukaryotes.

Intriguingly, examining our cancer data, we discovered strong

correlations between %C2G and three components of MMR:

MSH2, MSH6, and MBD4 (Figure 5B and Table S3). MSH2 and

MSH6 form the MutSa heterodimer mentioned above, while

MBD4, through an unknown post-transcriptional mechanism,

regulates the stability of MSH2, so that MBD4 depletion reduces

the number of MMR-competent MutSa complexes [42,43]. In

addition, MBD4 can bind and therefore potentially guide MutSa
to methylated and hydroxymethylated CpG sites [44,45].

It is further worth noting that MSH6 – the MutSa protein that

makes direct contact with DNA [46] – was recently identified as

one of the very few proteins specifically enriched for binding

5hmC [47]. (Although a related study did not report preferential

binding of MSH6 to 5hmCs [45], this might be linked to the

nature of the probes employed. Pull-down probes in the former

study were made to carry 5hmC via PCR-mediated incorporation

of 5hmCTP, an approach expected to lead to 5hmCTP

incorporation outside its natural CpG context, thus generating

de facto asymmetric sites. In contrast, the latter study used a

synthetic probe that only contained fully symmetrically hydro-

xymethylated CpGs (M. Vermeulen, pers. comm.). It therefore

seems possible, and consistent with in vitro replication studies,

which normally only consider a single modified site, that MSH6

might preferentially associate with asymmetrically hydroxymethy-

lated sites. This might explain why asymmetrically hydroxymethy-

lated sites suffer from higher mutation rates, as suggested by

Figure 5A).

Based on these observations we suggest the following model that

links MMR, hydroxymethylation and elevated C to G transversion

rates: 1.) 5hmC can be further oxidized by the Tet family of

enzymes to 5fC and 5caC 2.) During DNA replication, 5caC:G

pairing induces exonuclease activity of the replicating DNA

polymerase d and is targeted by MutSa [39], either incidentally or

as part of a regulated process. 3.) MutSa binding triggers MMR.

4.) G to C transversions are introduced by MMR-affiliated

translesion synthesis (TLS) polymerases.

Alternatively, one might consider a slightly more complex

model where mutagenic effects derive from an interaction between

the MMR and BER DNA repair pathways: After TDG glycosylase

removes 5caC/5fC, the resulting abasic site is hijacked by an

MMR-affiliated TLS polymerases, leading to elevated transversion

rates. An analogous scenario has been suggested for the MSH2-

and UNG2-dependent generation of C to G transversion by the

TLS polymerase Rev1 in the context of somatic hypermutation

[48–50]. This model is attractive because it reconciles recent

findings of MutSa binding to 5hmC/5caC with known activity of

BER at 5caC and 5fC sites. Both models predict MutSa binding to

be the rate-limiting factor in the generation of C to G

transversions. Detailed biochemical studies will be required to test

this hypothesis. However, it is clear from the analyses presented

here that hydroxymethlated and methylated CpGs show differen-

tial mutation biases that have left a detectable mark on genome

evolution, and we propose differences in DNA repair dynamics as

a plausible cause of elevated C to G mutation rates at

hydroxymethylated cytosines.

Materials and Methods

Human methylation data
Starting with all cytosine residues in the human reference

genome, we confined analysis to cytosines covered by at least 10

reads in the genome-wide bisulfite sequencing of the H1 hESC cell

line conducted by Lister et al [16] (ftp://neomorph.salk.edu/mc/

h1_c_basecalls.tar.gz), principally to render results more compa-

rable between species and allow detection of lowly (down to 10%)

hydroxymethylated sites. We excluded residues that are part of

repeats as annotated in UCSC (hg18) and added information on

hydroxymethylation status, assayed at base-resolution for the same

cell line [15]. 5hmC, 5mC, and C sites were then defined as

described in the main text.

Human variation data
Data on single nucleotide polymorphisms in the human

population from the 1000 Genomes Project [51] were obtained

using Ensembl’s biomart facility [52] (Ensembl Variation 73;

Homo sapiens short variation (GRCh37.p12); 1000 Genomes –

All; Validated variations only; Minor allele and frequency). The

ancestral allelic state was obtained directly from the 1000 Genomes

Project (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/

technical/reference/ancestral_alignments). We combined (hydro-

xy)methylation and polymorphism data after converting all

coordinates to hg19 using the liftOver tool [53], and then confined

analysis to nucleotides for which the human ancestral state was

unambiguous (uppercase residues in the 1000 Genomes Project

ancestral alignment) and that were considered assayable by the 1000

Genomes Project (/vol1/ftp/phase1/analysis_results/supporting/

accessible_genome_masks/20120824_strict_mask.bed) so as to

exclude false negative variation calls.

The Ensembl 6-primate alignment (ftp://ftp.ensembl.org/pub/

mnt2/release-75/emf/ensembl-compara/epo_6_primate/) was

used to reconstruct substitutions along the chimp lineage. We

only considered residues that were cytosines in both human and

orang-utan.

Genotyping H1
The H1 hESC genotype is not the same as the genotype of the

human reference genome. This poses the following problem:

Bisulfite sequencing works by protecting 5mC residues but not

unmethylated cytosines from being converted to uracil. Conse-

quently, whenever sequencing reveals the presence of a U/T that

maps to a C in the reference, we would infer that we have

recovered an unmethylated C. However, we might also be dealing

with a site where the H1 genotype deviates from the reference and

is in fact T. In this scenario, erroneously assuming the reference

genotype to be present would inflate the number of unmethylated

cytosines. This might seem like a minor problem, but can in fact

strongly distort downstream evolutionary analysis of unmethylated

all possible base changes are higher in an asymmetric context for both human and mouse, which is not expected to occur by chance (P,0.04,
binomial test). (B) For different upstream contexts, correlation coefficients (Spearman’s rho) were computed between C to G rates and expression
levels for different MMR components (red dots) and their respective set of control genes (grey/black, see main text). Whiskers extend to
approximately 1.5*IQR (interquartile range) below/above the bottom/top quartile of the data, (see R documentation [69] for details).
doi:10.1371/journal.pgen.1004585.g005
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cytosines, especially when it comes to the analysis of derived allele

frequencies (Figure S2).

To be conservative and enable different downstream analyses,

we therefore decided to genotype H1 using available H1-derived

short read data (RNA-seq, Chip-seq, etc.) from the ENCODE

project [54]. Genotype calls were generated from short read

alignment files using samtools mpileup and bcftools [55], with

parameter values depending on the mapping algorithm used for

generating a given short read alignment (see Table S4 for details).

Subsequently, we confined analysis to nucleotides covered by at

least 20 reads and without a single read suggesting a non-reference

genotype. This strict genotype filtering not only resolves the

problem inherent in bisulfite sequencing but also ensures that we

are dealing with sites that are homozygous in H1. This is

important to allow a fair comparison of methylation levels across

sites and also facilitates comparison between human and the

inbred mouse strains.

Mouse methylation data
As done for human, we start from a list of all cytosines in the

mouse genome (mm9) and subsequently remove nucleotides

covered by fewer than 10 reads in the bisulfite sequencing study

of the E14TG2a mESC line conducted by [14]. As before, we

exclude nucleotides annotated as repeats by UCSC (based on

mm9), added hydroxymethylation [15] and converted coordinates

to mm10 using liftOver. Unlike Lister et al [16], Stadler and

colleagues do not provide binary methylation calls (methylated/

unmethylated) for the mESC data. To emulate binary calls in

mouse, we examined the distribution of methylation levels for

cytosines in a CpG context called methylated/unmethylated in

human. Residues where less than 20% of the reads support

methylation are predominantly called unmethylated (Figure S1)

and we therefore define mouse residues – which follow a similar

bimodal distribution of methylation levels overall – as unmethy-

lated/methylated if less/more than 20% of the reads indicate

methylation.

Mouse variation data
In the absence of extensive genome-wide polymorphism data

for wild mice populations, we considered polymorphisms across a

collection of laboratory mouse strains sequenced by the Sanger

Institute [56] (available at http://www.sanger.ac.uk/resources/

mouse/genomes/), which are derived from three wild sub-species:

Mus musculus domesticus, Mus musculus musculus, and Mus
musculus castaneus [57]. We used Mus spretus, a sister taxon to

Mus musculus also included in the strain sequencing effort and rat

as the outgroup to polarize polymorphisms. Specifically, based on

the mouse-rat (mm10-rn5) pairwise alignment from UCSC we

retrieved the corresponding Mus spretus variants and inferred the

base ancestral to all Mus musculus strains by parsimony. We only

considered sites where genotype calls were made across all strains

and further confined analysis to sites where the genotype was

congruent between the mouse reference genome and the 129P2/

OlaHsd strain from which the mESC line was derived. Note that

the bisulfite sequencing study of Stadler et al. [14] explicitly took

into account the genotype of the mESC line used and only

considered cytosines present in the 129P2/OlaHsd strain, so that

we did not have to replicate our H1 pipeline and conduct further

genotyping.

Nucleotide context
Local (650 nt) and regional (6500 nt) GC content around each

eligible cytosine as well as the upstream/downstream neighbouring

nucleotides were computed from the reference and reconstructed

ancestral sequence for mouse and human. Choice of either

ancestral or reference sequence here has no significant impact

on the results and we therefore only present data derived from

the ancestral sequence.

Chromatin states and biotypes
Chromatin context is strongly associated with mutation rates in

cancer genomes [58] and might also affect mutation dynamics in

the germline. At the same time, 5hmC is non-randomly

represented across different chromatin states (see main text). To

rule out a confounding effect of chromatin environment on C to G

transversion biases, we adopted a popular approach to partition

genomic regions into mutually exclusive chromatin states based on

the distribution of different histone marks and DNA-binding

proteins. For H1 hESC, we used pre-existing chromatin state calls

from the ENCODE project, where information on the genome-

wide distribution of 8 histone modifications (H3K4me1/-me2/

-me3, H3K27ac, H3K9ac, H3K36me3, H4K20me1, and

H3K27me3) and CTCF binding was used to define 15 chromatin

states using the ChromHMM algorithm [59]. For mouse, we

collated data on the genome-wide distribution of seven histone

marks (H3K4me1/-me2/-me3, H3K36me, H3K9me3,

H3K27me3, H4K20me3) in mouse ES cells obtained from two

publications [60,61] and ran ChromHMM to partition the mouse

genome into 14 distinct chromatin states. The distribution of H3

histones in [60] was used as input. Coordinates of histone marks

were converted to mm10 prior to running ChromHMM. Open

chromatin in H1 hESC is defined as per ENCODE (wgEnco-

deOpenChromSynthH1hescPk.bed). Nucleosome occupancy in

mESCs as measured by MNase-Seq was obtained from [62] (GEO

accession: GSM945576). Biotypes (exon, intron, intergenic, etc.)

were obtained from Ensembl via biomart.

Cancer genomes
We downloaded aligned short reads for whole genome

sequences of 404 cancer samples and paired normal tissues from

the cgHub repository of the TCGA project [63–65]. We called

somatic mutations using Strelka 1.0.5 [66] with default parame-

ters, except for more stringent thresholds for the bcNoise and

spanDel filters (0.05 for both; compared to default values of 0.40

and 0.75, respectively). We excluded mutations in poorly

mappable genomic regions (according to a stringent definition in

the ‘‘CRG Alignability 36’’ track [67], and the Duke and DAC

blacklists from the UCSC browser), as well as the exons of all

UCSC genes (+2 intronic nt flanking every exon). Gene expression

levels were derived from the TCGA RnaSeqV2 pipeline as

transcripts per million (TPM), not transformed or normalized.

Only TCGA samples that had both whole-genome mutation data

and the RNA-SeqV2 data were considered. Rates were calculated

as mutations divided by the number of nucleotides at risk.

To obtain robust estimates of the fraction of mutations in a CpG

context, we then confined analysis to 346 cancer samples with at

least 1000 inferred single nucleotide variants. When considering

individual cancer types, we confined analysis to those with at least

10 sequenced samples.

To establish control gene sets (Figure 4B, 5B) genes were ranked

by their median expression across cancer samples and –

independently – by their quartile coefficient of dispersion. Genes

within 62000 ranks of the focal gene in both ranked lists were

included in the control set (see Table S3 for control set sizes).

Defining a more restrictive control set (within 61000 ranks) yields

similar results (not shown). Empirical P values were then simply

determined by ranking all correlations and determining the rank of

the focal correlation.

Evolution at Hydroxymethylated Cytosines

PLOS Genetics | www.plosgenetics.org 10 September 2014 | Volume 10 | Issue 9 | e1004585

http://www.sanger.ac.uk/resources/mouse/genomes/
http://www.sanger.ac.uk/resources/mouse/genomes/


We heavily used the bedtools suite for data integration [68].

Supporting Information

Figure S1 Classifying methylated and unmethylated residues in

mouse. The top two panels show the distribution of per-site

methylation levels (reads supporting methylation divided by the

total number of reads at that site) for cytosines in a CpG context in

mouse [14] and human [16], respectively. In the bottom two

panels, the human data has been split according to the binary

classification into methylated and unmethylated residues provided

by [16]. The dotted line at 0.2 highlights the methylation level

chosen to classify mouse cytosines into methylated and unmethy-

lated residues.

(EPS)

Figure S2 Derived allele frequencies. Derived allele frequen-

cies (DAFs) in the human population for all eligible 5hmC,

5mC, and C sites and matched 5hmC and 5mC sites. When

methylation status is assigned based on mapping bisulfite

sequencing reads to the reference genomes (Top panel:

Unmatched – reference genotype assumed), there is a striking

excess of high frequency derived alleles for unmethylated

cytosines. This excess disappears when considering only sites

for which the H1 hESC genotype has been confirmed as a

cytosine (Middle panel: Unmatched – H1 genotype). This

suggests that the excess is caused by alleles where the reference

carries the C allele but the cell line (and the majority of the

human population) carry the T allele – so that mapping bisulfite

reads to the reference would mistakenly indicate the presence of

an unmethylated cytosine. The DAF spectra for unmatched but

not matched 5mC and 5hmC sites differ significantly from each

other (see main text). Note that a similar analysis of DAFs is not

appropriate for mouse because the inbred laboratory strains

considered here do not constitute a natural evolving population

for which allele frequencies would provide a meaningful window

into the evolutionary process.

(EPS)

Figure S3 Enrichment of mESC 5hmC residues in 5hmC-

enriched regions in the male germline. Gan et al [27] determined

5hmC enrichment during different stages of spermatogenesis at

low resolution. Filtering out regions where 5hmC enrichment was

detected in their control experiment, we considered the mean

enrichment signal at matched sites classified as either 5hmC or

5mC based on (hydroxy)methylation maps in mouse embryonic

stem cells (see main text). (A) 5hmC sites show a higher mean

enrichment signal than 5mC sites across all stages of spermato-

genesis, as expected if ESC-defined 5hmC sites non-randomly

reflect 5hmC distribution in the male germline. The difference is

more pronounced during earlier stages of spermatogenesis. (B)

Comparing C to G SNP rates in regions with and without 5hmC

enrichment in developing sperm cells. Significant differences are

evident for 5hmC-enriched regions during the SG-B, plpSC, and

eST stages (**P,0.01; *P,0.05). Cell types are ordered according

to their appearance during spermatogenesis. priSG-A: primitive

type A spermatogonia; SG-A: type A spermatogonia; SG-B: type B

spermatogonia; plpSC: preleptotene spermatocytes; pacSC:

pachytene spermatocytes; rST: round spermatids; eST: elongated

spermatids; SZ: spermatozoa. See [27] for details on how these cell

types were derived.

(EPS)

Table S1 Matching criteria and ranges for matched pairs

analyses.

(DOCX)

Table S2 List of cancer samples classified by cancer subtype.

(TXT)

Table S3 Correlations between the expression of mismatch

repair, base excision repair and Tet genes and C to G transversion

rates across 346 cancer genomes.

(XLSX)

Table S4 ENCODE data used to genotype H1 hESC.

(DOCX)
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