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Hydroxysa	or yellowA (HSYA) is one of themajor bioactive andwater-soluble compounds isolated fromCarthami Flos, the 
ower
of sa	ower (Carthamus tinctorius L.). As a natural pigment with favorable medical use, HSYA has gained extensive attention due
to broad and e�ective pharmacological activities since �rst isolation in 1993. In clinic, the sa	or yellow injection which mainly
contains about 80% HSYA was approved by the China State Food and Drug Administration and used to treat cardiac diseases such
as angina pectoris. In basic pharmacology, HSYA has been proved to exhibit a broad spectrum of biological e�ects that include,
but not limited to, cardiovascular e�ect, neuroprotection, liver and lung protection, antitumor activity, metabolism regulation,
and endothelium cell protection. Although a great number of studies have been carried out to prove the pharmacological e�ects
and corresponding mechanisms of HYSA, a systemic review of HYSA has not yet been seen. Here, we provide a comprehensive
summarization of the pharmacological e�ects of HYSA. Together with special attention to mechanisms of actions, this review can
serve as the basis for further researches and developments of this medicinal compound.

1. Instruction

Carthamus tinctorius L. (Figure 1(a)), also named sa	ower,
belongs to the genus Carthamus family Compositae. As
a multipurpose cash crop in agriculture, industry, and
medicine, it is cultivated for its seeds, meals, and 
owers. In
terms of medical use, sa	ower is widely applied in East Asia
especially in China [1].

Carthami Flos (Figure 1(b)), also named Honghua in
China, is the dried 
oret of sa	ower and known as a blood
stasis promoting herb. Golden Chamber Synopsis (Jin Gui
Yao Nüe) by Zhang Zhongjing in the Han Danasty deemed
the decoction of Carthami Flos as an e�ective remedy for
gynaecological problems. Carthami Flos was �rstly intro-
duced as a medicinal herb in Annotation of Materia Medica
(Xin Xiu Ben Cao) of the Tang Dynasty for the treatment of
lockjaw, hemonode, and postpartum illness. Since then, the
extracts of Carthami Flos have been extensively applied to
treat several diseases such as cardiovascular and cerebrovas-
cular disorders caused by blood stasis.

(a)Carthamus tinctorius L. (Sa	ower). (b) Carthami Flos
(the dried 
ower of Carthamus tinctorius L.). (c) Hydrox-
ysa	or yellow A (the main e�ective compound of Carthami
Flos). Hydroxysa	or yellowA (HYSA, Figure 1(c)) is a water-
soluble compound mainly responsible for the medicinal
activities of Carthami Flos. It was �rstly separated from
Carthamus tinctorius L. by Meselhy et al. in 1993 [2] and
is regarded as one of the standard components for quality
control of Carthami Flos according to the Chinese Pharma-
copoeia, because of its rich abundance and strong activities
[3]. In 2005, the Sa	or yellow injection which contained 45
mg HSYA per 50 mg was approved as a novel cardiovascular
drug by China State Food and Drug Administration and
began to be widely used for treatment of cardiac diseases such
as angina pectoris. �e systematic evaluations demonstrated
that this injection was signi�cantly e�ective for both angina
pectoris and cerebral infarction [4, 5]. Apart from the e�ect
on cardiovascular disorders, HYSA showed neuroprotection,
anticancer properties, and metabolism regulation as well as
liver, lung, and endothelium cell protection. In this review,
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Figure 1: Hydroxysa	or yellow A (HYSA) and its sources.

we managed to give a comprehensive review and analysis
of the pharmacological properties of HYSA, supporting the
potential application of HYSA in clinic.

2. Pharmacology

2.1. Cardiovascular E�ects. In clinic, products containing
HYSA are mostly used for treatment of cardiovascular
diseases. �e therapeutic e�ect of HYSA on cardiovascular
diseases is related to its anticoagulant e�ect, antimyocardial
ischemia activity, vasorelaxative e�ect, etc.

2.1.1. Anticoagulant E�ect. �e anticoagulant action of HYSA
was investigated mainly in vitro. HYSA could elicit suppres-
sive e�ects on thrombosis formation in the normal rats and
rabbit platelet aggregation induced by adenosine diphosphate
(ADP) and platelet activating factor (PAF) as well as rabbit

blood viscosity ex vivo [6, 7]. It could also prolong prothrom-
bin time (PT) of rat plasma and recalci�cation time (RT) of
rabbit plasma in vitro [8].

2.1.2. E�ect on Myocardial Ischemia. As an antiangina drug,
the cardiac protection ofHYSAhas been observed in vivo and
in vitro. HSYA could reverse the haemodynamic alteration,
enhance the survival rate, alleviate the myocardial damage,
and promote the angiogenesis in the ischemic myocardium
by enhancing expression of nucleolin and thus upregulat-
ing expressions of vascular endothelial growth factor A
(VEGF-A) and matrix metallopeptidase 9 (MMP-9) in the
myocardial ischemia (MI) rats induced by occlusion of le�
anterior descending coronary artery (LAD) [9]. In addi-
tion, HYSA could also lower the levels of cardiac troponin
I (cTnI) and 8-hydroxy-2�-deoxyguanosine (8-OHdG) in
the MI mice induced by LAD [10]. In vitro, HYSA could
relieve the nuclear morphological changes and levels of
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malondialdehyde (MDA) and reactive oxygen species (ROS),
lower the activities of creatine kinase-MB (CK-MB) and
lactate dehydrogenase (LDH), and increase mitochondrial
membrane potential (MMP) and expressions of peroxisome
proliferator-activated receptor gamma coactivator-1� (PGC-
1�) and nuclear factor erythroid 2-related factor 2 (Nrf2) in
H9C2 cells su�ered from oxygen-glucose deprivation (OGD)
[11].

Inhibition of mitochondrial permeability transition pore
(MPTP) opening can protect heart from ischemia/reper-
fusion (I/R) injury. �e protective e�ect of HSYA on the
myocardial ischemia/reperfusion (MI/R) rats and the ven-
tricular myocytes isolated from those animals could be
attenuated by a MPTP opener called atractyloside and a
restrainer of nitric oxide synthase (NOS) named L-NAME
[12]. Meanwhile, in the isolated cardiac myocytes stimulated
by anoxia/reoxygenation or ionomycin, HYSA increased rod
shape cells in the closed MPTP condition and decreased
round cells with open MPTP [13]. Another two targets of
HYSA against MI or MI/R damage are hemeoxygenase-1
(HO-1) and hemeoxygenase-2 (HO-2). HSYA was able to
promote neovascularization and cardiac function recovery
in vivo and in vitro by acting through the HO-1/VEGF-
A/stromal cell derived factor-1 (SDF-1�) cascade [14]. In
hypoxia/reperfusion- (H/R-) induced H9C2 cells, HYSA
exhibited antiapoptotic and antioxidative e�ects bymediating
the protein kinase B (Akt)/Nrf2/HO-1 signaling pathway [10,
15]. Jia et al. [16] also reported that HSYA could signi�cantly
increase HO-2 expression, adenosine triphosphate (ATP)
level, and Mn-superoxide dismutase (SOD) activity and
restrain cytochrome c (cyto c) release andMDA level inH9C2
cells su�ered from H/R, and this cardioprotective property
of HSYA was mainly mediated via the phosphoinositide
3-kinase (PI3K)/Akt/HO-2 pathway independent of extra-
cellular regulated protein kinases (ERK)/glycogen synthase
kinase-3� (GSK-3�) pathway.

�e toll-like receptor 4 (TLR4) signaling pathway may
also take part in the protective e�ect ofHSYA.Administration
of HSYA inhibited the elevated expression of TLR4 as well
as the increased indexes including infarct size, CK-MB, and
LDH activity caused by MI/R. Further evidence was that
HYSA failed to lessen MI/R damage in the TLR4-knockout
mice. Additionally, in neonatal rat ventricular myocytes
(NRVMs) subjected to H/R and lipopolysaccharide (LPS),
HSYA increased cell viability and downregulated excessive
tumor necrosis factor � (TNF-�) and interleukin-1� (IL-1�)
and overexpressions of TLR4 and nuclear factor-kappa B
(NF-�B) [17].

2.1.3. Antihypertension E�ect. Hydroxysa	or yellow A
o�ered the potential for reducing blood pressure. �e mean
arterial pressure (mAP) and HR (heart rates) in both of the
normotensive rats and the spontaneously hypertensive rats
(SHR) could be markedly reduced by HSYA [18]. Further
study disclosed that HSYA could downregulate the levels
of le� ventricular systolic pressure (LVSP), le� ventricular
end-diastolic pressure (LVEDP), and the maximum rate of
increase of le� ventricular pressure (+dp/d�max) as well as
HR but had little e�ect on the maximum rate of decrease

of le� ventricular pressure (-dp/d�max) in the isolated rat
heart [18]. Mechanistically, large conductance Ca2+-activated
K+ channel (BKCa) and ATP-sensitive potassium channel
(KATP) was responsible for the e�ects of HYSA on blood
pressure and cardiac function [18]. �e test in vitro showed
that HSYA could enhance the reduced diastolic response
induced by acetylcholine (Ach) and sodium nitroprusside
(SNP) and attenuate the vascular contractile e�ect of PE in
the aorta ring isolated from the model [19]. In rat thoracic
aorta rings, HSYA inhibited PE-induced endothelium-
independent vasoactive response via inhibiting inositol 1,4,5-
triphosphate (IP3) receptor in VSMCs and thus reducing

extracellular Ca2+ in
ux and intracellular Ca2+ release
[20].

Vascular adventitia proliferation and hyperplasia are of
great importance for hypertension occurrence. HSYA has a
suppressive e�ect on rat adventitial �broblasts proliferation
and collagen synthesis stimulated by angiotensin II (Ang II)
in vitro. It also inhibited the elevated expressions of matrix
metallopeptidase-1 (MMP-1), TGF-�1, �-smooth muscle
actin (�-SMA), and NF-�B p65 in this model [21]. HYSA
inhibited proliferation and dedi�erentiation of aorta vascular
smooth muscle cells (VSMCs) exposed to platelet-derived
growth factor- (PDGF-) BB into a proliferative phenotype,
whichmight be associated with its inhibition of nitrous oxide
(NO) and cyclic guanosinemonophosphate (cGMP) produc-
tion, Akt signaling activation, and cycle related proteins as
well as its elevation of HO-1 in VSMCs [22]. At the same
time, HYSA could suppress proliferation and migration of
VSMCs induced by LPS and downregulate levels of TNF-�
and interleukin-6 (IL-6) as well as interleukin-8 (IL-8) via the
TLR-4/ ras-related C3 botulinum toxin substrate 1 (Rac1)/Akt
pathway [23].

HSYA could also act on pulmonary artery. It dose-
dependently blocked the progression of pulmonary artery
remodeling, decreased the cell count in the small pulmonary
bronchioles, attenuated right ventricular hypertrophy, and
reduced mean right ventricular systolic pressure (mRVSP) in
the pulmonary arterial hypertension (PAH) rats induced by
hypoxic [24]. In addition, HSYA exerted a vasorelaxing e�ect
on phenylephrine- (PE-) stimulated vascular constrictive
action in rat pulmonary artery (PA) rings in a concentration-
dependent manner via Kv activation of pulmonary artery
smooth muscle cells (PASMCs) [25]. Further study demon-
strated that HYSA could reduce pulmonary arterial hyper-
tension via increasing SOD activity and decreasing levels of
MDA and 8-hydroxydeoxyguanosine (8-OHdG) and mRNA
of IL-1�, IL-6, and TNF-� [26].

2.1.4. E�ect on Cardiac Hypertrophy. In the overload-induced
cardiac hypertrophy rats, HSYA exhibited signi�cantly ame-
liorative e�ect on le� ventricular mass index (LVMI) induced
by the ligation of abdominal aorta, as a consequence of the
alleviation of pathological lesion, including smaller cardiac
muscle �bers and lightly stained cardiomyocytes nuclei
[27]. Additionally, HSYA treatment inhibited cell apopto-
sis by upregulating Bcl-2/Bax ratio and decreasing matrix
metallopeptidase-2 (MMP-2) and MMP-9 levels in serum
[27].
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2.2. Neuroprotective E�ects. HYSA o�ered the therapeutic
potential for being natural sources on brain diseases includ-
ing cerebral ischemia, dementia, Parkinson’s disease (PD),
and traumatic brain injury (TBI). Previous studies in vivo
and in vitro provided further support and evidence for the
neurological use of HYSA.

2.2.1. E�ect on Cerebral Ischemia. HYSA is considered as a
protective agent against cerebral ischemia, which is now a
hot research topic of modern medicine. Boring the similar
potency to nimodipine, HSYA was found to exert signi�cant
neuroprotective e�ects on the permanent middle cerebral
artery occlusion (MCAO) induced focal cerebral ischemic
rats as expressed by the reduced neurological de�cit scores,
infarct area, edema extend, and cell apoptosis [28–30]. �e
anticerebral ischemic e�ect of HYSA might result from its
suppression of platelet aggregation, thrombin generation,
cerebrovascular contraction, cerebrovascular permeability,
and thrombin-mediated in
ammation as well as promo-
tion of prostacyclin (PGI2)/thromboxane (TXA2) ratio and
hemorheology. HYSA could also decrease Ang II, resulting
in NF-�B p65 nuclear translation, p65 binding activity, ele-
vation of ICAM-1 mRNA and protein levels, and neutrophils
in�ltration [6, 31, 32].

�e neuroprotective actions of HSYA in vivo resulted
from several reasons. Chen et al. reported thatHSYAcritically
decreased the apoptosis cell number and increased the Bcl-
2/Bax proportion in the penumbral cortex of rats subjected
to the transient MCAO for 2 h and followed by 24 h
reperfusion by the PI3K/Akt/GSK-3� pathway [33]. Also,
HSYA treatment could cause an increase in the level of brain-
derived neurotrophic factor (BDNF) in the MCAO mice
due to inhibiting the TLR4 signaling pathway [34]. A study
by Qi et al. [35] revealed that this e�ect could be blocked
by an Akt inhibitor. �e further study indicated that the
promotion of HSYA on Akt-autophagy pathway occurred in
neuronal-speci�c cells of penumbra tissue. Additionally, it
was found that HYSA inhibited NF-�B pathway and restored
the metabolism pathways in the MCAO rats [36].

Blood-brain barrier (BBB), the main shield between
cerebral capillaries and brain parenchyma for delivering ther-
apeutic compounds into the brain, shows close relationship
with brain ischemic damage. HYSA could penetrate across
BBB, downregulate expressions of 12/15-lipoxygenase (12/15-
LOX) and its metabolite, and trigger decrease of BBB perme-
ability and improvement of tight junction in theMCAOmice
via attenuating of occludin, claudin-5, and ZO-1 expressions
as well as regulating the tight junction pathway [37–39].

In vitro, HYSA inhibited neurons injury stimulated by
glutamate, sodium cyanide (NaCN), and OGD by preventing
cell death and LDH release in cultured rat fetal cortical
cells [28, 29]. Additionally, HSYA alleviated tyrosine nitration
induced by authentic peroxynitrite in bovine serum albumin
and primary cortical neurons [40].�e further study showed
HSYA protected PC12 cells from OGD-induced apoptosis
followed by reperfusion through suppressing intracellular
oxidative stress and mitochondrial-mediated pathway [41].
In the LPS-activated coexistence system for microglia and
neurons, HYSA activated microglia by suppressing TLR4

expression earlier, resulting in later appearance of neuronal
apoptosis. �e later study showed that the TLR4 pathway
played a role in the protective e�ect of HYSA [42]. More-
over, in cerebral ischemia, release of excessive glutamate
always leads to N-methyl-D-aspartate receptors (NMDARs)
overactivation and excitotoxic neuron injury. Without any
e�ect on the expressions of NR2B-containing NMDARs,
HSYA protected rat cortical neurons subjected to N-methyl-
d-aspartate (NMDA) from cell apoptosis via decreasing Bax
expression, increasing Bcl-2 expression and downregulat-
ing expressions of NR2B-containing NMDARs instead of
NR2A-containing NMDARs [43]. Wang et al. further eluci-
dated that HSYA concentration-dependently inhibited exci-
tatory postsynaptic currents (EPSCs) mediated by NMDARs
and increased P2/P1 ratio (PPR) of both NMDAR EPSCs
and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor (AMPAR) EPSCs resulting in suppressing release
of presynaptic transmitter in the mouse hippocampus CA1
region,with amechanism thatHSYA inhibited themembrane
depolarization current magnitude induced by NMDARs and
ischemic long-term-potentiation (LTP) stimulated by OGD
[44]. Moreover, the NMDA-mediated and NMDAR-induced
intracellular Ca2+ in
ux, the NMDAR-induced cell apoptosis
and necrotic cell death, and the NMDA-induced mitochon-
drial injury were inhibited by HYSA in hippocampal neurons
[44].

Notably, mitochondria are also likely to be involved in the
underlying mechanism. In the cortex mitochondria of rats,
HYSA ameliorated the damage induced by cerebral ischemia

by inhibiting overloaded Ca2+ and scavenge capability of free
radicals, increasing the membrane 
uidity and the activities
of respiratory enzymes and decreasing the edema degree and
the membrane phospholipid decomposability [45]. However,
this protective e�ect would be attenuated by inhibition of the
opening of MPTP [46]. And the in vitro study found out

that Ca2+- and H2O2-stimulated swelling of mitochondria
isolated from rat brains was inhibited by HYSA. Meanwhile,

HYSA reduced Ca2+ overload-induced ROS generation,
improved mitochondrial energy metabolism, and increased
ATP level and the respiratory control ratio [47].

2.2.2. E�ect on Dementia. Recent �ndings have discovered
the antidementia property of HYSA and provided a founda-
tion for its clinical use in both of vascular dementia (VD)
and Alzheimer's disease (AD). HSYA could improve spatial
learning andmemory in the ratmodel of VD via upregulating
the expressions of VEGF-A, N-methyl-D-aspartic acid recep-
tor 1 (NR1), BDNF, and NMDAR in the hippocampal, which
enhanced LTP and increased synaptic plasticity consequently
[48, 49]. HSYA could signi�cantly reverse cognitive impair-
ment induced by homocysteine (Hcy) in rats, and this was
related to attenuation ofA�40 andA�42 levels in hippocampus
partially via suppressing PS1 protein level, rescuing apoptosis,
and increasing LTP in the AD model [50]. Zhang et al.
implied that the protective e�ect of HYSA on the A�1-42-
induced ADmice could be explained by inhibition of in
am-
mation via enhancing the phosphorylation of JAK2/STAT3
pathway [51, 52]. HYSA also displayed a protective e�ect from
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neurotoxicity induced by A�25-35 in rat pheochromocytoma
(PC12) cells by increasing cell viability, stabilizing mitochon-
drial function, and inhibiting oxidative stress characterized
by reduced levels of lactate LDH, intracellular ROS andMDA,
and neuronal apoptosis [53].

2.2.3. E�ect on Parkinson’s Disease. HYSA is also a poten-
tial candidate drug for PD, a long-term degenerative dis-
order. �is agent had a neuroprotective role in the 6-
hydroxydopamine- (6-OHDA-) induced PD rats. It could
also increase the levels of dopamine and its metabolites,
glial cell line-derived neurotrophic factor (GDNF) and brain-
derived neurotrophic factor (BDNF) in striatum of PD
rats [58]. Meanwhile, HSYA could e�ectively relieve motor
dysfunction of the PD mice model induced by rotenone
and protect dopamine neurons by elevating TH-containing
dopaminergic neurons and dopamine content in the stria-
tum in the PD mice. It was suggested that BDNF/tyrosine
kinase receptor type B (TrkB)/dopamine receptor 3 (DRD3)
signaling pathway was responsible for the pharmacological
e�ect of HSYA [59]. Additionally, a�er coadministration of
HSYA with L-DOPA, the 6-OHDA-induced PD rat model
exerted the attenuated dyskinesia, the prolonged motor
response duration, and the downregulated expression of
dopamine D receptor in the striatum, compared with the
PD rats administrated by L-DOPA only [60]. Besides, it was
demonstrated that HSYA improved cell viability, reduced
cell apoptosis, and increased levels of SOD and glutathione
(GSH), the ratio of Bcl-2/Bax, and mRNA levels of neuron-
speci�c enolase (NSE) and microtubule-associated protein-
2 (MAP-2), providing a mechanism of HYSA protecting the
di�erentiation of mesenchymal stem cells (MSCs) against �-
mercaptoethanol (BME) causes oxidation [61].

2.2.4. E�ect on Traumatic Brain Injury. �e activities of SOD
and catalase (CAT), the level of GSH, and the GSH/oxidized
glutathione (GSSG) ratio were enhanced while the levels
of MDA and GSSG were reduced in the brain of the TBI
rats a�er HSYA treatment [54]. Another report con�rmed
that HYSA increased activities of mitochondrial ATPase and
tissue plasminogen activator (t-PA) and decreased plasma
plasminogen activator inhibitor-1 (PAI-1) activity and MMP-
9 expression in the hippocampus of the TBI rats [55].

2.2.5. E�ect on Other Nervous System Diseases. HSYA treat-
mentmarkedly alleviated lymphostatic encephalopathy- (LE-
) induced brain injury in rats by dramatically decreasing
the neurological scores, attenuating histological changes
especially cell apoptosis in the rostral ventrolateral medulla
(RVLM) and reducing heart rate variability. Additionally,
downregulation of endothelial nitric oxide synthase (eNOS)
expression in both of mRNA and protein levels of the RVLM
in LE rats were prevented by HYSA [56]. In the spinal
cord compression injury rats, HSYA treatment signi�cantly
attenuated spinal cord edema and improved motor function
outcomes in rats, and the potential mechanism of this
action was through ameliorating extent of oxidative stress

and preventing release of proin
ammatory molecules with
inhibition of NF-�B [57].

2.3. Hepatoprotective E�ects. �e hepatoprotective activities
of HYSA have attracted the attention from the researchers.
Recent evidences support HYSA as an anti�brotic agent in
hepatic disorders.

2.3.1. E�ect on Hepatic Fibrosis. �e hepatoprotective e�ects
of HYSA are especially related to its anti�brotic and antiox-
idative actions. In respect of antihepatic �brosis assay in
vivo, HSYA treatment could not only reduce the serum levels
of alanine aminotransferase (ALT), aspartate transaminase
(AST), hyaluronan (HA), laminin (LN), and type III procolla-
gen (PC III) as well as the hepatic levels of ROS andMDA but
also elevate the activity and mRNA of SOD, glutathione per-
oxidase (GPx), and expression of TGF-�1 in liver tissue of the
long-term alcohol-injured rats [62]. �e histological studies
suggested the alcohol induced liver damage such as hepatic
�brogenesis which could be greatly alleviated by HYSA [62].
Also, HYSA could decrease levels of total cholesterol (TC),
triglyceride (TG), and mRNA expressions of transforming
growth factor � receptor I (TGF�-R I), transforming growth
factor � receptor (TGF�-R II), mitogen-activated protein
(MAP), ERK, MAP/ERK kinase kinase 3 (MEKK3), and
MAP kinase kinase-5 (MEK5) as well as phosphorylation of
ERK5 in the tetrachloride- (CCl4-) induced hepatic �brosis
rats [63, 64]. �e precise mechanism of the hepatoprotec-
tive property was that HSYA strengthened expressions of
peroxisome proliferator-activated receptor-� (PPAR�) and
MMP-2, downregulated expressions of TGF-�1 and TIMP-
1, and reduced �-SMA level by stimulating PPAR� activity
[65]. Meanwhile, the ameliorative e�ects of HYSA on the
CCl4/ high fat diet- (HFD-) stimulated liver �brosis rats were
signi�cantly alleviated by the PPAR� inhibitor, which was a
result of blocking p38 MAPK phosphorylation [66]. Hepatic
stellate cells (HSCs) appear to be vital in the development of
liver �brosis [67]. �e testing in vitro suggested proliferation
of HSCs stimulated by H2O2 was inhibited by HSYA because
of HSYA’s blockage of the cell cycle from G0/G1 to G1/S [65].
Moreover, in HSCs, HYSA also inhibited cell proliferation
and induced cell apoptosis in a dose- and time-dependent
fashion accompanying with decreasing expressions of type I
alpha collagen (Col I �), �-SMA and type III alpha collagen
(Col III �), Bcl-2, and myocyte enhancer factor 2C (MEF2C)
and increasing expressions of cyto c, Caspase-9, andCaspase-
3, which resulted from the activation of the extracellular
regulated protein kinases (ERK5) pathway as well as the
extracellular regulated protein kinases 1/2 (ERK1/2) pathway
[68, 69].

2.3.2. E�ect on Hepatic Ischemia. HSYA reduced serum
AST and ALT levels and expressions of TNF-� and IL-
1�, ameliorated in
ammation and necrosis, and blocked
macrophage recruitments in the I/R mice. Similarly, in vitro,
pretreatment of HYSA resulted in the weakened migratory
reaction and the reduced in
ammatory cytokines in theH/R-
challenged RAW264.7. �e further study showed that HSYA
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had suppressive e�ect on expressions of MMP-9 and ROS,
NF-�B activation, and p38 phosphorylation in the injured
RAW264.7 cells [70].

2.4. Pulmonary Protective E�ect. �e various researches
exhibited remarkable pulmonary protective properties of
HYSA in vivo and in vitro, especially about the inhibitory
e�ect on chronic obstructive pulmonary disease (COPD),
acute lung injury (ALI), and lung �brosis.

2.4.1. E�ect on Airway In
ammation. HSYA treatment could
attenuate the airway hyperresponsiveness (AHR) cell chemo-
taxis, proin
ammatory cytokines, type 2 helper T cell 2 (�2)
cytokines, total and ovalbumin- (OVA-) speci�c IgE and
adhesion molecules in bronchoalveolar lavage 
uid (BALF),
and in
ammatory responses levels in the lung tissue of the
OVA-induced asthmatic mice. Study suggested that HSYA
treatment inhibited the transcriptional activity of NF-�B
by inhibiting NF-�B p65 nuclear translocation and nuclear
factor of I�B-�phosphorylation and degradation [71]. Wang
et al. reported thatHSYAmarkedly suppressed the thickening
and collagen deposition of the small airway and weakened
TGF-�1 mRNA and protein expression as well as type I
collagen (Col I) and �-SMA expressions in the lung of the
COPD model in the rats stimulated by cigarette smoke
and LPS. In addition, HSYA elicited inhibitory e�ect on
phosphorylation of p38 mitogen-activated protein kinase
(MAPK) in the rat lung tissue [72].

2.4.2. E�ect on Acute Lung Injury. HSYA could alleviate
pulmonary edema, reduce acidosis, increase partial pressure
of oxygen (PaO2), and inhibit in
ammatory cell in�ltra-
tion, lung mRNA expressions of TNF-� and ICAM-1, and
levels of plasma IL-6 and IL-1� [73]. HSYA signi�cantly
increased the activities of antioxidant enzymes, inhibited
the in
ammatory response via the cAMP/PKA pathway
activation, and attenuated OA-induced lung injury [74].
Additionally, HSYA decreased lung permeability, platelet
count, and ADP-mediated platelet aggregation as well as
cytokine levels in serum and BALF in the aged rats with
gasoline engine-induced lung injury. Moreover, it suppressed
overexpressions of ICAM-1, vascular cell adhesion molecule-
1 (VCAM-1), and proin
ammatory cytokines in platelets
and lung tissue. And decrease in cAMP level in lung and
platelets and PKA activity and PPAR� expression in platelets
induced by gasoline engine exhaust were also reversed by
HYSA [75]. Meanwhile, in the sepsis-associated ALI mice,
the in
ammatory in�ltration and proin
ammatory cytokine
expressions in lung, pneumochysis, and respiratory insuf-
�ciency induced by LPS were greatly relieved by HYSA
treatment. Its suppression of p38MAPK phosphorylation as
well as NF-�B activation was responsible for this protective
e�ect [76]. Also, HSYA ameliorated the pathological state
and lung vascular permeability of the LPS-induced ALI in
mice. �is e�ect was accompanied with the negative e�ect
on pulmonary myeloperoxidase (MPO) activity and levels
of serum TNF-�, IL-1�, IL-6, and interferon-� (IFN-�).
�e further investigation demonstrated that intraperitoneal

injection of LPS to the mice resulted in upregulation of
protein expressions of TLR4,myeloid di�erentiation factor 88
(MyD88) and Toll/IL-1 receptor- (TIR-) domain-containing
adapter-inducing interferon-� (TRIF) and phosphorylation
of MAPKs, translocation of NF-�B/p65, and downregulation
of I�B-�, all of which could be deteriorated by HSYA [77].
Zhang et al. observed the negative in
uence of HSYA on
the binding of LPS to the cell membrane receptor in the
LPS-caused ARDS mice model [78]. And injection of HYSA
alleviated the mRNA and protein levels of Col I, type III
collagen (Col III), �-SMA,myeloid di�erentiation-2 (MD-2),
and cluster of di�erentiation 14 (CD14) as well as in
amma-
tory factors in plasma or lung and the collagen deposition
in lung via suppressing the TLR4/NF-�B pathway. �e in
vivo test demonstrated the inhibitory e�ect of HYSA on the
speci�c binding of LPS to receptors on A549 or Eahy926 cell
membranes, suggesting the TLR4 receptor a target of HSYA
on the cell membrane [78].

2.4.3. E�ect on Lung Fibrosis. Injection of HYSA attenu-
ated the pathologic changes of pulmonary in
ammation,
increased the body weight, PaO2 and decreased PaCO2,
mRNA expressions of TNF-�, IL-1�, TGF-�1, and IL-6,MDA
activity, and the count of NF-�B p65 positive cells in the
BLM-injured acute in
ammation rats. �is protective e�ect
of HYSA might be due to inhibition of NF-�B activation and
p38MAPKphosphorylation in lung tissue [79, 80].Moreover,
21 days of HSYA to the BLM-induced chronic pulmonary
�brosis rats resulted in �brosis amelioration by decreasing
collagen deposition, and mRNA expression of TGF-�1, �-
SMA and Col I connective tissue growth factor (CTGF) as
well as �-SMA level [80, 81].

Assayed with human alveolar epithelial A549 cells, HYSA
was found to inhibit Smad3 phosphorylation and Col I
mRNA expression stimulated by TGF-�1 [81]. And HSYA
exhibited inhibitory e�ects on LPS-induced in
ammatory
response in A549 cells by suppressing myeloid di�erentiation
factor 88 (MyD88), TLR-4, TNF-�, ICAM-1, IL-1�, and IL-
6 at the mRNA and protein expression levels and leuko-
cytes adhesion to A549 cells. �e mechanism was due to
its negative regulation of NF-�B p65 nuclear translocation
and p38 MAPK phosphorylation [82]. Meanwhile, TGF-�1-
induced alteration in proliferation, migration, extracellular
matrix (ECM) accumulation, and degradation of human fetal
lung �broblasts MRC-5 were inhibited by HYSA. Further
study disclosed that HSYA blocked the binding of TGF-�1
to the cytoplasmic receptors of TGF-�1-stimulated MRC-
5 including TGF�-R II and suppressed the lung patholog-
ical alteration and �-SMA, Col I�1, and FN expressions
as well as phosphorylation of mothers against decapenta-
plegic homolog 2 (Smad2), mothers against decapentaplegic
homolog 3 (Smad3) and ERK, nuclear translocation of Smad2
and Smad3, and the binding of Smad3 to Col I promoter
[83, 84].

2.5. Antitumor E�ects. Several reports have provided strong
evidences that HYSA is valuable for oncotherapy. HYSA
was considered as a natural compound which could inhibit
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multistage carcinogenesis processes such as progression,
adhesion, invasion, and migration. In HYSA-treated MCF-
7 cells, Li et al. [85] observed increased cell apoptosis and
ROS level, upregulated expressions of Bax and p53, blocked
cell cycle, downregulated Bcl-2 and cyclin D1, released cyto
c, activated Caspase-3, and disrupted MPP with the mech-
anism of its negative regulation on the NF-�B/p65 nuclear
translocation. Also,HSYA, acting as a PPAR� agonist, showed
inhibitory e�ect on proliferation and cell cycle transition and
stimulatory e�ect on cell apoptosis in BGC-823 cells [86].
As for abnormally proliferated HUVECs cultured in HepG2
cell cultural supernatant, HSYA suppressed the expressions
of vascular endothelial growth factor (VEGF) and its kinase
insert domain receptor (KDR) through the Ras-Raf-MEK-
ERK1/2 signaling pathway and dephosphorylated the corre-
sponding kinase molecules [87]. Moreover, HYSA exerted
inhibitory e�ect on cancer cell growth of tumor-bearingmice.
�is e�ect was associated with its downregulation of angio-
genesis. Xi et al. [88] proved that it reduced the microvessel
count and microvessel density of the transplanted tumors
in the BGC-823 cell bearing mice while Yang et al. [89]
reported this drug had the advantage of decreasing VEGF-
A, basic �broblast growth factor (bFGF), vascular endothelial
growth factor receptor 1 (VEGFR1), and mRNA expression
levels of cyclin D1, c-myc, and c-fos in the BGC-823 tumor-
bearing mice through suppressing the ERK/MAPK and
the NF-�B pathway. Additionally, along with the ability of
inhibiting the process of SMMC-7721 covering proliferation,
adhesion, invasion, andmigration, HYSA could suppress
pulmonary metastasis of liver cancer. In the pulmonary
metastatic mouse model of H22 cells, the formation of a
complex with E-cadherin/�-catenin induced by HYSA could
activate the expression of PPAR� and inhibit the activity
of MMP-2, �nally leading to decrease in degradation of
ECMand suppression of epithelial-mesenchymal transition
(EMT) [90]. In addition, HSYA could reversibly and non-
competitively inhibit of human recombinant aldehyde dehy-
drogenase 1 (ALDH1) (Ki = 0.267 ± 0.024 mM) indicating
it as a potential agent for treating ALDH1-associated cancers
[91].

2.6. Metabolic Regulation E�ect. �e quantity of pread-
ipocytes, adipocytes di�erentiation, and lipid accumulation
play a key role in lipid metabolism [92]. HSYA signi�cantly
time- and dose-dependently prohibited the proliferation of
3T3-L1 cells. �is e�ect was accompanied by a decline in the
amount of intracellular lipid and triglyceride (TG) and a rise
in mRNA expression of hormone-sensitive lipase (HSL) and
promoter activities [93]. HSYA competitively inhibited �-
glucosidase in a reversible way with IC50 = 1.1 ± 0.22 mM and
Ki=1.04 ± 0.23mM, respectively. HSYA-induced structural
change of �-glucosidase was mainly regional unfolding [94].
Advanced glycation end products (AGEs) and methylglyoxal
(MGO) accumulation usually appear in individuals with
diabetes and cause the occurrence of vascular complica-
tion [95]. Ni et al. [96] demonstrated that MGO-induced
bovine serum albumin (BSA) glycation could be inhibited
by HYSA. Besides, HSYA showed signi�cantly inhibitory
e�ect on glucose- (GLU-) induced development of AGEs

formation and N-acetyl-glycyl-lysine methyl Ester (G.K.)
peptide-mediated ribose glycation. Also, HSYA could defend
against MGO-induced damage in cultured human brain
microvascular endothelial cells (HBMEC) by increasing cell
viability and decreasing cell mortality. It suppressed cell
apoptosis andCaspase-3 expression inHBMECand inhibited
AGEs accumulation inHBMEC a�er treated withMGO [97].

2.7. Endothelium Cell Protection. In vivo, HSYA e�ectively
recovered perfusion of ischemic hindlimb tissue and gave
a rise of the arteriole and capillary densities in the femoral
artery-interrupted ischemic gastrocnemius muscles of the
mice [98]. Ox-LDL-caused endothelial injury could be
relieved by HSYA dose-dependently. Proteomic investiga-
tion revealed that this e�ect was related to the antiapop-
totic activity of voltage dependent anion-selective channel
2 (VDAC2) [99]. Moreover, HSYA promoted the viability
of LPS-injured HUVEC. It also inhibited the subsequent
in
ammation induced by LPS in HUVEC including NF-�B
p65 subunit DNA binding, I�B� phosphorylation, ICAM-1,
and E-selectin mRNA levels elevation and phosphorylation
of p38 MAPK or c-Jun N-terminal kinase (JNK) MAPK, cell
surface ICAM-1 protein expression, and leukocyte adhesion
to HUVEC [100]. Meanwhile, HYSA elicited a protective
e�ect onHUVECs fromhypoxia by attenuating cell apoptosis
and cell cycle arrest, which was the result of the upregulation
of the Bcl-2/Bax ratio and the hypoxia inducible factor-1�-
(HIF-1�-) VEGF pathway as well as NO contend and eNOS
expression and downregulation of p53 protein expression
[101]. However, with little e�ect on the normal HUVEC,
HSYA caused an increase of the capillary-like tube formation
and migration of HUVEC, which could be reversed by an
anti-Tie-2 neutralizing antibody. Expression of angiopoietin
1 and phosphorylation of Tie2, Akt, and ERK 1/2 were greatly
elevated by HSYA [102].

2.8. Other E�ects. As an anti-in
ammatory molecule, HYSA
could inhibit LPS-induced NLRP3 in
ammasome activa-
tion via binding to Xanthine Oxidase in mouse RAW264.7
macrophages [103]. HSYA-mediated sonodynamic therapy
could induce ROS-dependent autophagic response via the
PI3K/Akt/mTOR signaling pathway in THP-1 macrophages
[104]. Besides, HSYA inhibited rabbit polymorphonuclear
(PMN) activation induced by LPS by reducing LPS-induced
elevated adhesion potency, free calcium concentration, TNF-
� and IL-6 mRNA expression, and NF-�B p65 nuclear
translocation [105]. Also, HYSA exhibited anti-in
ammatory
e�ect as evidenced by inhibiting the IL-1�-induced release
of IL-6, IL-8, and MMP-1 in SW982 human synovial cell,
and this was associated with suppression of ERK, NF-�B,
and activator protein-1 (AP-1) signaling [106]. And HSYA
could reduce strike-triggered local oedema and neutrophil
in�ltration in skeletal muscle via inhibiting p38 MAPK
phosphorylation and suppressing NF-�B pathway activation
[107]. It was also an e�ective therapeutic agent in ameliorating
sepsis-induced apoptosis of cluster of di�erentiation 4+
(CD4+) T lymphocytes through its anti-in
ammatory and
antiapoptotic e�ects [108].
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Figure 2: Pharmacological e�ects of HYSA.
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Figure 3: Action mechanism and corresponding mediators of HYSA.

HSYA had protective e�ect against �brosis in renal
cells, through inhibiting TGF-�1/Smad3-mediated epithelial-
mesenchymal transition signaling pathway [109]. Topical use
of HSYA could relieve the UV-induced skin damage in mice
by promoting recovery from stretching, inhibiting epidermal
hyperproliferation and keeping the structural integrity of
the skin via antioxidative activity [110]. Moreover, HSYA
could strongly inhibit tyrosinase by binding and changing the
tertiary structure of tyrosinase [111].

3. Conclusion

Noncommunicable diseases (NCDs), namely, heart disease,
stroke, cancer, diabetes, and chronic lung disease, are causing
worldwide public health problem and alarmingly leading
causes of almost 70% deaths. Natural chemicals are favorable
resources that may be utilized to develop such agents. HYSA,
a component isolated from sa	ower with little toxicity [112],
showed various pharmacological e�ects in vitro and in vivo
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(summarized in Figure 2), including cardiovascular protec-
tion (summarized in Table 1), neuroprotection (summarized
in Table 2), metabolism regulation, antitumor e�ect, and
liver, lung, and EC protective activities. �ese activities
indicate the use of HYSA for prevention and/or the treatment
of NCDs and other intractable diseases such as AD, PD,
TBI, ALI, and �brotic diseases. Although HYSA possesses
extensive pharmacological e�ects, it is currently used as a
drug mainly in treating cardiovascular and cerebrovascular
diseases. It needs to be clinically explored in other aspects
especially for respiratory, hepatic andmetabolic diseases, and
malignancy. Recent studies focusing on various bioactivities
of HYSA have yielded promising results, demonstrating both
the pharmacological e�ects and the molecular mechanisms
of HYSA (summarized in Figure 3). Further investigation of
the molecular mechanisms of HYSA is anticipated to expand
the clinical applications of HYSA.
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