Hyers—Ulam Stability of an n—Apollonius type
Quadratic Mapping

Abbas Najati

Abstract

Let X and Y be linear spaces. It is shown that for a fixed positive integer
n > 2, if a mapping Q : X — Y satisfies the following functional equation

n

1
ZQz—zl = Z Qx; — x; —I—nQ(z—in) (1)
n
1<2 J<n i=1
1<t
for all z,z1,...,2, € X, then the mapping @) : X — Y is a quadratic mapping
of Apollonius type and a quadratic mapping. We moreover prove the Hyers—
Ulam stability of the functional equation (1) in Banach spaces.

1 Introduction

The stability problem of functional equations originated from a question of S.M.
Ulam [22] concerning the stability of group homomorphisms: Let G; be a group and
let G5 be a metric group with the metric d(.,.). Given € > 0, does there exist a 6 > 0
such that if a function h : Gy — G satisfies the inequality d(h(xy), h(z)h(y)) < 0 for
all z,y € Gy, then there exists a homomorphism H : G; — Gy with d(h(z), H(x)) <
€ for all x € G17 In other words, we are looking for situations when the homomor-
phisms are stable, i.e., if a mapping is almost a homomorphism, then there exists
a true homomorphism near it. If we turn our attention to the case of functional
equations, we can ask the question: When the solutions of an equation differing
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slightly from a given one must be close to the true solution of the given equation.
For Banach spaces the Ulam problem was first solved by D.H. Hyers [9] in 1941,
which states that if 6 > 0 and f : X — Y is a mapping with X,Y Banach spaces,
such that

[fa+y - s@ - 1w <o ©

Y

for all z,y € X, then there exists a unique additive mapping 7" : X — Y such that

<9
Y

7@ - T(@)

for all z € X. Th.M. Rassias [18] succeeded in extending the result of Hyers by
weakening the condition for the Cauchy difference to be unbounded. A number of
mathematicians were attracted to this result of Th.M. Rassias and stimulated to in-
vestigate the stability problems of functional equations. The stability phenomenon
that was introduced and proved by Th.M. Rassias in his 1978 paper is called the
Hyers—Ulam stability. G.L. Forti [5] and P. Gavruta [8] have generalized the re-
sult of Th.M. Rassias, which permitted the Cauchy difference to become arbitrary
unbounded. The stability problems of several functional equations have been exten-
sively investigated by a number of authors and there are many interesting results
concerning this problem. A large list of references can be found, for example, in the
papers [2,6,7,10 — 16, 18,19, 20]. Now, a square norm on an inner product space
satisfies the important parallelogram equality

lz +yll* + llz — yl* = 2]lz]* + 2|l

for all vectors z,y. The following functional equation, which was motivated by this
equation,

Qz+y)+Qz —y) =2Q(v) +2Q(y), (3)

is called a quadratic functional equation, and every solution of equation (3) is said
to be a quadratic mapping.

F. Skof [21] proved the Hyers—Ulam stability of the quadratic functional equation
(3) for mappings f : E; — FE,, where E; is a normed space and F, is a Banach
space. In [4], S. Czerwik proved the Hyers—Ulam stability of the quadratic functional
equation. C. Borelli and G.L. Forti [3] generalized the stability result as follows: let
G be an abelian group, E a Banach space. Assume that a mapping f : G — E
satisfies the functional inequality

[f(x+y)+ flz—y)—2f(x) = 2f (W)l < o(z,y)

for all z,y € G, and ¢ : G x G — [0,00) is a function such that

bx,y) =) (2w, 2'y) < oo

for all x,y € G. Then there exists a unique quadratic mapping ) : G — E with the
properties

1f(z) = Q@) < o(z,x)
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for all z € G. Jun and Lee [14] proved the Hyers—Ulam stability of the Pexiderized
quadratic equation

fl@+y) + gl —y) = 2h(x) + 2k(y)

for mappings f, g, h and k.
In an inner product space, the equality
2

1 T+
Il =l + llz = ylI* = 5lle =y + 2= - =~

(4)
holds, and is called the Apollonius’ identity. The following functional equation,
which was motivated by this equation,

Q= 2) + Q= —y) = 5@ — ) +20(= — T1Y), o)

is quadratic (see [17]). For this reason, the functional equation (5) is called a
quadratic functional equation of Apollonius type, and each solution of the functional
equation (5) is said to be a quadratic mapping of Apollonius type [12, 17]. The
quadratic functional equation and several other functional equations are useful to
characterize inner product spaces [1].

In [17], C. Park and Th.M. Rassias introduced and investigated a functional
equation, which is called the generalized Apollonius type quadratic functional equa-
tion.

In this paper, employing the above equality (5), for a fixed positive integer n > 2,
we introduce the new functional equation, which is called the quadratic functional
equation of n—Apollonius type and whose solution of the functional equation is said
to be a quadratic mapping of n—Apollonius type,

” 1

ZQ(Z—J:Z-):— Z Q(x,-—:rj)%—nQ(z—;ia:i). (6)

i—1 M i<ij<n
1<t
We introduce the n—Apollonius’ identity in an inner product space for a fixed pos-
itive integer n > 2. We show that the quadratic functional equation of n—Apollonius
type (6) is quadratic functional equation of Apollonius type, and quadratic. We
also prove the Hyers—Ulam stability of quadratic mappings of n—Apollonius type in
Banach spaces.

2 n—Apollonius’ identity with some properties and quadratic func-
tional equations of n—Apollonius type

The following theorem introduces the n—Apollonius’ identity in an inner product
space for a fixed positive integer n > 2.

Theorem 2.1. (n—-Apollonius’ identity) Let X be an inner product space with norm
||| introduced by its inner product (.,.). For a fized positive integer n > 2, we have

n ) 1 ) 1.

Zz — I = — ZL‘Z‘—I'J‘ ny|z — — ZT;
> |l 1 >l I*+ >
i— n n

1<i,j<n i=1
j<i

2

(7)

forall z,x,...,x, € X.
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Proof. At first we prove that

Yoz =zl +
1<i,5<n
1<

n

2
>,

I

for all zy,...,2z, € X. It is clear that

) n—1 n )
Z Hﬂfz‘—%’H :Z Z Hxi—%‘H
1<i,j<n j=1i=j+1
1<t

N (R I

I
M|

n
j=11i=
n—1
2 . 2
S z e +<n—y>uxj||]—2§re S ().
j=1 Li=j+1 1<i,5<n
7<t
and
n—1 n n
2 - 2 2 2
S sl + (n = )l ] - [znxin +<n—1>||x1||]
j=1 Li=jt1 i=2
+---+[ 5 |r:c@-r\2+<n—j>u:cj||2]
i=j+1
oot ol + o ]
=13 il
=1
for all z1,...,z, € X. Also, we have
n 2 n n
Sal =33 ) Zuxznum S (o)
=1 i=1j5=1 1<i,j<n
1<t

for all z1,...,z, € X. So, we obtain (8) from (9), (10) and (11).
Now, we prove (7). By using (8), a simple computation shows that

1 Zn_ €T; 2
LD Dl R L
N<ij<n n
j<i
1 1 n 2 n
== > = al®+ | Dow|| +nllzl?—2RD (2, 2)
N<ij<n ni; 45 i—1
j<i
n

= > llzill® +nll]* - 29?2 2, 5)
=1

=1

=>_llz— il

=1

3

for all z,z1,...,2, € X.

(10)

(11)
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Theorem 2.2. A mapping Q : X — Y is a quadratic mapping of n—Apollonius type
(n>2), i.e., Q satisfies

n

Y Qz—m;) = Z Qx; — x; —l—nQ(z—ZxZ) (12)
i=1 N<ij<n

j<i
forall z,xy,...,z, € X, if and only if Q is a quadratic mapping of Apollonius type
and quadratic mapping.

Proof. Let n > 2. We claim that Q(0) = 0. Putting ; = --- = z,, = z in (12), we
get ,
nQ(0) = ——Q(0) + nQ(0).
So Q(0) = 0. Putting 3 = --- = x, = z in (12), we get
n—2

Qe —21) +Q(z —a2) = "= |Q= 1) + Qs — 72
+ 711@(902 —x1) + nQ(W)
Therefore, we have

22—x1—x2> (13)

n

2 [0 = 0) + Qe — )] = Qs —22) + 00

for all z,x1,22 € X. Replacing x; by —z; and x9 by x; in (13), respectively, we

obtain that 5

- {Q(z +x1) + Q(z — x1)

for all z, z; € X. Letting x; = z in (14), we obtain that

. iQ(le) 4 nQ(QZ) (14)

n

2= (%) (15)

n2? n

for all z € X. Hence (15) implies that

o(%) = Saw. Q(n)=r'Qw). (e x) (16)

n n?

It follows from (14) and (15) that

2|Q(z + 1) + Q(z - 1)| = Q(2m1) + Q(22) (17)
for all z,x; € X. Putting 21 = 0 in (17), we get

Q(22) =4Q(z), (z € X). (18)
It follows from (17) and (18) that

Q(z + 1) + Q2 — 1) = 2Q(71) + 2Q(2) (19)
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forall z,z; € X. Thus @) : X — Y is a quadratic mapping. So () is an even mapping

and
Q) = Q). Q(F) = @) (20)

for all k € Z \ {0} and all z € X. So, we can get from (13) and (20) that

Q(z —z1) + Q2 — 1) = ;Q(% — 1)+ 2@(2 B :1:2>

for all z,x1, 29 € X. Therefore, () is a quadratic mapping of Apollonius type.
Conversely, if @) is a quadratic mapping, then by [1], there exists a symmetric

bi-additive mapping B : X x X — Y such that Q(z) = B(x,z) for all x € X.

Therefore @ is a quadratic mapping of n—Apollonius type satisfying the Eq. (6). m

(21)

The Apollonius’ identity (4), is 2-Apollonius’ identity. The n—Apollonius’ iden-
tity in an inner product space motivates us to introduce quadratic functional equa-
tion of n—Apollonius type (6). By our notation, a quadratic functional equation of
Apollonius type (5) is a quadratic functional equation of 2-Apollonius type.

3 Hyers—Ulam stability of a quadratic mapping of n—Apollonius
type

Throughout this section, let X be a normed space with norm ||.||x and Y a Banach
space with norm |||y

For a fixed integer n > 2 and given a mapping @) : X — Y, we define D, @ :
X"l Y by

D,Q(z1,xs,...,2,,72)

=306 -1 T Qo) -nQ(s- 13 n)
i—1 N <ii<n ni4
j<i
Theorem 3.1. Let | and m be integers with 1 <1 < m and let 6 be a nonnegative
real number. Suppose that Q) : X — Y 1is a mapping for which there exists a function

@ XM — [—§,00) such that

~ =1 2 m.y; m.;
Pe) =30, o000,z (Bhiz) < o, (22)
l—times
. Y m.. m.,, my\
i (2 (P, (), (F2) =0 (23
and
Dy Q(x1, 29, .. T, 2)|| <O+ @(T1, ..., Tm, 2) (24)
Y

for all z,xq,...,x,, € X. Then there exists a unique quadratic mapping of m-—
Apollonius type T : X — 'Y such that

202 —m? —m

22— ) 0

HQ(SU) —T(x) - < m2m_6l2 + ;@(7:6) (25)

forallz e X.
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Proof. Putting 2y =---=2;=0and x4y = --- = x, = z in (24), we get that

HlQ(Z) + (m = 1)Q(0) - = [(m = 1)Q(2) + Q(0) +2Q(0) +--- + (I = )Q(0)

+Q(0) +2Q(0) 4+ (m —1 — 1)62(0)} —mQ(Z - W)

<6+ 9(0,...,0, z,...,2 ,2).
I—ti (m—1)—ti

Y

Therefore we have

(26)
<04+ ¢(0,...,0, z,...,2 ,2)
———

———
l—times (m—l)—times

for all z € X. Let a = % and (§ = % It is clear that 0 < o < 1. Replacing 2
by £z in (26), we get that

2?0 +2) - Q) + L)

(27)
<

1 1 1
5+¢(O,...,O,z,...,z,z>]
———

(@] (0% (0%
—_——

(m—1)—times

1
m
l—times

for all z € X. Replacing z by = and multiplying a®" in (27), we get that

a2(n+1)Q( 1 Z) _ a2”Q(alnz> + ﬁ:an(O)

an—l—l

(28)
a2 1 1 1

S m[5+¢(07707 an+1z7“‘7an+1z7 an+lz>]

[—times

(m—1)—times
for all z € X and all integers n > 0. Therefore we have

B rrofat) el + o]

=7

n

<X

i=J

2200 L) —aro( L) + 00 (29)

"o 1 1 1
§Z - [5—“0(0"”’0’oﬂ“z""’oﬂ'“z’ ale)]
i=j ~

l—times

(m—1)—times
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for all z € X and integers n > j > 0. Hence we obtain from (29) that

a2(n+1)Q<an1+1 z) B QQJQ( ) i Z ﬁoﬂz
L )1 (30)

1
S' m[5+@(0,...,0,WZ,...,WZ,OéH_lZ

(m—1)—times

for all z € X and all integers n > j > 0. It follows from (22) and (30), that
{a®Q(Z2)}, is a Cauchy sequence in Y for all z € X. Since Y is complete, there
exists a mapping 7' : X — Y defined by

1

T(z) = lim o®"Q(—2z) (31)
n—o0 am
for all z € X. Putting j = 0 in (30), we obtain
1 n 605%
2(n+1
2t )Q(Wz) —Q(z)+§ Q) )
SZ |f5-|—§0( ,...,O,WZ,...,O/HZ,WZ')]
l—times
(m—1)—times

Letting n — oo in (32), we get the inequality (25). Now, we show that 7 is a
quadratic mapping of m—Apollonius type. It follows from (23), (24) and (31), that

S T—2) -~ Y Tl mT<z—1§jxi>

i=1 M 1<ij<m mi v
j<i
m 1 m
) Z— X; 1 T, — T ) DR 21
— lim a2n Q _ Q J ) _ mQ . men=l T
n n n
n—00 — IeY m — o (67
i=1 1<4,5<m %
j<i
. I Tm <
< lim ®" |64+ —,...., = )| =
n—oo am a™’ an

for all z,z1,..., 2, € X. So, T is a quadratic mapping of m—Apollonius type. Let
U be another quadratic mapping of m—Apollonius type satisfying (25). By Theorem
2.2, U is a quadratic mapping. Then (22), (25) and (31), implies that

1 1
HU ~T(z)]| = lim o® U(x) - Q(m)
Y n—oo an an v

) a2n _ 1

< Jim, S ()
1 > , 1 1

= 5 lim Zoz%(p(O,...,O,.x,...,w)z()

mao= neo, Ty —_—— ot

for all x € X. It proves the uniqueness of 7. [ |
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Corollary 3.2. Let | and m be integers with 1 < | < m and let p1,...,pms1 be
non-zero real numbers and €q,...,€,411,0 be nonnegative real numbers such that
DiyeeesPma1 < 2, P1y---,p1 > 0. Suppose that Q : X — Y is a mapping satisfying

HDmQ(xla T2y vy Timy, Z)

CSotalali ot enlleml¥ 4 el (33)

for all z,x1,...,2,, € X. Then there exists a unique quadratic mapping of m—
Apollonius type T : X — 'Y such that

22 —m? —m
Q(z) = T(x) s @(0)
2(m? — [?) v
1 (34)
mo 1 7 € :
“m2—02 m .Zl;rl api aQHx X

for all x € X (for all x € X \ {0} when p; < 0 for some l+1 < i < m+1).
Moreover, if 0 < p1, ..., Ppmi1 < 2, then

m? —m + |m? +m — 2% 1 g ,
-7 J+ — ———||z||% 35
ow -1@], < " 0t o a9
for all x € X, where a = %
Proof. In Theorem 3.1, let
P,y 2) = allzillk + -+ emllzmlX + enallzllX
Then (34) follows from (25). To obtain (35), putting 21 = -+- = 2, = 2 = 0, in
(33), we get that
20
0 < .
CO—
Then (35) follows from (34). ]

Theorem 3.3. Let | and m be integers with 1 <1 < m and suppose that ) : X —Y
is a mapping for which there exists a function @ : X™! — [0,00) such that

SRR W20 LAY LAY )
#e) = 3(7) P00, ()2 ()i2) < o, (36)
l—times
Mg iz iz li)_
Zlg(r)lo( l ) gp((m) xl,...,(m) xm,(m) 2] =0 (37)
and
HDmQ(xl,xg,...,xm,z) < (T, T, 2) (38)
Y

forallz,zy,... 2, € X. Let Q(0) = 0. Then there exists a unique quadratic mapping
of m—Apollonius type T : X — 'Y such that

m _

|Q) - T@)], < 7o) (39)

for all z € X.
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Proof. Let a = % Similar to the proof of Theorem 3.1, putting x;1 = --- =2; =0
and ;1 = -+ =z, = z in (38), we get that

<
1%

1
manp(O,...,O, 2oy 2 5 2) (40)
l—times (m—I)—times

o) - ot

for all z € X. Replacing 2z by a"z and dividing a®" in (40), we get that

1

1
o @(a™12) = —-Q(a")

a2n

Y

< n n n
< 777@042(”“)90(0"”’0’0( Z, o0z, az)
l—times (m—I)—times

for all z € X and all integers n > 0. Therefore we have

n [ | .
2 L%m)Q(O‘Mz) - oﬂisz)] |

i=j

1 i i
aQ(i+l)Q<a +1Z) - ﬁ@(a Z)

<3
o

Y

ma“*l 0,...,0,a'z,...,a'z,a'z)
l—times  (m—l)—times

for all z € X and all integers n > j > 0. Hence we obtain from (42) that

1 . 1
aQ(n+1)Q(a +12) — @Q(Oﬂz>

' (43)
<Zma21+1 0,...,0,a'z,...,a'z,a'2)

l—times  (m—l)—times

for all z € X and all integers n > j > 0. It follows from (36) and (43), that
{a™2"Q(a"z)}, is a Cauchy sequence in Y for all z € X. Since Y is complete, there
exists a mapping 7' : X — Y defined by

T(2) = lim — Q(a"2). (44)

Putting 7 = 0 in (43) and letting n — oo, we obtain the inequality (39). The rest of
the proof is similar to the proof of Theorem 3.1. [

Corollary 3.4. Let | and m be integers with 1 < [ < m and let py,...,pms1 and
€1,...,Ems1 be monnegative real numbers such that pi,...,pmi1 > 2. Suppose that
Q : X — Y is a mapping satisfying

HDmQ(xlv T2y y T, Z)

Yy < El”xlul))(l s emH:Emem + €m+1H pm+1 (45)
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for all z,x1,...,2,, € X. Then there exists a unique quadratic mapping of m—
Apollonius type T : X — Y such that

mt1
o) -6, < 5 & St (46)
for all x € X, where o = %
Proof. In Theorem 3.3, let
p(x1,. T, 2) = @zl + -+ emllamlK + empll2lX
Putting 1 = --- = 2, = z = 0 in (45), we get that Q(0) = 0. Then (46) follows
from (39). ]

Theorem 3.5. Let m be an even integer and suppose that Q) : X — Y is an even
mapping with Q(0) = 0 for which there exists a function ¢ : X™ — [0,00) such
that

> . z z z z
Pe) = 340 (0, 505,000, 50 ) < oo (47)
. ; Tr1 To Tm <
lim 90<21721, ,21,21> (48)
and
HDmQ(x1,$2,...,xm,z) < (a1, .. T, 2) (49)
Y
for all z,x1,...,2,, € X. Then there exists a unique quadratic mapping of m—
Apollonius type T : X —'Y such that
4 _
0w -T@)| < 5@ (50)
Y m
for all x € X.
Proof. Let vy =23=- =2y 3=Tpm_1=0and xo=24="-- = Tp_o0 = Tp, = 2.

Then we have 37" Q(z — ;) = $Q(z) and

Z Qz; —z;) = 2+4+-~~+(m—4)+(m—2)+§ Q(2)
13;2;m
m2
So, (49) implies that
4
HQ(z) ~4Q(3)| S #0.20.050.22 (51)

for all z € X. Replacing z by 5= and multiplying 4" in (51), we get that

N z o[ 2 4+l z z z z
4 +1Q<2n+1) -4 Q(Qn) S m 80<0’2n70"”72n’0’2n’2n> (52)

Y
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for all z € X and each integer n > 0. Therefore we obtain from (52) that

4”+1Q<2"+1> B 4kQ<2Zk) Y - ‘ g: [4Z+1Q<22+1) - 4ZQ(;>] HY

eof) (),

<>

n4itt z z z z
< 07A707--.,A707A7A>
—i:;: “0( 2 2 90 2

(53)

i=k
m

for all z € X and all integers 0 < k < n. It follows from (47) and (53) that the
sequence {4"Q(27"z)}, is a Cauchy sequence in Y for all z € X. Since Y is complete,
there exists a mapping T : X — Y defined by

z

T(z) := lim 4"Q<2n>

Now, we show that T is a quadratic functional equation of m—Apollonius type. It
follows from the definition of 7" and (48) and (49) that

iT(z—xl — > T(x; — ;) ( nlzgxl)

=1 1<z ,J<m

1<t v
. ol = z— 1 Ti— X z——Z:” T
= At ZlQ< on >_m 2 Q( on ]>_mQ( T )
i= Isi,j<m Y
1<t

Snli_)n0104"g0<;,... $2m 27:”) =0

for all z,zy,..., 2, € X. Putting k£ = 0 and letting n — oo in (53), we obtain (50).
To prove the uniqueness of T, let U : X — Y be another quadratic mapping of
m—Apollonius type which satisfies (50). By Theorem 2.2 and (47), we have

o) -],

gt g
< lim %) (>
n—oo M AL

x T
im Z gp( 2 ,0,...,0, 5 21) 0

m, n—oo

= lim 4"
Y n—oo

HU(:U) _T()

for all z € X. n

Remark 3.6. If we replace the condition (47) with

X[z z z z
— 47' .,0,.,0,...,A,0,.)< ;
> o(3:07 20 9i) =%

then we obtain a unique quadratic mapping of m—Apollonius type T : X — Y such

that 4
< —d(x)

Y m

0@ - T(@)

forallz e X.
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Corollary 3.7. Let m be an even integer and and let py, ..., Dmi1,€1,- - Emr1 bE
nonnegative real numbers such that py1,...,pme1 > 2. Suppose that QQ : X — Y s
an even mapping satisfying

[Dn@er s, o) < erllmal 4o enlonlBe + el (50
for all z,x1,...,x,, € X. Then there exists a unique quadratic mapping of m—
Apollonius type T : X — 'Y such that

4 P2 P
_ _ p2 Pa
o - 1@, < [ 5ogentell + ol .
2Pm » 2Pm+1 » ( )
.« — m - m—+1
for all x € X.
Proof. Let
p(r1, T, 2) = allzallk + -+ emllamlX + empll2lX
Putting 1 = -+ = 2, = 2 = 0 in (54), we get that Q(0) = 0. Therefore the result
follows from Theorem 3.5. ]

By Remark 3.6 we have an alternative result of Corollary 3.7.

Theorem 3.8. Let m be an even integer and let & be a monnegative real number.
Suppose that Q) : X — Y 1is an even mapping for which there exists a function
@ XM — [—§,00) such that

P(2) == 24—@(0,2"2,0, 202,0,...,0,22, 2@2) < 00, (56)
i=0
lim 4_igo<2ix1, 2%, ..., 2y, Qiz) =0 (57)
and
HDmQ(azl,xQ,...,xm,z) <0+ @(x1,. .., T, 2) (58)
Y
for all z,xy,...,x,, € X. Then there exists a unique quadratic mapping of m—
Apollonius type T : X — 'Y such that
1 m + 2 ) 1
T(z) — - —re < 4 32
- 00+ 5 E200)| < v e (59
for all x € X.
Proof. Similar to the proof of Theorem 3.5, let 1 =23 =+ =23 = Tpp_1 = 0
and 29 =24 =+ = Typ_2 = T,y = 2. Then we have

;Q(Z — ;) = EQ(Z) + EQ«))
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and
2:cx%—xﬂ:[2+4+~-+0n—®+wm—2y+

1<ij<m
7<i

e

+{2+4+---+(m—4)+(m—2)}@(0)

m? m2 —2m
Qe + 2

So, (58) implies that

Hi@(z) -o(3)+ ™ a0

|
< — 4+ —
2 4m — m + m¢(07 Z? 07 Y Z? 07 Z? Z) (60)

Y

for all z € X. Replacing z by 2"z and dividing 4" in (60), we get that

) hole-) 2]

5 . (61)
= — +Wg0(0,2 2,0,...,2"2,0,2"2,2"2)
for all z € X and each integer n > 0. Therefore we obtain from (61) that
1 " 1 b1 m + 2
() - ge() X e H
v i i1 m+ 2
-1z 4“1@(2 z) - 4@.@(2 z) + 150 (62)
<5i1+1i ©(0,2°2,0,...,2'2,0,2'2,2"2)
— ) =+ — z z, z,
Tmig4 o mi

=

for all z € X and all integers 0 < k < n. It follows from (56) and (62) that the
sequence {47"7'Q(2"2)},, is a Cauchy sequence in Y for all z € X. Since Y is
complete, there exists a mapping 7' : X — Y defined by

: 1 n
T(z):= Jim 4n+1Q(2 z).

The rest of the proof is similar to the proof of Theorem 3.5. [

Remark 3.9. If we replace the condition (56) with

P(2) = 24—2'@(2%,0,2@'2,0, 2z, ...,2'2,0, 2"z> < 00,

=0

then we obtain a unique quadratic mapping of m—Apollonius type T : X — Y such

that 5

1
— 4+ —P(2
3m + 4dm (22)

H 1 m+2Q(O)

4 + 12m

Y
forallz € X.
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Corollary 3.10. Let m be an even integer and let pi,...,pm+1 be non-zero real
numbers and 0, €y, ..., €ns1 be nonnegative real numbers such that py,...,Pma1 < 2
and p1,p3, ...y Pm-1 > 0. Suppose that Q) : X — 'Y is an even mapping satisfying

HDmQ(ml, Ty ey Ty 2)

[ SotalnllR 4t emllenl 5+ emall 25 (63)

for all z,x1,...,x,, € X. Then there exists a unique quadratic mapping of m—
Apollonius type T : X — 'Y such that

1 m 4+ 2
T(x)— - 0
7)o + 2o
) 1 2
- _ p2 yt
< gt | gl + 2 alel n
oPm ) Pt )
. . m - m—+1
beeet gl 2 il

for all x € X (for all x € X \ {0} when p; <0 for some i € {2,4,--- ,m,m+ 1}).
Moreover if 0 < p1,...,pms1 < 2, then

T(@) - Q@) <5t |l + el
[ — — —_— —_— a;’
DT = om— 1) T m |4 —2m T
Pm P (65)
beeet gl 4 2l
Proof. In Theorem 3.8, let
P,y 2) = allzalk + -+ emllzmly + enallzllx
Then (64) follows from (59). To obtain (65), putting 21 = -+- = z,, = z = 0, in
(63), we get that
26
0 < .
OIE—
Then (65) follows from (64). ]

By Remark 3.9 we have an alternative result of Corollary 3.10.

Theorem 3.11. Let m > 3 be an odd integer and let § be a nonnegative real number.

Suppose that QQ : X — Y is an even mapping for which there exists a function
@ XM — [=§,00) such that

Pz 1= X aip(0.472,0.972,0....,0.472,0.72) < o0, (66)
1=0
hm ai90<ryixlv ’Yian s 77i17m7 VZZ) =0 (67)

and
HDmQ(I‘la L2y -y T,y Z)

<0+ @(x1,. .., T, 2) (68)
Y
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(m+1)?

Jorallzy,...,xm, 2z € X, where a = =5~ and v = ﬁ Then there exists a unique
quadratic mapping of m—Apollonius type T : X — Y such that
af Q «
T(x) — < — 0+ —0 69
1) -0+ 00| <ot oot
for all x € X, where § = 4m2 )
Proof. Similar to the proof of Theorem 3.5, let ;1 =23 =--- =2, o =z, =0 and
To=T4=""+=Tms=Tm_1 = 2 Then we have
n m—+1 m—1
Y Q—m) = T@(2> + TQ(O),
i=1
S Qai— 1) = [2+4+-~-+(m—3)+(m—1)}@(2)
1<i,j<m
j<i
—1
H2rdes m-3+ T Qo)
m? —1 (m—1)2
=) + Q).
and
1 & m+1 1
@<Z‘ mzx> =a("5, %) =e(57)
So, (68) implies that
1 ) 1
OéQ(Z) _Q(Z> +ﬁ@(0) < 7+790<072707---7270?2) (70)
y y _m m

for all z € X. Replacing z by 4"z and multiplying " in (70), we get that

a"Q(Y"2) — a"Q(Y" " 2) + " BQ(0)

v (71)

< 654+ 2 0(0,9"2,0,...,7"2,0,7"2)
m m

for all z € X and each integer n > 0. Therefore we obtain from (71) that

Q) — a*Q(2) + 3 0 5Q(0)
1=k

Y

Z[ H1Q(2) ’Q(vi—1z>+a’ﬂcz(0>]

Y (72)
<> aMQ('2) —a'Q(y T 2) +a'BQ(0)
i=k Y
<£§n:a’+l§n:o/ (0,72,0 '2,0,7'2)
— m Z:k; m z:k SO Y ’y 7 AR ’y Y ) 7
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for all z € X and all integers 0 < k < n. Since 0 < o < 1, it follows from (66)
and (72) that the sequence {a"™1Q(y"2)}, is a Cauchy sequence in Y for all z € X.
Since Y is complete, there exists a mapping 7' : X — Y defined by

The rest of the proof is similar to the proof of Theorem 3.5. [

Corollary 3.12. Let m > 3 be an odd integer and let pi,pa, ..., Pms1 be non-zero
real numbers and d, €1, . . . , €, 11 be nonnegative real numbers such that p1, pa, . .., Pmy1 <
2 and p1,ps3, ..., pm > 0. Suppose that Q) : X — Y is an even mapping satisfying

HDmQ(xlv T2y T, Z)

CSotalali ot enllenl¥ 4 el (73)

for all z,x1,...,2,, € X. Then there exists a unique quadratic mapping of m—
Apollonius type T : X — 'Y such that
Q@
70 - a0 + 100
1—« v
e 1 ,YPQ s f}/pél s
= m(l—a)6+m[72 —WQHx” +72—7P4€4”x“ (74)
f}/pmfl - f}/pm+1 .
+ e + 72 —_ f}/pmfl em_l”pr ' + 72 _ P)/pm+1 6m+1H$”p o

for allz € X (for allz € X\ {0} when p; <0 for somei € {2,4,....,m—1,m+1}).
Moreover, if 0 < p1,p2y ..., Dms1 < 2, then

ygbw{ume—gz—m%5
1

+ —
m

7() - aQ()

P2 P4
||z + L —eullx]
'YPQ fy — 7?4

72 - |P4

/Ypm+1

2 — ryPmt1

Pm—1
+ 4 776m—1||x||pM71 +

e S P
Proof. In Theorem 3.11, let
50(1’1, s Tmy Z) - Eleng(l +--+ Em”meg(m + €m+1|’2H§(m+la

as desired. ]

Theorem 3.13. Let m > 3 be an odd integer and let § be a nonnegative real number.
Suppose that Q) : X — Y 1is an even mapping for which there exists a function
@ X — [—§,00) such that

(15(2) = Z Qigp(,}/iz7 07 ’yiza 07 s )07 /in7 712> < 00, (75)
=0
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hm 0/90<7ix17 713727 cee 77i$m7 ’YZZ> =0 (76)
and
HDmQ(:cl,x2,...,:cm,z) <04 @(x1,. .., Tm, 2) (77)
Y
forallxy, ..., 2,2 € X, where a = (72:2)2 and vy = % Then there exists a unique
quadratic mapping of m—Apollonius type T : X —'Y such that
af o a
T(x)— 0 < —— 0+ — 78
1) 00 + 2500 < otie Ssta)
for all x € X, where 3 = %.
Proof. Similar to the proof of Theorem 3.5, let 1 =23 =--- =1z, 9 = x,, = z and
To =Ty =+ = Ty_3 = Ty—1 = 0. The rest of the proof is similar to the proof of
Theorem 3.11 and we omit it. [ ]

Corollary 3.14. Let m > 3 be an odd integer and let py,pa, ..., Pms1 be non-zero
real numbers and 6, €y, . . ., €n11 be nonnegative real numbers such that py,pa, ..., Pmi1 <
2 and pa, P4, - -, Pm—1 > 0. Suppose that () : X — Y 1is an even mapping satisfying

HDmQ('xwaa e Ty, Z)

C<oralnl+o +enllanl¥ + el (79)

for all z,xq,...,x, € X. Then there exists a unique quadratic mapping of m—
Apollonius type T : X — 'Y such that

I .

T(z) - Q) +

Q(0)

Y
Q 1

S N B LQHme X i%Hpr?’ (80)
T m(l—a)  m|y - 72 — P

/Ypm
D e e

for all x € X (for all x € X \ {0} when p; <0 for some i € {1,3,...,m,m+ 1}).
Moreover, if 0 < p1,p2y .-y Pme1 < 2, then

1 28

r}/pm+1
T [J][P

T(x) — < )
H () =@ = | Ta =5 T o —a)]a
1 Pt » P
m WQ”xH i V2 — p3€3||$|| ’
,-)/pm . f}/perl -
+"'+m€m”$”p +m€m+1”x”p H]-
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