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Abstract. We give a fixed point approach to the generalized Hyers-Ulam stability of the
cubic equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)

in non-Archimedean normed spaces. We will give an example to show that some known

results in the stability of cubic functional equations in real normed spaces fail in non-

Archimedean normed spaces. Finally, some applications of our results in non-Archimedean

normed spaces over p-adic numbers will be exhibited.

1. Introduction

The concept of stability of a functional equation arises when one replaces a
functional equation by an inequality which acts as a perturbation of the equation.
In 1940, S.M. Ulam [28] posed the first stability problem. In the next year, D. H.
Hyers [8] gave a partial affirmative answer to the Ulam’s problem. The theorem
of Hyers was generalized by T. Aoki [1] and Bourgin [3]. In 1978, Th. M. Rassias
[27] provided a remarkable generalization of Hyers’s result by allowing the Cauchy
difference to be unbounded. In 1994, a generalization of Rassias’ theorem was
obtained by P. Găvruta [6] by replacing the bound ε(∥x∥p + ∥y∥p) by a general
control function φ(x, y). Several stability results have been recently obtained for
various equations, also for mappings with more general domains and ranges (see
e.g. [9, 10]).

The functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x)(1.1)

is called the cubic functional equation because f(x) = cx3 is a solution of the
equation. Every solution of the cubic functional equation is said to be a cubic
mapping.
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Jun and Kim in [13] have shown that a function f : X → Y satisfies (1.1) if and
only if there exists a function B : X3 → Y such that f(x) = B(x, x, x), where B
is symmetric for each fixed variable and it is additive for fixed two variables. They
also proved the following:

Theorem 1.1. Let X be a real vector space and Y be a Banach space, let

||f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)|| ≤ φ(x, y) (x ∈ X)

where φ : X2 → [0,∞) satisfies
∑∞

i=0
φ(2ix,0)

8i < ∞ and limn→∞
φ(2nx,2ny)

8n = 0 for

all x, y ∈ X. Then T (x) = limn→∞
f(2nx)

8n defines a unique cubic mapping from X
to Y which satisfies (1.1) and the inequality

||f(x)− T (x)|| ≤ 1

16

∞∑
i=0

φ(2ix, 0)

8i
(x ∈ X).

The stability of some types of the cubic equations has been considered by some
mathematicians [11,14,17,22,26].

In 1897, Hensel [7] discovered the p-adic numbers as a number theoretical ana-
logue of power series in complex analysis. He indeed introduced a field with a
valuation normed which does not have the Archimedean property. Although many
results in the classical normed space theory have a non-Archimedean counterpart,
but their proofs are different and require a rather new kind of intuition. One may
note that |n| ≤ 1 in each valuation field, every triangle is isosceles and there may
be no unit vector in a non-Archimedean normed space; cf. [23]. These facts show
that the non-Archimedean framework is of special interest.

L. M. Arriola and W. A. Beyer in [2] initiated the stability of functional equa-
tions in non-Archimedean spaces. In fact they established stability of Cauchy func-
tional equations over p-adic fields. The stability of some other functional equations
in non-Archimedean normed spaces have been investigated by some mathematicians
( see e.g. [12, 15, 16, 19, 20]). In particular, Moslehian et al. [21] have proved the
stability of cubic functional equations in non-Archimedean normed spaces. In fact
they showed that:

Theorem 1.2. Let X be an abelian (additive) group and let Y be a complete
non-Archimedean normed space. Let φ : X × X → [0,∞) be a function such that

limn→∞
φ(2nx, 2ny)

|8|n = 0 for each x, y ∈ X and f : X → Y be a mapping satisfying

||f(2x+y)+f(2x−y)−2f(x+y)−2f(x−y)−12f(x)|| ≤ φ(x, y) (x, y) ∈ X×X.

Then T (x) = limn→∞
f(2nx)

8n defines a unique cubic mapping such that

||f(x)− T (x)|| ≤ 1

|16|
sup{φ(2

jx, 0)

|8|j
: j ∈ N} (x ∈ X).
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In 2003, Radu [25] employed the fixed point method to prove the stability
of Cauchy additive functional equations. Since then several authors have applied
this method to investigate the stability of some functional equations, see e. g.
[4, 11,18,24].

In this paper, we apply non-Archimedean fixed point alternative theorem to
give a new approach to the Hyers-Ulam stability of cubic functional equations in
non-Archimedean normed spaces. The theme of this papers goes as follows.
In Section 2, we introduce some preliminaries results which will be used in the
sequel. In Section 3, we use fixed point method to prove stability of the cubic
functional equation in non-Archimedean normed spaces. Finally, in Section 4, some
applications of our results have been illustrated. In particular, we give an example
to show that our method is different from the one used in [21]. This example also
shows that the exact form of some results about the stability of cubic functions in
real normed spaces may fail in non-Archimedean normed spaces.

2. Preliminaries

We begin with the definition of a non-Archimedean field and a non-Archimedean
normed linear space. Then we give the non-Archimedean version of fixed point
alternative principle.

Definition 2.1. Let K be a field. A non-Archimedean valuation on K is a function
| | : K → R such that for any a, b ∈ K we have

(i) |a| ≥ 0 and equality holds if and only if a = 0,

(ii) |ab| = |a||b|,

(iii) |a+ b| ≤ max{|a|, |b|}.

The condition (iii) is called the strong triangle inequality. By ( ii ), we have |1| =
| − 1| = 1. Thus, by induction, it follows from ( iii ) that |n| ≤ 1 for each integer n.
We always assume in addition that | | is non trivial, i.e.,

(iv) there is an a0 ∈ K such that |a0| ̸= 0, 1.

Definition 2.2. Let X be a linear space over a scalar field K with a non-
Archimedean non-trivial valuation | . |. A function || . || : X → R is a non-
Archimedean norm (valuation) if it is a norm over K with the strong triangle in-
equality (ultrametric); namely,

||x+ y|| ≤ max{||x||, ||y||} (x, y ∈ X).

Then (X, || . ||) is called a non-Archimedean space.

By a complete non-Archimedean space we mean one in which every Cauchy sequence
is convergent.
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Remark 2.3. Thanks to the inequality

||xn − xm|| ≤ max{||xj+1 − xj || : m ≤ j ≤ n− 1} (n > m)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-
Archimedean space.

The most important examples of non-Archimedean spaces are p-adic numbers.
A key property of p-adic numbers is that they do not satisfy the Archimedean
axiom: for all x and y > 0, there exists an integer n such that x < ny.

Example 2.4. Let p be a prime number. For any nonzero rational number a = pr m
n

such that m and n are coprime to the prime number p, define the p-adic absolute
value |a|p = p−r. Then | | is a non-Archimedean norm on Q. The completion of Q
with respect to | | is denoted by Qp and is called the p-adic number field.
Note that if p ≥ 3, then |2n| = 1 in for each integer n.

Definition 2.5. Let X be a nonempty set and d : X × X → [0,∞] satisfy the
following properties:

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x)(symmetry),

(iii) d(x, z) ≤ max{d(x, y), d(y, z)}(strong triangle inequality),

for all x, y, z ∈ X. Then (X, d) is called a generalized non-Archimedean metric
space. (X, d) is called complete if every d-Cauchy sequence in X is d-convergent.

Example 2.6. Let X and Y be two non-Archimedean spaces over a non-
Archimedean field K. If Y has a complete non-Archimedean norm over K and
ψ : X → [0,∞), for each f, g : X → Y , define

d(f, g) = inf{α > 0 : ||f(x)− g(x)|| ≤ αψ(x) ∀x ∈ X}.

Then an easy computation, similar to the proof of [4, Theorem 2.5], shows that
d defines a generalized non-Archimedean complete metric on F = {f |f : X →
Y ; f(0) = 0}.

Theorem 2.7. (Non-Archimedean Alternative Contraction Principle) If (X, d) is
a non-Archimedean generalized complete metric space and J : X → X a strictly
contractive mapping ( that is d(J(x), J(y)) ≤ Ld(y, x), for all x, y ∈ X and a
Lipschitz constant L < 1), then either

(i) d(Jn(x), Jn+1(x)) = ∞ for all n ≥ 0, or

(ii) there exists some n0 ≥ 0 such that d(Jn(x), Jn+1(x)) <∞ for all n ≥ n0;

the sequence {Jn(x)} is convergent to a fixed point x∗ of J ; x∗ is the unique fixed
point of J in the set

Y = {y ∈ X : d(Jn0(x), y) <∞}
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and d(y, x∗) ≤ d(y, J(y)) for all y in this set.

Proof. The proof of similar theorem in [5] can be applied to show that in case (ii),
J |Y has a unique fixed point x∗ in Y such that for each y ∈ Y, {Jn(y)} converges
to x∗. By the strong triangle inequality for all y ∈ Y and n ∈ N, we have

d(y, Jn(y)) ≤ max{d(y, J(y)), . . . , d(Jn−1(y), Jn(y))}
≤ max{d(y, J(y), . . . , Ln−1d(y, J(y))}
= d(y, J(y)).

From this the last inequality of the Theorem follows. 2

3. Non-Archimedean stability of cubic functional equation

Hereafter, we will assume that X and Y are non-Archimedean spaces over a
non-Archimedean field K.
Let f : X → Y be a mapping, we define

Cf(x, y) = f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x) (x, y ∈ X).

Suppose that φ : X ×X → [0,∞), then f : X → Y is said to be φ-approximately
cubic if

(3.1) ||Cf(x, y)|| ≤ φ(x, y) (x, y ∈ X).

Let θ map X into [0,∞), we call a mapping f : X → Y , θ-approximately odd if

||f(x) + f(−x)|| ≤ θ(x) (x ∈ X).

By putting x = 0 in (3.1), we get to the following observation:

Lemma 3.1. Let φ : X ×X → [0,∞). If f : X → Y is a φ-approximately cubic
function such that f(0) = 0, then f is φ(0, .)-approximately odd.

Theorem 3.2. Let φ : X×X → [0,∞) and f : X → Y be a φ-approximately cubic
function. If Y is complete and for some integer k ∈ K and 0 < L < 1,

(3.2) |k|3φ(k−1x, k−1y) ≤ L φ(x, y)

for all x, y ∈ X. Then there exists a unique cubic mapping c : X → Y such that

(3.3) ||f(x)− f(0)− c(x)|| ≤ Ψk(k
−1x) (x ∈ X),

where

(3.4) Ψ2(x) =
1

|2|
max{φ(x, 0), φ(0, 0)}, Ψ3(x) = max{φ(x, x), φ(x, 0), φ(0, 0)}



320 Alireza Kamel Mirmostafaee

and for j > 3,

Ψj(x)

=max
{
φ(x, (j − 2)x),. . ., φ(x, x), φ(x, 0), φ(0, 0), φ(0, x),. . ., φ(0, (j − 3)x)

}(3.5)

for all x ∈ X.

Proof. Let f1(x) = f(x)− f(0) for each x ∈ X. We will show that for every j ≥ 2,

(3.6) ||f1(jx)− j3f1(x)|| ≤ Ψj(x) (x ∈ X).

Replacing f by f1 in (3.1), we obtain

(3.7) ||Cf1(x, y)|| ≤ max{φ(x, y), φ(0, 0)} (x ∈ X).

Put y = 0 in (3.7) to obtain

(3.8) ||2f1(2x)− 16f1(x)|| ≤ max{φ(x, 0), φ(0, 0)} (x ∈ X).

Hence for each x ∈ X, ||f1(2x)− 23f1(x)|| ≤ Ψ2(x). Replacing y by x in (3.7), we
get to the following inequality

(3.9) ||f1(3x) + f1(x)− 2f1(2x)− 12f1(x)|| ≤ max{φ(x, x), φ(0, 0)} (x ∈ X).

Since

f1(3x)−33f1(x) = f1(3x)+f1(x)−2f1(2x)−12f1(x)+2f1(2x)−16f1(x) (x ∈ X),

it follows from (3.8) and (3.9) that

(3.10) ||f1(3x)− 33f1(x)|| ≤ max{φ(x, x), φ(x, 0), φ(0, 0)} = Ψ3(x) (x ∈ X).

Let (3.6) hold for j = 3, . . . , i. Put y = (i− 1)x in (3.7) to obtain

||Cf1
(
x, (i− 1)x

)
||

= ||f1
(
(i+ 1)x

)
+ f1

(
− (i− 3)x

)
− 2f1(ix)− 2f1

(
− (i− 2)x

)
− 12f1(x)||

≤ max{φ
(
x, (i− 1)x

)
, φ(0, 0)}

(3.11)

for every x in X. Since for each x ∈ X,

f1
(
(i+ 1)x

)
− f1

(
(i− 3)x

)
− 2f1(ix) + 2f1

(
(i− 2)x

)
− 12f1(x)

= f1
(
(i+ 1)x

)
− (i+ 1)3f1(x)− [f1

(
(i− 3)x

)
− (i− 3)3f1(x)]

− 2[f1(ix)− i3f1(x)] + 2[f1
(
(i− 2)x

)
− (i− 2)3f1(x)]

and by Lemma 3.1

f1
(
− (i− 3)x

)
− f1

(
(i− 3)x

)
|| ≤ max{φ

(
0, (i− 3)x

)
, φ(0, 0)},
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f1
(
− (i− 2)x

)
− f1

(
(i− 2)x

)
|| ≤ max{φ

(
0, (i− 2)x

)
, φ(0, 0)},

(3.6) follows from (3.11) for i + 1. Hence, by induction on i, (3.6) is proved. In
particular,

||f1(kx)− k3f1(x)|| ≤ Ψk(x) (x ∈ X).

This is equivalent to

||f1(x)− k3f1(k
−1x)|| ≤ Ψk(k

−1x) (x ∈ X).

For every g, h : X → Y , define

(3.12) d(g, h) = inf{α > 0 : ||g(x)− h(x)|| ≤ α Ψk(k
−1x), ∀x ∈ X}.

By Example 2.6, d defines a complete generalized non-Archimedean metric on F =
{g|g : X → Y ; g(0) = 0}. Let J : F → F be defined by J(g)(x) = k3g(k−1x) for all
x ∈ X and g ∈ F . If for some g, h ∈ F and α > 0,

||g(x)− h(x)|| ≤ α Ψk(k
−1x), (x ∈ X),

then

||J(g)(x)− J(h)(x)|| = |k|3||g(k−1x)− h(k−1x)||
≤ α |k|3Ψk(k

−2x) ≤ α LΨk(k
−1x) (x ∈ X).

Therefore, d(J(g), J(h)) ≤ Ld(g, h) . Hence d is a strictly contractive mapping on
F with Lipschitz constant L. Let G = {g ∈ F : d(f1, g) <∞}, since

||J(f1)(x)− J0f1(x)|| = ||k3f1(k−1x)− f1(x)|| ≤ Ψk(k
−1x) (x ∈ X),

d(J(f1), J
0(f1)) ≤ 1. By Theorem 2.7 (ii), J has a unique fixed point c ∈ G which

is defined by

c(x) = lim
n→∞

Jn(f1)(x) = lim
n→∞

k3nf1
(
k−nx

)
(x ∈ X).

The inequality

||c(2x+y)+c(2x−y)−2c(x+y)−2c(x−y)−12c(x)|| = lim
n→∞

|k|3n||Cf(k−nx, k−ny)||

≤ lim
n→∞

|k|3nφ(k−nx, k−ny)

≤ lim
n→∞

Lnφ(x, y) = 0

for each x, y ∈ X, implies that c is cubic. By Theorem 2.7 (ii), d(f1, c) ≤ 1. This
means that

||f(x)− f(0)− c(x)|| = ||f1(x)− c(x)|| ≤ Ψk(k
−1x) (x ∈ X).
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If c′ : X → Y is another cubic mapping such that

||f(x)− f(0)− c′(x)|| ≤ Ψk(k
−1x) (x ∈ X),

then c′ is a fixed point of J in G. The uniqueness of the fixed point of J in G implies
that c = c′. 2

Imitating the proof of Theorem 3.2, we get to the following result:

Corollary 3.3. Let φ : X × X → [0,∞) and f : X → Y be an add function
which is φ-approximately cubic. If Y is complete and for some integer k ∈ K and
0 < L < 1,

(3.13) |k|3φ(k−1x, k−1y) ≤ Lφ(x, y) (x, y ∈ X).

Then there exists a unique cubic mapping c : X → Y such that

(3.14) ||f(x)− c(x)|| ≤ Φk(k
−1x) (x ∈ X),

where

(3.15) Φ2(x) =
1

|2|
φ(x, 0) Φ3(x) = max{φ(x, x), φ(x, 0)}

and for j > 3,

(3.16) Φj(x) = max
{
φ(x, (j − 2)x), . . . , φ(x, x), φ(x, 0)

}
for all x ∈ X.

The following result can be considered as the dual version of Theorem 3.2.

Theorem 3.4. Let φ : X×X → [0,∞) and f : X → Y be a φ-approximately cubic
function. If Y is complete and for some integer k ∈ K and 0 < L < 1,

(3.17) |k|−3φ(kx, ky) ≤ L φ(x, y)

for all x, y ∈ X. Then there exists a unique cubic mapping c : X → Y such that

(3.18) ||f(x)− f(0)− c(x)|| ≤ |k|−3Ψk(x) (x ∈ X),

where Ψj is defined either by (3.4) or (3.5).

Proof. Let f1(x) = f(x) − f(0) for each x ∈ X. The first part of the proof of
Theorem 3.2 shows that

(3.19) ||f1(kx)− k3f1(x)|| ≤ Ψk(x) (x ∈ X).

Let F = {g|g : X → Y, g(0) = 0}, then

(3.20) d(g, h) = inf{α > 0 : ||g(x)− h(x)|| ≤ α Ψk(x), ∀x ∈ X} (g, h ∈ F)
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defines a complete generalized non-Archimedean metric on F . Define J : F → F
by J(g)(x) = k−3g(kx) for all x ∈ X and g ∈ F . If for some g, h ∈ F and α > 0,

||g(x)− h(x)|| ≤ α Ψk(x), ∀x ∈ X,

then

||J(g)(x)−J(h)(x)|| = |k|−3||g(kx)−h(kx)|| ≤ α |k|−3Ψk(kx) ≤ α LΨk(x) (x ∈ X).

Therefore d(J(g), J(h)) ≤ Ld(g, h). That is d is a strictly contractive mapping on
F with Lipschitz constant L. Since by (3.19),

||J(f1)(x)− J0f1(x)|| = ||k−3f1(kx)− f1(x)|| ≤ |k|−3Ψk(x) (x ∈ X),

d(J(f1), J
0(f1)) ≤ |k|−3. By Theorem 2.7 (ii), J has a unique fixed point c in the

set {g ∈ F : d(f1, g) <∞}, which satisfies the relation

c(x) = lim
n→∞

Jn(f1)(x) = lim
n→∞

k−3nf1
(
knx

)
(x ∈ X).

The inequality

||c(2x+ y) + c(2x− y)− 2c(x+ y)− 2c(x− y)− 12c(x)|| = lim
n→∞

|k|−3n||Cf(knx, kny)||

≤ lim
n→∞

|k|−3nφ(knx, kny)

≤ lim
n→∞

Lnφ(x, y) = 0

for each x, y ∈ X, implies that c is cubic. By Theorem 2.7 (ii), d(f1, c) ≤ |k|−3.
This means that

||f(x)− f(0)− c(x)|| = ||f1(x)− c(x)|| ≤ |k|−3Ψk(x) (x ∈ X).

The proof for the uniqueness assertion of c is similar to the end part of the proof
of Theorem 3.2. 2

Whenever f is an odd function, by imitating the proof of Theorem 3.4, we get
to the following estimation.

Corollary 3.5. Let φ : X × X → [0,∞) and f : X → Y be an add function
which is φ-approximately cubic. If Y is complete and for some integer k ∈ K and
0 < L < 1,

(3.21) |k|−3φ(x, y) ≤ Lφ(x, y) (x, y ∈ X).

Then there exists a unique cubic mapping c : X → Y such that

(3.22) ||f(x)− c(x)|| ≤ |k|−3Φk(x) (x ∈ X),

where Φj is defined either by (3.15) or (3.16).
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4. Applications

In this section, we give some applications of our results. In fact, we give non-
Archimedean versions of some known results about the stability of cubic functional
equations in real normed spaces.

We begin with the following example to show the difference between our result
with the one obtained in [21]. This example also shows that there is no counterpart
non-Archimedean version of Theorem 1.1.

Example 4.1. Let p > 2 be a prime number and X = Y = Qp. Define f : X → Y
by f(x) = x3 + 1 for all x ∈ X. Since |2| = 1,

|Cf(x, y)| = | − 14| = |2|.|7| = |7| ≤ 1 (x ∈ X).

Hence for φ(x, y) = |7|, the conditions of Theorem 1.1 hold. However, for each
natural number n, we have

|f(2
nx)

8n
− f(2n+1x)

8n+1
| = | 1

8n
− 1

8n+1
| = |7|

|8n+1|
= |7| (x ∈ X).

Therefore for each x ∈ X, limn→∞
f(2nx)

8n does not exist. This shows that in general,
Theorem 1.1 has no non-Archimedean interpretation. Moreover, Theorem 1.2 can
not be applied, since for φ(x, y) = |7|,

lim
n→∞

φ(2nx, 2ny)

|8|n
= lim

n→∞
|7| = |7| ̸= 0.

However, the conditions of Theorem 3.2 are satisfied. In fact, for k = p, we have

p3nf(p−nx) = x3 + p3n (x ∈ X),

and

|p3nf(p−nx)− x3| = |p3n| = 1

p3n
(x ∈ X).

Therefore limn→∞ p3nf(p−nx) = x3 defines a cubic function on X. It is easy to see
that Ψp(x) = |7| for each x ∈ X and

0 = |f(x)− f(0)− c(x)| < Ψp(x) (x ∈ X).

Hereafter, unless otherwise stated, we will assume that X and Y are non-
Archimedean normed spaces over Qp, where p > 2 is a prime number and Y is
complete.

Proposition 4.2. Let f : X → Y satisfy the following inequality

||Cf(x, y)|| ≤ ε0
(
||x||r||y||s) (x, y ∈ X),

where ε0 is a positive number. Let Y be complete and r, s > 0.
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(a) If r + s < 3, then there exists a unique cubic mapping c : X → Y such that

||f(x)− c(x)|| ≤ ε0p
r+s||x||r+s (x ∈ X).

(b) If r + s > 3, then there exists a unique cubic mapping c : X → Y such that

||f(x)− c(x)|| ≤ ε0p
3||x||r+s (x ∈ X).

Proof. Let φ(x, y) = ε0
(
||x||r||y||s

)
. By Lemma 3.1, f is an odd function. Since

|p|3φ(p−1x, p−1y) =
1

p3−(r+s)
φ(x, y) (x, y ∈ X),

if r + s < 3, the conditions of Theorem 3.2 for L = 1
p3−(r+s) are satisfied. It is easy

to see that in this case Ψp(x) = ε0||x||r+s for all x, y ∈ X. Hence and by Theorem
3.2, (a) holds. Let r + s > 3. The relation

|p|−3φ(px, py) =
1

pr+s−3
φ(x, y) (x, y ∈ X),

shows that for 0 < L = p3−(r+s) < 1, the conditions of Theorem 3.4 are fulfilled.
Hence (b) holds. 2

Proposition 4.3. Let Y be complete and f : X → Y satisfy the following inequality

(4.1) ||Cf(x, y)|| ≤ 2ε0
(
||x||r + ||y||r

)
(x, y ∈ X),

where ε0 is a positive number and r > 0.

(a) If r < 3, then there exists a unique cubic mapping c : X → Y such that

||f(x)− c(x)|| ≤ 2ε0p
r||x||r (x ∈ X).

(b) If r > 3, then there exists a unique cubic mapping c : X → Y such that

||f(x)− c(x)|| ≤ ε0p
3||x||r (x ∈ X).

Proof. Put x = y = 0 in (4.1) to obtain f(0) = 0. Let φ(x, y) = ε0
(
||x||r + ||y||r

)
.

Since

|p|3φ(p−1x, p−1y) = pr−3φ(x, y) (x, y ∈ X),

if r < 3, the conditions of Theorem 3.2 are satisfied. It is easy to see that in this
case Ψp(x) = 2ε0||x||r for all x ∈ X. This together with Theorem 3.2, proves (a).

Suppose that r > 3. The relation

|p|−3φ(px, py) = p3−rφ(x, y) (x, y ∈ X),
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shows that for 0 < L = p3−r < 1, therefore the conditions of Theorem 3.4 are
fulfilled. Hence (b) holds. 2

Proposition 4.4. Let f : X → Y satisfy the condition

||Cf(x, y)|| ≤ ε (x, y ∈ X)

for some ε > 0. Then there is a unique cubic mapping c : X → Y such that

||f(x)− f(0)− c (x)|| ≤ ε (x ∈ X).

Proof. The result follows from Theorem 3.2 for φ(x, y) = ε for each x, y ∈ X. 2
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