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Abstract:More than 20 years after Fickett attempted to prove the Hyers-Ulam stability of isometries defined

on bounded subsets of�n in 1981, Alestalo et al. [Isometric approximation, Israel J. Math. 125 (2001), 61–82]

and Väisälä [Isometric approximation property in Euclidean spaces, Israel J. Math. 128 (2002), 127] improved

Fickett’s theorem significantly. In this paper, we will improve Fickett’s theorem by proving the Hyers-Ulam

stability of isometries defined on bounded subsets of�n using a more intuitive and more efficient approach

that differs greatly from the methods used by Alestalo et al. and Väisälä.
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1 Introduction

In 1940, Ulam gave a lecture at a mathematics club at the University of Wisconsin introducing some

important unsolved problems. Then, based on that lecture, he published a book 20 years later (see [1]).

A number of unresolved problems are introduced in this book, among which the following question about

the Hyers-Ulam stability of group homomorphism is closely related to the subject matter of this paper:

Let G1 be a group and let G2 be a metric group with the metric ( )⋅ ⋅d , . Given >ε 0, does there exist a >δ 0 such that

if a function →h G G: 1 2 satisfies inequality ( ( ) ( ) ( )) <d h xy h x h y δ, for all ∈x y G, 1, then there exists a homomorphism

→H G G: 1 2 with ( ( ) ( )) <d h x H x ε, for all ∈x G1?

In 1941, the following year, Hyers [2] was able to successfully solve Ulam’s question about the approxi-

mately additive functions, assuming that both G1 and G2 were Banach spaces. Indeed, he has proved that

if a function →f G G: 1 2 satisfies inequality ( ) ( ) ( )‖ + − − ‖ ≤f x y f x f y ε for some ≥ε 0 and all ∈x y G, 1,

then there exists an additive function →A G G: 1 2 such that ( ) ( )‖ − ‖ ≤f x A x ε for each ∈x G1. In this case,

the Cauchy additive equation, ( ) ( ) ( )+ = +f x y f x f y , is said to have (or satisfy) the Hyers-Ulam stability.

In the theorem of Hyers, the relevant additive function →A G G: 1 2 is constructed from the given function

f by using the formula ( ) ( )=
→∞

A x f xlim 2
n

n1

2n
. This method is now called the direct method.

We use the notations ( )‖⋅‖E, and ( )‖⋅‖F, to denote Hilbert spaces over � , where � is either � or �.

A mapping →f E F: is said to be an isometry if f satisfies

( ) ( )‖ − ‖ = ‖ − ‖f x f y x y (1)

for any ∈x y E, .
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By considering the definition of Hyers and Ulam [3], for each fixed ≥ε 0, a function →f E F: is said

to be an ε-isometry if f satisfies inequality

∣ ( ) ( ) ∣‖ − ‖ − ‖ − ‖ ≤f x f y x y ε (2)

for any ∈x y E, . If there exists a positive constant K depending on only E and F (independent of f and ε)

such that for each ε-isometry →f E F: , there is an isometry →U E F: satisfying inequality ( ) ( )‖ − ‖f x U x

≤ Kε for every ∈x E, then the functional equation (1) is said to have (or satisfy) the Hyers-Ulam stability.

To the best of our knowledge, Hyers and Ulam were the first mathematicians to study the Hyers-Ulam

stability of isometries (see [3]). Indeed, they were able to prove the stability of isometries based on the pro-

perties of the inner product of Hilbert spaces: For each surjective ε-isometry →f E E: satisfying ( ) =f 0 0,

there is a surjective isometry →U E E: satisfying ( ) ( )‖ − ‖ ≤f x U x ε10 for every ∈x E. We encourage readers

who want to read historically important papers dealing with similar topics to look for the papers [4–7].

In 1978, Gruber [8] proved the following theorem: Assume that E and F are real normed spaces,

→f E F: is a surjective ε-isometry, and that →U E F: is an isometry satisfying ( ) ( )=f p U p for a ∈p E.

If ( ) ( ) ( )‖ − ‖ = ‖ ‖f x U x o x as‖ ‖ → ∞x uniformly, thenU is a surjective linear isometry and ( ) ( )‖ − ‖ ≤f x U x ε5

for all ∈x E. In particular, if f is continuous, then ( ) ( )‖ − ‖ ≤f x U x ε3 for each ∈x E. This Gruber’s result was

further improved by Gevirtz [9] and by Omladič and Šemrl [10]. There are many other papers related to the

stability of isometries, but it is regrettable that due to the restriction of space, they cannot be quoted one by

one. Nevertheless, see [11–25] for more general information on the stability of isometries and related topics.

The following Fickett’s theorem is an important motive for this paper (see [14]):

Theorem 1.1. (Fickett) For a fixed integer ≥n 2, let D be a bounded subset of �n and let >ε 0 be given.

If a function �→f D: n satisfies inequality (2) for all ∈x y D, , then there exists an isometry �→U D: n

such that

( ) ( )‖ − ‖ ≤ /f x U x ε27 1 2
n

(3)

for each ∈x D.

The upper bound associated with inequality (3) in Fickett’s theorem becomes very large for any suffi-

ciently small ε in comparison to ε. This is a big drawback of Fickett’s theorem. Thus, the work of further

improving Fickett’s theorem has to be attractive.

After Fickett attempted to prove the Hyers-Ulam stability of isometries defined on a bounded subset of

�n in 1981, several papers have been published steadily to improve his result over the past 40 years.

However, most of the results were not very satisfactory (see [15,16,26–28]). Fortunately, however, Alestalo

et al. [29] and Väisälä [25] significantly improved Fickett’s result by proving the Hyers-Ulam stability of

isometries defined on bounded subsets of �n.

In this paper, we significantly improve Fickett’s theorem by using a more intuitive and more efficient

method that is completely different from the methods used by Alestalo et al. and Väisälä. The main idea of

this paper is simple. We “solve” inequality (5) without using any special mathematical methods. To “solve”

inequality (5) here means to find only necessary conditions, not sufficient conditions for (5). Indeed, we

prove the Hyers-Ulam stability of isometries defined on bounded subsets of �n for ≥n 3 (see Theorem 4.1).

Finally, in Section 6, we will discuss that the main result of this paper has several major advantages

over the results of papers [25] and [29].

2 Real version of QR decomposition

An orthogonal matrix Q is a real square matrix whose columns and rows are orthonormal vectors. In other

words, a real square matrix Q is orthogonal if its transpose is equal to its inverse: = −Q Qtr 1, where Qtr and
−Q 1 stand for the transpose and the inverse of Q, respectively. As a linear transformation, an orthogonal

matrix preserves the inner product of vectors, and therefore acts as an isometry of Euclidean spaces.
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Most papers and textbooks that mention QR decomposition only prove the complex version of QR

decomposition (see [30, Theorem 6.3.7] or [31, Theorem 2.2 in §1]). However, the real version of QR decom-

position is required in this paper. Nevertheless, since the proof of the real version is similar to the proof of

the complex version, we will omit the proof of the former here.

Theorem 2.1. (QR decomposition) Every real square matrix A can be decomposed as =A QR, where Q is

an orthogonal matrix and R is an upper triangular matrix whose elements are real numbers. In particular,

every diagonal element of R is nonnegative.

We can prove the following lemma using the real version of QR decomposition (Theorem 2.1), and this

lemma plays an important role in achieving the final goal of this paper. In practice, using this lemma,

we can almost halve the number of unknowns to consider in the main theorem.

Lemma 2.2. Let �n be the n-dimensional Euclidean space for a fixed integer >n 0. Assume that D is a subset

of �n with { }… ⊂e e e D, , , n1 2 , where { }…e e e, , , n1 2 is the standard basis for �n. If �→f D: n is a function and

every ei is written in column vector, then there exist an orthogonal matrix P and real numbers ′eij for

{ }∈ …i j n, 1, 2, , with ≥i j such that

( ) ( )= ′ ′ … ′ …f e e e eP , , , , 0, , 0i i i ii
tr

1 2

for every { }∈ …i n1, 2, , . In particular, ′ ≥e 0ii for all { }∈ …i n1, 2, , .

Proof. Let ( ) ( )= …f e e e e, , ,i i i in
tr

1 2 , written in column vector, for any { }∈ …i n1, 2, , . We now define a matrix

A by

( ( ) ( ) ( ))= ⋯ =

⋯
⋯

⋮ ⋮ ⋱ ⋮
…

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

f e f e f e

e e e
e e e

e e e

A .n

n

n

n n nn

1 2

11 21 1

12 22 2

1 2

By Theorem 2.1, there exist an orthogonal matrix Q and an upper triangular (real) matrix R such that

=A QR. Thus, we have

( ) ( ) ( )( )= = ⋯ =

′ ′ ⋯ ′
′ ⋯ ′

⋮ ⋮ ⋱ ⋮
… ′

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f e f e f e

e e e

e e

e

R Q A Q Q Q
0

0 0

tr tr tr tr
n

n

n

nn

1 2

11 21 1

22 2 (4)

for some real numbers ′ ′ ′ … ′ … ′e e e e e, , , , , ,n nn11 21 22 1 , where the diagonal element ′eii is nonnegative for all

{ }∈ …i n1, 2, , .

Finally, the last two terms of (4) are compared to conclude as follows:

( ) ( )

( ) ( )

( ) ( )

= ′ …
= ′ ′ …
⋮

= ′ ′ ′ … ′

⎧

⎨

⎪
⎪

⎩

⎪
⎪

f e e

f e e e

f e e e e e

Q

Q

Q

, 0, 0, ,0 ,

, , 0, ,0 ,

, , , , .

tr tr

tr tr

tr
n n n n nn

tr

1 11

2 21 22

1 2 3

If we put =P Qtr, then P is also an orthogonal matrix. □

3 A preliminary theorem

Let { }…e e e, , , n1 2 be the standard basis for �n, where n is a fixed integer larger than 2. In this section,

D denotes a subset of �n that only satisfies { }… ⊂e e e D0, , , , n1 2 , whether bounded or not.
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Lemma 2.2 implies that there exists an orthogonal matrix Q, with which we can express ( ) =f ei

( )′ ′ … ′ …e e e, , , , 0, , 0i i ii
tr

1 2 with respect to the new basis { }…e e eQ Q Q, , , n1 2 instead of the standard basis

{ }…e e e, , , n1 2 and ′ ≥e 0ii for all { }∈ …i n1, 2, , . For example, we can choose the orthogonal matrix Q given

in the proof of Lemma 2.2 for this purpose. Therefore, from now on, we will assume that ( ) =f ei

( )′ ′ … ′ …e e e, , , , 0, , 0i i ii1 2 with ′ ≥e 0ii , written in row vector, without loss of generality.

In the statement of the following theorem, we define σ as if we knew the values of ( )+c i i1 without

knowing their values in advance. However, we note that in the proof of this theorem, we can justify the

definition of σ by showing that the value of each ( )+c i i1 is not greater than 9 (ref. Remark 3.1 ( )ii ). It is noted

that the situation is similar for the cii’s.

Theorem 3.1. Let { }…e e e, , , n1 2 be the standard basis for �n, where �n denotes the n-dimensional Euclidean

space for a fixed integer ≥n 3, let D be a subset of �n satisfying { }… ⊂e e e D0, , , , n1 2 , and let �→f D: n be

a function that satisfies ( ) =f 0 0 and

∣ ( ) ( ) ∣‖ − ‖ − ‖ − ‖ ≤f x f y x y ε (5)

for all { }∈ …x y e e e, 0, , , , n1 2 and for some constant ε with { }< <
≤ ≤

ε0 min , min ,
σ i n c

1

1

1

2

1

12ii
, where σ is defined as

( )= ∑ =
−
+σ ci

n
i i1

1
1

2 , cii and ( )+c i i1 will be determined by the formulas (21) and (23), respectively. Then there exist

positive integers cij, { }∈ …i j n, 1, 2, , with ≤j i, such that

( )

( )

− ≤ ′ ≤ >
− ≤ ′ ≤ + =

⎪

⎪

⎧
⎨
⎩

c ε e c ε for i j

c ε e ε for i j

,

1 1

ij ij ij

ii ii

(6)

and such that the cij satisfy the equations in (19) for all { }∈ …i j n, 1, 2, , with ≤j i.

Proof. (a) Using inequality (5) and by assumption ( ) =f 0 0, we have

∣ ( ) ∣ ∣ ( ) ( ) ∣‖ ‖ − ≤ ‖ − ‖ − ≤ℓf e ε f e f e ε1 and 2j k

for any { }ℓ ∈ …j k n, , 1, 2, , with < ℓk . Since ( ) ( )= ′ … ′ …f e e e, , , 0, ,0j j jj1 for all { }∈ …j n1, 2, , and ‖⋅‖ is the

Euclidean norm on�n, from the last inequalities we get the following two inequalities, which are equivalent

to inequality (5) for { }∈ …x y e e e, 0, , , , n1 2 :

( ) ( )∑− ≤ ′ ≤ +
=

ε e ε1 1

i

j

ji
2

1

2 2 (7)

for each { }∈ …j n1, 2, , and

( ) ( )∑ ∑ ∑− ≤ ′ − ′ ′ + ′ ≤ +
= =

ℓ
=

ℓ

ℓε e e e e ε2 2 2

i

k

ki

i

k

ki i

i

i
2

1

2

1 1

2 2 (8)

for every { }ℓ ∈ …k n, 1, 2, , with < ℓk . From now on, we will prove this theorem by using inequalities (7) and

(8) instead of inequality (5).

(b) Now we apply the “main” induction onm to prove the array of equations presented in (19). Proving

the array of (19) is the most important and longest part of this proof.

(b.1) According to Lemma 2.2, ′e11 is a nonnegative real number, so setting =j 1 in (7) gives us inequality,

− ≤ ′ ≤ +ε e ε1 111 , and we select =c 111 as the smallest positive integer that satisfies the following in-

equality:

− ≤ − ≤ ′ ≤ +c ε ε e ε1 1 1 .11 11 (9)

This fact guarantees the existence of c11 satisfying the second condition of (6) for = =i j 1. (We note that c11

must not be necessarily the smallest positive integer satisfying inequality (9), for example, =c 211 is not
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wrong, but if possible, the smaller the c11 is, the better it is.) If we set =j 2 in (7) and put =k 1 and ℓ = 2 in (8)

and then combine the resulting inequalities, then we get

( )

( )

( )

( )

− + + +
−

≤ ′ ≤ + +
−

c ε c ε

c ε
e

ε ε

c ε

2 2 2 2

2 1

4 2 2

2 1

11 11
2 2

11
21

2

11

and we can choose =c 421 as the smallest positive integer satisfying the condition

( )

( )

( )

( )
− ≤ − + + +

−
≤ ′ ≤ + +

−
≤c ε

c ε c ε

c ε
e

ε ε

c ε
c ε

2 2 2 2

2 1

4 2 2

2 1
.21

11 11
2 2

11
21

2

11

21 (10)

Obviously, this fact confirms the existence of c21 satisfying the first condition of (6) for =i 2 and =j 1.

(We note that cij must not be necessarily the smallest positive integer under given conditions, for example,

=c 521 is not bad, but if possible, the smaller the cij is, the better it is. Indeed, assuming that the cij are the

smallest positive integers that satisfy some given conditions, we can find the unique cij (for >i j), which

makes it easier to prove the array of equations presented in (19). This is one of the reasons we want cij to be

the smallest positive integer.)

Furthermore, if we set =j 3 in (7) and put =k 1 and ℓ = 3 in (8) and then combine the resulting

inequalities, then we get the inner part of the following inequalities:

( )

( )

( )

( )
− ≤ − + + +

−
≤ ′ ≤ + +

−
≤c ε

c ε c ε

c ε
e

ε ε

c ε
c ε

2 2 2 2

2 1

4 2 2

2 1
31

11 11
2 2

11
31

2

11

31 (11)

and we select c31 as the smallest positive integer that satisfies the outermost inequalities of (11). From this

fact, we confirm the existence of c31 that satisfies the first condition in (6). Since c21 and c31 are assumed to be

the smallest positive integers satisfying the outermost inequalities of (10) and (11), respectively, we come to

the conclusion that = =c c 431 21 .

Moreover, using (7) with =j 2 and by a direct calculation, since < <ε0
1

12
, we get

( ) ( )− − + < − − + = − − ≤ ′ ≤ +ε ε ε ε ε ε ε c ε e ε1 2
19

12
4 1 2 19 4 1 12 2 2 2

21
2 2

22
2 2

and, if possible, we determine c22 as the smallest positive integer which satisfies the condition

( ) ( )− ≤ − − + ≤ ′ ≤ +c ε ε ε ε e ε1 1 2
19

12
4 1 .22

2 2
22

2 2

The last inequalities assure the existence of =c 222 satisfying the second condition of (6) for = =i j 2.

In a similar way, putting =k 2 and ℓ = 3 in (8) and a routine calculation show the existence of c32

satisfying the first condition of (6), for example, =c 632 . Analogously, since < <ε0
1

12
, inequality (7) with

=j 3 yields inequality, ( )− − ≤ ′ ≤ +ε ε e ε1 2 51 12
33

2 2, and we can choose the smallest positive integer c33

that satisfies

( ) ( )− ≤ − − ≤ ′ ≤ +c ε ε ε e ε1 1 2 51 1 ,33
2 2

33
2 2

which shows that c33 exists that satisfies the second condition of (6). More directly, we can choose =c 433 .

Therefore, all the integers cij considered in (b.1) satisfy the conditions in (6) and (19) for =n 3. By doing this,

we start the induction (with =m 3).

(b.2) Induction hypothesis. Letm be some integer satisfying ≤ <m n3 . It is assumed that the smallest

positive integers cij, { }∈ …i j m, 1, 2, , with ≤j i were found by the methods we did in the subsection (b.1),

and that these positive integers satisfy the following inequalities:

( )

( )

− ≤ ′ ≤ >
− ≤ ′ ≤ + =

⎪

⎪

⎧
⎨
⎩

c ε e c ε i j

c ε e ε i j

for ,

1 1 for

ij ij ij

ii ii
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as well as the array of equations

( ) ( )

( ) ( )

( ) ( )

( ) ( )( ) ( )( )

( ) ( )( )

( )

= = = … = = =
= = = … = =
= = = … =

⋮ ⋮ ⋮
= =
=

− −
− −
− −

− − − − −
− − −
−

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

c c c c c c

c c c c c

c c c c

c c c

c c

c

,

,

,

,

,

.

m m m

m m m

m m m

m m m m m m

m m m m

m m

1 1 1 2 1 41 31 21

2 1 2 2 2 42 32

3 1 3 2 3 43

3 1 3 2 3

2 1 2

1

The last line in the above array consisting of only ( )−cm m 1 means that there exists the smallest possible

positive integer ( )−cm m 1 that satisfies ( ) ( ) ( )− ≤ ′ ≤− − −c ε e c εm m m m m m1 1 1 .

(b.3) We let = +j m 1 in (7) and ℓ = +m 1 in (8) to get

( ) ( )( )∑− ≤ ′ ≤ +
=

+

+ε e ε1 1

i

m

m i
2

1

1

1
2 2 (12)

and

( ) ( )( ) ( )∑ ∑ ∑− ≤ ′ − ′ ′ + ′ ≤ +
= =

+
=

+

+ε e e e e ε2 2 2

i

k

ki

i

k

ki m i

i

m

m i
2

1

2

1

1

1

1

1
2 2 (13)

for every { }∈ …k m1, 2, , .

Similar to what we did to get (10), inequalities (9), (12), and (13) with =k 1 yield the inner ones of

the following inequalities:

( )

( )

( )

( )
( ) ( ) ( )− ≤ − + + +

−
≤ ′ ≤ + +

−
≤+ + +c ε

c ε c ε

c ε
e

ε ε

c ε
c ε

2 2 2 2

2 1

4 2 2

2 1
,m m m1 1

11 11
2 2

11
1 1

2

11

1 1 (14)

and we find the smallest positive integer ( )+c m 1 1 satisfying the outermost inequalities of (14). By comparing

both inequalities (10) and (14), we may conclude that ( ) =+c cm 1 1 21, with which we initiate an “inner”

induction that is subordinate to the main induction.

(b.3.1) We choose some { }∈ …k m2, 3, , and assume that ( ) ( ) ( )− ≤ ′ ≤+ + +c ε e c εm i m i m i1 1 1 and ( ) ( )=+ +c cm i i i1 1

for each { }∈ … −i k1, 2, , 1 . This is the hypothesis for our inner induction on i that operates inside the main

induction on m. Based on this hypothesis, we will prove that there exists a positive integer ( )+c m k1 that

satisfies ( ) ( ) ( )− ≤ ′ ≤+ + +c ε e c εm k m k m k1 1 1 as well as ( ) ( )=+ +c cm k k k1 1 . Roughly speaking, this inner induction

works to expand each row of (19) horizontally.

(b.3.2) It follows from (13) that

( )

( )

( ) ( )

( ) ( ) ( )

∑ ∑ ∑

∑ ∑ ∑

− − ′ + ′ ′ − ′

≤ − ′ ′ ≤ + − ′ + ′ ′ − ′

= =

−

+
=

+

+

+
= =

−

+
=

+

+

ε e e e e

e e ε e e e e

2 2

2 2 2

i

k

ki

i

k

ki m i

i

m

m i

kk m k

i

k

ki

i

k

ki m i

i

m

m i

2

1

2

1

1

1

1

1

1
2

1
2

1

2

1

1

1

1

1

1
2

(15)

for any { }∈ …k m2, 3, , . On the other hand, by (7) and (12), we have

( ) ( ) ( ) ( )( )∑ ∑− ≤ ′ ≤ + − ≤ ′ ≤ +
= =

+

+ε e ε ε e ε1 1 and 1 1

i

k

ki

i

m

m i
2

1

2 2 2

1

1

1
2 2

for each { }∈ …k m2, 3, , . Moreover, it follows from the hypotheses (b.2) and (b.3.1) that

( ) ( ) ( ) ( ) ( )∑ ∑ ∑ ∑ ∑− = − ≤ ′ ′ ≤ =
=

−

+
=

−

+
=

−

+
=

−

+
=

−

+c c ε c c ε e e c c ε c c ε2 2 2 2 2

i

k

ki i i

i

k

ki m i

i

k

ki m i

i

k

ki m i

i

k

ki i i

1

1

1
2

1

1

1
2

1

1

1

1

1

1
2

1

1

1
2

for all { }∈ …k m2, 3, , .
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Since <c εkk
1

2
and ′ >e 0kk by (b.2), we use (15) and the last inequalities to get the inner ones of the

following inequalities:

( )

( )

( ) ( )

( ) ( ) ( )

∑

∑

− ≤ ′ − + + −

≤ ′ ≤ ′ + + + ≤

+
=

−

+

+
=

−

+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

c ε
e

ε ε c c ε

e
e

ε ε c c ε c ε

1

2
4 2 2 2

1

2
4 2 2 2

m k
kk i

k

ki i i

m k
kk i

k

ki i i m k

1
2

1

1

1
2

1
2

1

1

1
2

1

(16)

for all { }∈ …k m2, 3, , and we can select the smallest positive integer ( )+c m k1 that satisfies the outermost

inequalities of (16). Similarly, by (7) and (8) with ℓ = +k 1, a routine calculation yields

( )

( )

( ) ( )

( ) ( ) ( )

∑

∑

− ≤ ′ − + + −

≤ ′ ≤ ′ + + + ≤

+
=

−

+

+
=

−

+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

c ε
e

ε ε c c ε

e
e

ε ε c c ε c ε

1

2
4 2 2 2

1

2
4 2 2 2 ,

k k
kk i

k

ki k i

k k
kk i

k

ki k i k k

1
2

1

1

1
2

1
2

1

1

1
2

1

(17)

where ( )+c k k1 is the smallest positive integer that satisfies the outmost conditions of (17). We note by (b.2)

and (b.3.1) that ( ) ( )=+ +c ck i i i1 1 for every integer i satisfying < <i k0 . Comparing (16) and (17), we conclude

that ( ) ( )=+ +c cm k k k1 1 for each { }∈ …k m2, 3, , . Furthermore, referring to the subsection (b.3), we see that

( ) ( )=+ +c cm k k k1 1 holds for all { }∈ …k m1, 2, , , which proves the truth of the first column of the array of

equations in the subsection (b.3.3).

Moreover, inequality (7) with = +j m 1 yields

( ) ( )( ) ( )( ) ( )∑ ∑− − ′ ≤ ′ ≤ + − ′
=
+ + +

=
+ε e e ε e1 1 .

i

m

m i m m

i

m

m i
2

1

1
2

1 1
2 2

1

1
2

(18)

Since < <ε0
σ

1
, <m n, and < <ε0

1

12
, it follows from (18) and some manipulation that

( ) ( ) ( )

( )

( )( ) ( ) ( )∑ ∑+ ≥ ′ ≥ − − = − −

≥ − − > − + > + >

+ +
=
+

=
+ε e ε c ε ε c ε

ε σε ε ε ε ε ε

1 1 1

1 1 3 9 100 .

m m

i

m

m i

i

m

i i
2

1 1
2 2

1

1
2 2 2

1

1
2 2

2 2 2 2 2

We see that ( )< − ≤cε ε0 1 1002 2 whenever c is a positive integer satisfying − ≤ <c10
ε ε

1 1
. This fact shows

the existence of ( )( )+ +c m m1 1 that satisfies the second condition of (6).

(b.3.3) We just proved in the subsections from (b.2) to (b.3.2) that there exist positive integers cij,

{ }∈ … +i j m, 1, 2, , 1 with ≤j i, such that

( )

( )

− ≤ ′ ≤ >
− ≤ ′ ≤ + =

⎪

⎪

⎧
⎨
⎩

c ε e c ε i j

c ε e ε i j

for ,

1 1 for ,

ij ij ij

ii ii

and the cij’s satisfy

( ) ( )

( ) ( )

( ) ( )

( )( ) ( ) ( )( )

( )( ) ( )

( )

= = = … = = =
= = = … = =
= = = … =

⋮ ⋮ ⋮
= =
=

+ −
+ −
+ −

+ − − − −
+ − −
+

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

c c c c c c

c c c c c

c c c c

c c c

c c

c

,

,

,

,

,

.

m m m

m m m

m m m

m m m m m m

m m m m

m m

1 1 1 1 1 41 31 21

1 2 2 1 2 42 32

1 3 3 1 3 43

1 2 2 1 2

1 1 1

1

The last row in the above array consisting of only ( )+c m m1 means that there exists the smallest possible

positive integer ( )+c m m1 that satisfies ( ) ( ) ( )− ≤ ′ ≤+ + +c ε e c εm m m m m m1 1 1 . (We can check in (b.3.2) the truth of
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equations in the first column of the above array. Moreover, we remember that we have assumed in (b.2) that

the rest of equations in the array are true.)

(b.4) Altogether, by the main induction conclusion onm ( ≤ <m n3 ), we may conclude that there exist

positive integers cij, { }∈ …i j n, 1, 2, , with ≤j i, such that each inequality in (6) holds true and the cij’s satisfy

( ) ( )

( ) ( )

( ) ( )

( ) ( )( ) ( )( )

( ) ( )( )

( )

= = = … = = =
= = = … = =
= = = … =

⋮ ⋮ ⋮
= =
=

− −
− −
− −

− − − − −
− − −
−

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

c c c c c c

c c c c c

c c c c

c c c

c c

c

,

,

,

,

,

.

n n n

n n n

n n n

n n n n n n

n n n n

n n

1 1 1 2 1 41 31 21

2 1 2 2 2 42 32

3 1 3 2 3 43

3 1 3 2 3

2 1 2

1

(19)

which completes the first part of our proof. We remark that the last row “ ( )−cn n 1 ” in the above array implies

that there is an integer ( ) >−c 0n n 1 satisfying ( ) ( ) ( )− ≤ ′ ≤− − −c ε e c εn n n n n n1 1 1 .

(c) Now we will introduce efficient methods to estimate the positive integers cjj and ( )−ck k 1 for every

{ }∈ …j n1, 2, , and { }∈ …k n2, 3, , .

(c.1) We note that inequality (7) holds true for all { }∈ …j n1, 2, , . Since − ≤ ′ ≤c ε e c εji ji ji for any

{ }∈ …i j n, 1, 2, , with <i j, we determine the cjj as the smallest possible positive integer that satisfies

( ) ( ) ( ) ( )∑ ∑− ≤ − − ≤ − − ′ ≤ ′ ≤ +
=

−

=

−
c ε ε c ε ε e e ε1 1 1 1jj

i

j

ji

i

j

ji jj
2 2

1

1
2 2 2

1

1
2 2 2 (20)

for all { }∈ …j n2, 3, , . However, since the previous inequality is inefficient in practical calculations, we

introduce a more practical inequality even at the expense of the smallest property of cjj. Instead of (20),

we will determine the cjj as the smallest positive integer that satisfies the new condition

( )( ) ( )∑− − ≥
=

−

+c c c3 1 1jj jj

i

j

i i

1

1

1
2 (21)

for all { }∈ …j n2, 3, , , which proves the existence of cjj. Indeed, since < <ε0
c

1

2 jj
, we have

( )− = − + < − + = −c ε εc ε c εc εc εc1 1 2 1 2
1

2
1

3

2
.jj jj jj jj jj jj

2 2 2

It further follows from (19), (21), and the last inequality that

( )

( ) ( )

( )

( ) ( )

( )

∑

∑ ∑

∑ ∑

− < − = − ⋅ ≤ − − +

= − − − ≤ − − −

= − − = − −

=

−

+

=

−

+
=

−

+

=

−

+
=

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

c ε εc
ε

c
c

ε

c
c c

ε
ε

c
c ε ε c

ε c ε ε c ε

1 1
3

2
1

2
3 1

2
1 4

1 2
2

1 1 2 1

1 1 ,

jj jj
jj

jj
jj i

j

i i jj

jj i

j

i i

i

j

i i

i

j

i i

i

j

ji

2 2

1

1

1
2

1

1

1
2 2

1

1

1
2

2

1

1

1
2 2 2

1

1
2 2

which implies the validity of (20).

(c.2) We note that inequality (8) holds for all { }ℓ ∈ …k n, 1, 2, , with < ℓk . If we set ℓ = +k 1 in (8) and

make some manipulations, then we obtain the inner ones of the following inequalities:

( )

( )

( ) ( )

( ) ( ) ( )

∑

∑

− ≤ ′ − + + −

≤ ′ ≤ ′ + + + ≤

+
=

−

+

+
=

−

+ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

c ε
e

ε ε c c ε

e
e

ε ε c c ε c ε

1

2
4 2 2 2

1

2
4 2 2 2

k k
kk i

k

ki k i

k k
kk i

k

ki k i k k

1
2

1

1

1
2

1
2

1

1

1
2

1

(22)
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for every { }∈ … −k n1, 2, , 1 . And then, we choose the smallest positive integer ( )+c k k1 that satisfies the outer-

most inequalities of (22).

Inequalities (6) and (22) show the existence of the smallest positive integer ( )+c k k1 that satisfies

( )
( ) ( )∑−

+ + + ≤
=

−

+ +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

c ε
ε c c ε c

1

2 1
4 2 2 2

kk i

k

ki k i k k

1

1

1 1 (23)

for { }∈ … −k n1, 2, , 1 . Since < <ε0
c

1

2 kk
, we see that

( )
<− 1

c ε

1

2 1 kk
. Furthermore, since ( ) ( )= =+ +c c cki k i i i1 1 for

any { }∈ … −i k1, 2, , 1 and < <ε0
σ

1
, we know that ( )∑ ≤ <=

−
+c c ε σε 1i

k
ki k i1

1
1 . Thus, we get

( )
( )∑−

+ + + < + + <
=

−

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

c ε
ε c c ε ε

1

2 1
4 2 2 2 6 2 2 9,

kk i

k

ki k i

1

1

1

which together with (23) assures the existence of ( )+c k k1 with ( )< ≤+c0 9k k1 for all { }∈ … −k n1, 2, , 1 . □

Remark 3.1.

(i) Inequality (5) is a sufficient condition for inequalities in (6), and the inequalities in (6) are necessary

conditions for inequality (5).

(ii) In view of the last part of the proof of Theorem 3.1, we see that ( )< ≤+c0 9i i1 for any { }∈ … −i n1, 2, , 1 .

(iii) We solve the quadratic inequality (21) with respect to cjj as follows:

( )∑≥ + +
=

−

+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟c c

1

3
2 1 3jj

i

j

i i

1

1

1
2

for all { }∈ …j n1, 2, , .

4 Hyers-Ulam stability of isometries on bounded domains

The following theorem significantly improves Fickett’s theorem by demonstrating the Hyers-Ulam stability

of isometries on the bounded domains.

As before, let { }…e e e, , , n1 2 be the standard basis for �n. Based on Lemma 2.2, we can assume that

( ) ( )= ′ ′ … ′ …f e e e e, , , , 0, , 0i i i ii1 2 is written in row vector, where ′ ≥e 0ii for each { }∈ …i n1, 2, , . We denote by

( )B 0d the closed ball of radius d and centered at the origin of �n, i.e., �( ) { }= ∈ ‖ ‖ ≤B x x d0 :d
n .

Theorem 4.1. Given an integer ≥n 3, let D be a subset of the n-dimensional Euclidean space �n such that

{ } ( )… ⊂ ⊂e e e D B0, , , , 0n d1 2 for some ≥d 1. If a function �→f D: n satisfies ( ) =f 0 0 and inequality (5)

for all ∈x y D, and some constant ε with { }< <
≤ ≤

ε0 min , min ,
σ i n c

1

1

1

2

1

12ii
, where ( )= ∑ =

−
+σ ci

n
i i1

1
1

2 and the cij

( { }∈ …i j n, 1, 2, , with ≤j i) are the positive integers estimated in Theorem 3.1, then there exists an isometry

�→U D: n such that

( ) ( ) ∑ ∑ ∑‖ − ‖ ≤ + + +
= = =

/⎡

⎣

⎢
⎢

⎛

⎝

⎜
⎜

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎞

⎠

⎟
⎟

⎤

⎦

⎥
⎥f x U x c d c ε2 4

i

n

j

i

ij

j

i

ij

1 1 1

2 1 2

for all ∈x D.

Proof. Let { }…e e e, , , n1 2 be the standard basis for �n. Based on Lemma 2.2, it can be assumed that ( ) =f ei

( )′ ′ … ′ …e e e, , , , 0, , 0i i ii1 2 , where ′ ≥e 0ii for each { }∈ …i n1, 2, , . For an arbitrary point ( )= …x x x x, , , n1 2 of D,

let ( ) ( )= ′ ′ … ′f x x x x, , , n1 2 . It follows from (5) that

∣ ( ) ∣ ∣ ( ) ( ) ∣‖ ‖ − ‖ ‖ ≤ ‖ − ‖ − ‖ − ‖ ≤f x x ε f x f e x e εand j j
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and hence, we have

∑ ∑′ − ≤
=

/

=

/⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟x x ε,

i

n

i

i

n

i

1

2

1 2

1

2

1 2

(24)

( )∑ ∑ ∑′ − ′ + ′ − − + ≤
= = +

/

=

/⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟x e x x x ε2 1

i

j

i ji

i j

n

i

i

n

i j

1

2

1

2

1 2

1

2

1 2

(25)

for all { }∈ …j n1, 2, , .

It follows from (24) that

( )∑ ∑ ∑ ∑ ∑ ∑′ − = ′ + ′ − ≤ +
= = =

/

=

/

=

/

=

/⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟x x x x x x d ε2 1

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

1

2

1

2

1

2

1 2

1

2

1 2

1

2

1 2

1

2

1 2

(26)

since ′ +⋯+ ′ ≤ +x x d εn1
2 2 , +⋯+ ≤x x dn1

2 2 , and < <ε0 1. Similarly, it follows from (25) that

( ) ( )∑ ∑ ∑′ − ′ + ′ − − + ≤ +
= = + =

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟x e x x x d ε2 1 2 3

i

j

i ji

i j

n

i

i

n

i j

1

2

1

2

1

2 (27)

for all { }∈ …j n1, 2, , , since < <ε0 1 and

( )∑ ∑ ∑′ − ′ + ′ ≤ + + − + ≤ +
= = +

/

=

/⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟x e x d ε x x d1 and 2 1 1.

i

j

i ji

i j

n

i

i

n

i j

1

2

1

2

1 2

1

2

1 2

We use (27) to get

( )

( )

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

− + − ′ − + ′ ′ + − ′

≤ − ′ ′ ≤ + − ′ − + ′ ′ + − ′

= = =

−

=

= = =

−

=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

d ε x x e x e

x e x d ε x x e x e

2 3 2 1

2 2 2 3 2 1

i

n

i

i

n

i

i

j

ji i

i

j

ji

j jj j

i

n

i

i

n

i

i

j

ji i

i

j

ji

1

2

1

2

1

1

1

2

1

2

1

2

1

1

1

2

(28)

for any { }∈ …j n1, 2, , .

Since ∣ ∣ ( )′ ≤ ‖ ‖ ≤ ‖ ‖ + < +x f x x ε d 1i and by Theorem 3.1, we get

( ) ( )∑ ∑ ∑− + ≤ ′ ′ ≤ +
=

−

=

−

=

−
d c ε e x d c ε2 1 2 2 1 .

i

j

ji

i

j

ji i

i

j

ji

1

1

1

1

1

1

Moreover, by (7), we have

∑− ≤ − − ≤ − ′ ≤ − ≤
=

ε ε ε e ε ε ε3 2 1 2 3 .

i

j

ji
2

1

2 2

Therefore, it follows from (26) and (28) that

∑ ∑ ∑ ∑− + + + ≤ − ′ ′ ≤ + + +
=

−

=

−

=

−

=

−⎛

⎝
⎜
⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟
⎟c d c ε x e x c d c ε4 2 7 2 2 2 4 2 7 2

i

j

ji

i

j

ji j jj j

i

j

ji

i

j

ji

1

1

1

1

1

1

1

1

for all { }∈ …j n1, 2, , .

We note that ∣ ∣′ < +x d 1j and − ≤ − ′ ≤c ε e c ε1jj jj jj by Theorem 3.1, and since ( )− ′ ′ = − ′ +x e x x xj jj j j j

( )− ′ ′e x1 jj j , we can see that

∣ ∣ ∑ ∑− ′ ≤ + + +
= =

⎛

⎝
⎜
⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟
⎟x x c d c ε2 4j j

i

j

ji

i

j

ji

1 1

(29)

for { }∈ …j n1, 2, , .

684  Soon-Mo Jung



Since we can select an isometry �→U D: n defined by ( ) ( )= = …U x x x x x, , , n1 2 , we see that

( ) ( ) ∥( )∥ ( )∑

∑ ∑ ∑

‖ − ‖ = ′ − ′ − … ′ − = ′ −

≤ + + +

=

/

= = =

/

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎛

⎝
⎜
⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟
⎟

⎞

⎠

⎟
⎟

f x U x x x x x x x x x

c d c ε

, , ,

2 4

n n

j

n

j j

j

n

i

j

ji

i

j

ji

1 1 2 2

1

2

1 2

1 1 1

2 1 2

for all ∈x D. □

We remark that for any { }∈ …i j n, 1, 2, , with ≥i j, each cij is independent of ε for any “sufficiently”

small >ε 0.

For every { }∈ …j n2, 3, , , it follows from Remark 3.1 (ii) that

( ( ) ) ( ( ) )( )∑+ + ≤ + + ⋅ − ≤ + − ≤ −
=

−

+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟c j j j

1

3
2 1 3

1

3
2 1 3 9 1

1

3
2 256 1 6 1 .

i

j

i i

1

1

1
2 2

Then, in view of Remark 3.1 (iii), we may assume that cjj is the possibly smallest integer that satisfies

( )

( { })
≥

=
− ∈ …⎪

⎪
⎧
⎨
⎩

c
j

j j n

1 for 1 ,

6 1 for 2, 3, , ,
jj

i.e.,

≤ − +c j6 1 1jj (30)

for any { }∈ …j n1, 2, , .

By Remark 3.1 (iii) and (30), we get

( )∑ ≤ − + − +
=
c i i9 1 6 1 1

j

i

ij

1

and

( ( ) )( )∑ ∑+ + + ≤ − + − + +
= =

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟c d c i i d2 4 9 1 6 1 5 1

j

i

ij

j

i

ij

1 1

for some ≥d 1. Furthermore, since ≥n 3, we have

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

∫ ∫

∑ ∑ ∑

∑ ∑ ∑

∑

+ + +

≤ + − − + + − − + + −

≤ + − − + + + +

= + + + − −

≤ + + + ≤ +

= = =

= = =

=

/ /⎜ ⎟

⎡

⎣

⎢
⎢

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎤

⎦

⎥
⎥

⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟

c d c

d i i d i i d i

d i i d x x x d x x

d n n n n

d n d n

2 4

1 81 36 20 108 1 1 1 60 1 1

1 81 36 20 108 1 d 60 1 d

1 27
216

5
40 2

416

5

1 27
216

5 3

40

3 3
64 1

i

n

j

i

ij

j

i

ij

i

n

i

n

i

n

i

n n n

1 1 1

2

2

1

2 2

1

2

1

2

1

2 2

1

2

1

2 3 5 2 3 2

2 3 2 3

for any { }∈ …i n1, 2, , .

From Theorem 4.1 and the explanations described above, we obtain the following corollary.
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Corollary 4.2. Given an integer ≥n 3, assume that D is a subset of the n-dimensional Euclidean space

�n satisfying { } ( )… ⊂ ⊂e e e D B0, , , , 0n d1 2 for some ≥d 1. Let ε be an arbitrary constant that satisfies

{ }< <
≤ ≤

ε0 min , min ,
σ i n c

1

1

1

2

1

12ii
, where ( )= ∑ =

−
+σ ci

n
i i1

1
1

2 and the cij ( { }∈ …i j n, 1, 2, , with ≤j i) are the positive

integers estimated in Theorem 3.1. If a function �→f D: n satisfies ( ) =f 0 0 and inequality (5) for all

∈x y D, , then there exists an isometry �→U D: n that satisfies

( ) ( ) ( )‖ − ‖ ≤ +f x U x d n n ε8 1

for all ∈x D.

5 Examples

Example 5.1. We assume that =n 4. We will compute some constants cij by using the recurrence formulas

(21) and (23). First, since =c 111 by (b.1) in the proof of Theorem 3.1, it follows from (23) with =k 1 and

< <ε0
1

12
that

( )
( )≥ + + ≥

−
+ +⎜ ⎟

⎛
⎝

⎞
⎠

c
c ε

ε
6

11
4 2 2

1

12

1

2 1
4 2 2 ,21

11

and we can choose =c 421 as the smallest positive integer satisfying the last inequality.

Now, we use (21) with =j 2 to obtain

( )( )− − ≥c c c3 1 122 22 21
2

and thus, we select =c 322 . We note that =c 322 is larger than the estimate in the proof of Theorem 3.1. This

difference is due to the use of formula (21) instead of (20).

By (23) with =k 2, we get

( )
( )≥ + + ≥

−
+ + +⎜ ⎟

⎛
⎝

⎞
⎠

c
c ε

ε c ε
2

3
4 2 2

33

12

1

2 1
4 2 2 232

22
21
2

and hence, we choose =c 732 . Furthermore, it follows from (21) with =j 3 that

( )( )− − ≥ + =c c c c3 1 1 6533 33 21
2

32
2

and hence, =c 633 . In the proof of Theorem 3.1, we estimated =c 632 and =c 433 , but in this example, we

estimate the larger values for them because we use formula (21) instead of (20).

As =n 4, we see that ( )≥ ∑ > + == +σ c c c 65i i i1

3
1

2
21
2

32
2 and hence, < <ε

σ

1 1

65
. Therefore, we have

( )
∑−

+ + + < + + + <
=

⎜ ⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎞

⎠c ε
ε c c ε

1

2 1
4 2 2 2

65

118
4 2 2

1

65
2 4.88

i

i i
33 1

2

3 4

and thus, using (23) with =k 3, we can select =c 543 . In view of (21) with =j 4, we get

( )( )− − ≥ + + =c c c c c3 1 1 9044 44 21
2

32
2

43
2

and hence, =c 744 , which comply with the claims of Remark 3.1.

Example 5.2.We assume that =n 5. As in Example 5.1 we get the following constants: =c 111 , =c 421 , =c 322 ,

=c 431 , =c 732 , =c 633 , =c 441 , =c 742 , =c 543 , and =c 744 .

As =n 5, we see that ( )≥ ∑ > + + == +σ c c c c 90i i i1

4
1

2
21
2

32
2

43
2 and hence, < <ε

σ

1 1

90
. Thus, we have

( )
∑−

+ + + < + + + <
=

⎜ ⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎞

⎠c ε
ε c c ε

1

2 1
4 2 2 2

45

83
4 2 2

1

90
2 4.80

i

i i
44 1

3

4 5
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and hence, using (23) with =k 4, we can select =c 554 . In view of (21) with =j 5, we get

( )( )− − ≥ + + + = =c c c c c c c3 1 1 115 and hence 7.55 55 21
2

32
2

43
2

54
2

55

Moreover, due to (19), we have =c 451 , =c 752 , and =c 553 .

Example 5.3. Let �{ }= ∈ ‖ ‖ ≤D x x d:4 for some ≥d 1 and let �→f D: 4 be a function satisfying ( ) =f 0 0

and inequality (5) for all ∈x y D, and some constant ε with < <ε0
1

90
. Using Theorem 4.1 and Example 5.1,

we can prove that there exists an isometry �→U D: 4 satisfying

( ) ( ) ( )∑ ∑ ∑‖ − ‖ ≤ + + + = + + < +
= = =

/⎡

⎣

⎢
⎢

⎛

⎝

⎜
⎜

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎞

⎠

⎟
⎟

⎤

⎦

⎥
⎥f x U x c d c ε d d ε d ε2 4 1076 2376 1316 33 37

i j

i

ij

j

i

ij

1

4

1 1

2 1 2

2

for all ∈x D. This result is within the range predicted by Corollary 4.2.

Example 5.4. Let �{ }= ∈ ‖ ‖ ≤D x x d:5 for some ≥d 1 and let �→f D: 5 be a function satisfying ( ) =f 0 0

and inequality (5) for all ∈x y D, and some constant ε with < <ε0
1

115
. Using Theorem 4.1 and Example 5.2,

we can prove that there exists an isometry �→U D: 5 satisfying

( ) ( ) ( )∑ ∑ ∑‖ − ‖ ≤ + + + = + + < +
= = =

/⎡

⎣

⎢
⎢

⎛

⎝

⎜
⎜

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎞

⎠

⎟
⎟

⎤

⎦

⎥
⎥f x U x c d c ε d d ε d ε2 4 1976 4296 2340 45 49

i j

i

ij

j

i

ij

1

5

1 1

2 1 2

2

for all ∈x D. This result is within the range expected by Corollary 4.2.

6 Discussions

We expect the Hyers-Ulam stability of isometries defined on bounded domains to have widespread applica-

tion, but no remarkable results have been published, except for the papers [25,29], for 40 years after Fickett’s

theorem was published.

Now, among the theorems in [29], the theorem that is most closely related to the subject of this paper

is introduced. In fact, the following theorem has been proved relatively simply using the so-called John’s

method, but the proofs of other theorems in paper [29] are technically very complex.

Theorem 6.1. (Alestalo et al.) Assume that ≥n 2 is an integer, D is a bounded subset of�n with ( )⊂D B 0R for

some >R 0, and that D contains …ru ru0, , , n1 , where < ≤r R0 and the vectors …u u, , n1 are orthonormal.

If �→f D: n is an ε-isometry, then there exists an isometry �→U D: n such that

( ) ( )‖ − ‖ ≤f x U x
R

r
n n ε10

for all ∈x D.

If r in Theorem 6.1 is very small, the upper bound of the inequality presented in Theorem 6.1 becomes

very large. This is the weakness of paper [29] compared to the present paper. As we can see, the upper

bound of inequality presented in Corollary 4.2 of this paper depends only on R and not on r. (We used d

instead of R in Corollary 4.2.) This is one of the advantages of this paper compared to the previous

study [29].

A finite sequence ( )…u u u, , , m0 1 of a compact subset D of�n is called a maximal sequence in D provided

that ( )≔ −h d u A,k k k 1 is maximal in D for each { }∈ …k m1, 2, , , where −Ak 1 is the affine subspace (or flat)

including { }… −u u u, , , k0 1 1 . Now, among the results proved by Väisälä, the part related to the subject of this

paper is introduced in the following theorem.
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Theorem 6.2. (Väisälä) Let D be a compact subset of�n. If there exist a maximal sequence ( )…u u u, , , n0 1 in D

and a constant ≥c 1 such that

(i) ∣ ∣− ≤u u chk k0 for every { }∈ …k n2, 3, , ;

(ii) { } ( )⧹ … ⊂D u u B u, , n ch1 0n
,

then for every ε-isometry �→f D: n, there exist an isometry � �→U : n n and a positive constant ( )=∗ ∗c c c n,

such that

( ) ( )‖ − ‖ ≤ ∗f x U x c ε

for all ∈x D.

According to [25, §4.2], we get the recursion formulas

∑= = = + + = +
=

−

− −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ρ τ ρ c ρ c τ τ τ ρ7.5, 25.5, 3 2 2 , 3i

j

i

j i i i i1 1

1

1

2
1 1

for all integers ≥i 2, where ≥c 1 is a constant. First, assuming =c 1, we calculated ρi and τi for small natural

numbers i using the above formulas, and the results are written in the following table:

i 1 2 3 4 5 ⋯
ρi 7.5 79.5 795 7,950 79,500 ⋯
τi 25.5 264 2,649 26,499 264,999 ⋯
( )∗c i1, 4 >79 >799 >7,990 >79,900 ⋯
( )+d i i8 1 — — <84 128 <179 ⋯

The values in the fourth row of the table above are due to the following formula:

( ) ∑=∗

=
c i ρ1,

j

i

j
1

2

introduced in the proof of [25, Theorem 4.1]. The values in the last row are due to the formula given in

Corollary 4.2 with =d 1. Comparing the values in the last two rows of the table above, we can see that our

result of this paper is more efficient than that of Väisälä.

7 Conclusion

We emphasize once more that we have made great progress in improving Fickett’s theorem using an intu-

itive method. According to Theorem 4.1 or Corollary 4.2 of this paper, if a function �→f D: n satisfies

( ) =f 0 0 as well as inequality (5) for all ∈x y D, and for some sufficiently small constant >ε 0, then there

exist an isometry �→U D: n and a constant >K 0 such that inequality ( ) ( )‖ − ‖ ≤f x U x Kε holds for all

∈x D. However, it is impossible to deduce this useful conclusion by using Fickett’s theorem. From this

point of view, we can say that Fickett’s theorem has been remarkably improved in this paper.
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