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HYERS-ULAM STABILITY OF TRIGONOMETRIC
FUNCTIONAL EQUATIONS

JEONGWOOK CHANG AND JAEYOUNG CHUNG

ABSTRACT. In this article we prove the Hyers—Ulam stability of trigono-
metric functional equations.

1. Introduction

In 1940, S. M. Ulam proposed the following problem [18]:
Let f be a mapping from a group Gy to a metric group Go with metric d(-,-)
such that

d(f(zy), f(x)f(y)) <e.

Then does there exist a group homomorphism L and 6. > 0 such that

d(f(z), L(z)) < b

forallx € G, ?

This problem was solved affirmatively by D. H. Hyers [11] under the as-
sumption that G5 is a Banach space. In 1978, Th. M. Rassias [16] firstly
generalized the above result and since then, stability problems of many other
functional equations have been investigated [4, 5, 6, 7, 8, 9, 12, 13, 14, 15]. In
1990, L. Székelyhidi [17] has developed his idea of using invariant subspaces of
functions defined on a group or semigroup in connection with stability ques-
tions for sine and cosine functional equations. In this paper, employing the
idea of L. Székelyhidi [17] we consider the Hyers-Ulam stability problem of the
following two trigonometric functional equations

(1.1) flx—y) = f(@)g(y) +g(z)f(y) =
(1.2) glx —y) —g(x)g(y) — f(x)f(y) =

0,
0,
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where f,g : G — C and G is an abelian group divisible by 2. We call A :
G — C additive provided that A(x+y) = A(z) + A(y) for all x,y € G and call
m : G — C exponential provided that m(z + y) = m(x)m(y) for all z,y € G.
We prove as results that if f, g : G — C satisfy the inequality

|f(x —y) — f(x)g(y) +g(x)f(y)| <M

for all z,y € G, then f, g satisfy one of the followings:

(i) f =0, g : arbitrary,

(ii) f and g are bounded functions,

(iii) f(z) = A(z) + B(z) and g(z) = MA(z) + pB(z) + 1,

(i) f(x) = 3(m(z)-m(~2)), g(x) = L(m(z)+m(-2))+L(m(z)—m(-a)),
where A\, u € C, A is an additive function, m is an exponential function and B
is a bounded function.

Also we prove that if f,g: G — C satisfy the inequality

If(z —y) = f(@)g(y) + g(x)f(y)| < M

for all x,y € G, then f, g satisfy one of the followings:

(i) f and g are bounded functions,

(i) f(z) = L(m(z) — m(—2)), g(z) = L(m(z) + m(—z)), where m is an
exponential function.

2. Stability of the equations

We first discuss the general solutions of the equations (1.1) and (1.2). We
refer the reader to Aczél ([1], p. 180) and Aczél-Dombres ([2], pp. 209-217)
for the proofs.

Lemma 2.1. Let G be an abelian group divisible by 2. Then the general solu-
tions f, g of the equation (1.1) are given by

£(&) = m(z) — m(~2),
o(2) = 5 n(@) + m(=2)) + £ (m(z) - m(-a)),

f(x) = Alz), g(z) = AA(z) + 1,

and the nonconstant general solutions f, g of (1.2) are given by

7(z) = g (m(z) — m(~2))
o(x) = 3 (m(z) + m(~)),

where p, A € C, A is an additive function and m is an exponential function.



HYERS-ULAM STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS 569

Lemma 2.2. Let f,g : G — C satisfy the inequality; there exists a positive
constant M such that

(2.1) |f(z —y) — f(@)g(y) +g(z) f(y)| < M

for all x,y € G. Then either there exist \, v € C, not both zero, and L > 0
such that

(2.2) IMf(2) —vg(x)] < L,
or else
(2.3) fl@—y) — f(@)g(y) +g(x)f(y) =0

forallz, y € G.

Proof. We prove that the equation (2.3) satisfied if the condition (2.2) fails.
Assume that |\ f(z) — vg(y)| < L for some L > 0 implies A = v = 0. Let

F(z,y) = f(z +y) — f(x)g(~y) + g(z) f(—y)-

Then we can choose y; satisfying f(—y1) # 0. It is easy to show that

(2.4) g(x) = Mof(x) + M f(r+y1) — MF(x,),

— 9(=w1) _ 1
where )\0 = f(—yi) and )\1 = T )"
By the definition of F' and the use of (2.4) we have

f((z+y)+2)
= f@+y)g(=2) —glz+y)f(=2) + F(z +y,2)
~ (F@9(~y) = 9@)f(~y) + F(2,))go(~2)
— (Nof@+y) + S @ +y+9) = MF@+y,0)) f(—2)
(2.5) + F(z+y,2)
= (F@g(=y) = (@) (~y) + F(2,)) g(~2)
= o (f(@)g(=y) ~ 9(@)f(~y) + F(.y)) f(~2)
— M (F@)g(—y = y1) = 9(@) f(—y —y) + Fle.y + 1)) F(=2)
+MF(x+y,u)f(—2)+ Flz+y,z2),

(26)  flz+y+2)=fl@)g(—y—2) —g(@)f(-y —2) + F(a,y + 2).



570 JEONGWOOK CHANG AND JAEYOUNG CHUNG

It follows from the equations (2.5) and (2.6),
F@) (9(=)9(=2) = dog(=) f(~2)
—Mg(=y —y)f(=2) —g(=y - z))
+9(@)( = F(=p)g(=2) + Mo f (~y)f(~2)

+ M=y —y)f(=2) + f(—y — 2))
= —F(z,9)9(=2) + X F(z,y) f(=2) + MF(z,y + 1) f(—2)
—MF(@+y,p)f(—2) - Flz +y,2) + Fz,y + 2).
Since F is a bounded function, if we fix y, z the right hand side of the above
equation is bounded function of x. Thus by the assumption that |Af(z) —

vg(y)| < L for some L > 0 implies A = v = 0, the both sides of the above
equation become zero. Consequently we have

(2.7)
| = F@,y)g9(=2) + (AF(2.9) + MF(,y+ 1) = MF (@ +y,91) ) £(=2)
Again by the assumption, we have F(z,y) = 0. This completes the proof. [

Theorem 2.3. Let f,g: G — C satisfy the inequality (2.1). Then f,g satisfy
one of the followings:

(i) f =0, g : arbitrary,

(ii) f and g are bounded functions,

(iii) f(z) = A(x) + B(z) and g(x) = MA(x) + pB(z) + 1

(iv) F(x) = (m(z)—m(—2)), g(z) = (m(z)+m(—z))+L(m(z)-m(-a)),
where A\, € C, A is an additive function, m is an exponential function and B
is a bounded function.

Proof. First we assume that the inequality (2.2) holds. If f =0, g is arbitrary
which is the case (i). If f is a nontrivial bounded function, in view of (2.1) g
is also bounded which is the case (ii). If f is unbounded, it follows from (2.2)
that v # 0 and

(2.8) 9(x) = pf(x) + B(z)

for some p € C and a bounded function B. Putting (2.8) in (2.1) we have
(2.9) |f(x —y) = f(z)B(y) + B(x)f(y)| < M.

Replacing x by y and y by « and using the triangle inequality we have
(2.10) (2) + f(—a)| < 2M

for all x € G. Replacing = by —z, y by —y in (2.9) and using the inequality
(2.10) we have for some M; > 0,

(2.11) [f(=z+y) + f(2)B(-y) — B(=2)f(y)| < M.
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Using (2.9), (2.10), (2.11) and the triangle inequality we have

(2.12) |f(@)(B(y) — B(=y)) = f(y)(B(x) — B(=x))| < My + 3M.

Since f is unbounded it follows from (2.12) that B(y) = B(—y) for all y €
G. Also, in view of (2.9), for fixed y € G, = — f(z +y) — f(z)B(~y) is
a bounded function of x. Thus it follows from [10, p. 104, Theorem 5.2
that B(y) is an exponential function. Since G is divisible by 2 we can write
B(x) = B(5)B(%) = B(5)B(—5) = B(0) and that B(y) = 1 or 0. Since [ is
unbounded, we have B = 1. Replacing y by —y in (2.9) and using (2.10), we
have

(2.13) [f(z+y) — f(z) - fly)] <3M.

By the well known Hyers-Ulam stability theorem [11], there exists an additive
function A(z) such that

(2.14) f(z) — A(z)| < 3M,
which gives the case (iii). Now if the equality (2.3) holds, then by Lemma 2.1,
f, g satisfies (iii) or (iv). This completes the proof. O

As a direct consequence of Theorem 2.3 we have the following.

Corollary 2.4. Let f,g : R® — C be continuous functions satisfying (2.1).
Then f and g satisfy one of the followings:

(i) f =0 and g is arbitrary,

(ii) f and g are bounded functions,

(i) £(x) = ¢+ +7(z), 9(x) = Me-z+7(@) +1,

(iv) f(x) = Asin(c-x), g(z) = cos(c-x)+ Asin(c-z) for somec € C", A € C
and a bounded function r(x).

Proof. The continuous solutions of the equation (1.1) are given by (iv) or
f@)=c-x, g(x) =1+ Ac-z. This completes the proof. O

Now we prove the stability of the equation (1.2).

Lemma 2.5. Let f,g : G — C satisfy the inequality; there exists a positive
constant M such that

(2.15) lg(x —y) —g(x)g(y) — f(x)f(y)| < M

for all x,y € G. Then either there exist A\, v € C, not both zero, and L > 0
such that

(2.16) A (z) —vg(x)] < L,
or else
(2.17) g —y) —g(x)g(y) — f(x)f(y) =0

forallz, y € G.
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Proof. Suppose that, for L > 0, |[Af(z) — vg(y)| < L does not hold unless
A =v = 0. Note that both f and g are unbounded. Let

(2.18) F(z,~y) = g(x —y) — g(x)g(y) — f(x)f(y)-

Just for convenience, we consider the following equation which is equivalent to
(2.18).

(2.19) F(z,y) =gz +y) — g(x)g(—y) — f(x)f(-y).

Since f is nonconstant, we can choose y; satisfying f(—y1) # 0. It is easy to
show that

(2.20) (@) = Xog(x) + Mg(z +y1) — M F(2,y1),
_ _9(=y1) _ 1
where )\0 = _f(—yi) and Al = m

By the definition of F' and the use of (2.20), we have

g((x +y)+ z)
=g(x+y)g(—2)+ f(x+y)f(—=2) + F(z + y,2)

= (9@)g(—y) + @) F(=y) + Fl@,))g(~2)
+ (/\09(33 Ty)+ gl@+y+y) - MF(z+y, yl))f(—Z)
(2.21) +F(z+y,2)
= (9(@)g(—y) + F@)f(~y) + F(z,))g(~2)
+ 2o (9(@)g(—y) + F@)f (=) + Fa,y)) F(=2)
+ M (9@)g(—y =) + F@) f(—y —y) + Fla.y + 1)) F(=2)
—MF(@+y,p)f(=2) + Flz +y,2),

and

(222)  glz+(y+2) =g@)g(—y—2)+ f(2)f(—y — 2) + Fz,y + 2).

By equating the above two equations we have
9(@) (9(-9)9(~2) + Mag(~9) (=)
+ Mgy —y)f(=2) —g(—y — Z))
+ £@) (F(0)9(=2) + Xof (~9) (=)

XS (—y =) f(=2) = f(-y - 2)
= = F(w,9)9(~2) = MoF(2,)f(=2) = MF(@,y + 1) f(~2)
+ANF(@+y,90) f(~2) = Flz +y,2) + Fla,y + 2).
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When y, z are fixed, the right hand side of the above equality is bounded, so
we have
(2.23)

F(l’,y—i—Z) —F(x—i—y,z)

= F(z,y)g(—2) + (AoF(:c, y)+ME(r,y +y1) — MF(z+y, yl))f(—Z)-

Again considering (2.23) as a function of z for all fixed z, y, we have F'(z,y) =0
which is equivalent to (2.17). O

Theorem 2.6. Let f,g: G — C satisfy the inequality (2.15). Then f, g satisfy
one of the followings:

(i) f and g are bounded functions,

(i) f(z) = 3(m(z) — m(—x)), g(z) = 3(m(z) + m(—x)), where m is an
exponential function.

Proof. First we prove that if the inequalities (2.15) and (2.16) hold, then both
f and g are bounded functions. From (2.15), it is impossible that only one of
f and g is unbounded. Assume that both f and g are unbounded. In view of
(2.16), we can write

(2.24) g=upf+B
for some p # 0 and a bounded function B. Putting (2.24) in (2.15) we have

i (@ +y)+ Bla+y) — (uf @)+ B@)) (1 (~9) + B(=y) ) + F@)f(~y)| < M,
Since B is bounded, we have

f@+y) =1 (e + 0F(~y) + uB(-1)) f(@)
is bounded for fixed y € G. Thus it follows from [10, p. 104, Theorem 5.2] that

(2 + 1)1 ) + 1B(y) ) = m(y)
for some exponential m. Thus if 42 = —1, we can write
(2.25) f==%i(g—m),
where m is a bounded exponential function. Putting (2.25) in (2.15) we have
(2.26) l9(z —y) — g(x)m(y) — g(y)m(z)| < M

for all z, y € G.
Replacing = by y and y by x and using the triangle inequality we have

(2.27) l9(z) — g(—x)| <2M

for all x € G. Replacing « by —z, y by —y and using the inequality (2.27) we
have for some M7 > 0,

(2.28) l9(—=2 +y) — g(x)m(—y) — m(=2)g(y)| < M.
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Using (2.26), (2.27), (2.28) and the triangle inequality we have for some M* >
0’
(2.29) lg(z)(m(y) —m(—=y)) — g(y)(m(z) —m(==))| < M* +3M.
Since g is unbounded and m is bounded, it follows from (2.29) that m(y) =
m(—y) for all y € G. Since G is divisible by 2 we have m = 1. Putting y = =
in (2.26), using the triangle inequality we have |g(z)| < $(M + [g(0)]) for all
x € G, which contradicts to the assumption that f and g are unbounded. If
w# —1, we have

_pm=b)  pPm+bd

f= p?+1 o2+l

which contradicts to the assumption that both f and g are unbounded. If the

equation (2.17) holds, then by Lemma 2.1, we have the case (ii). This completes
the proof. O

) )

Since every continuous exponential function m : R" — C is given by m(z) =
e“” for some ¢ € C™, we have the following as a direct consequence of Theo-
rem 2.6:

Corollary 2.7. Let f,g : R® — C be continuous functions satisfying (2.15).
Then f and g satisfy one of the followings:

(i) f and g are bounded measurable functions,

(ii) f(x) = cosh(c- x), g(z) = sinh(c - x), where ¢ € C".
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