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HYERS-ULAM STABILITY OF TRIGONOMETRIC
FUNCTIONAL EQUATIONS

Jeongwook Chang and Jaeyoung Chung

Abstract. In this article we prove the Hyers–Ulam stability of trigono-
metric functional equations.

1. Introduction

In 1940, S. M. Ulam proposed the following problem [18]:
Let f be a mapping from a group G1 to a metric group G2 with metric d(·, ·)

such that
d(f(xy), f(x)f(y)) ≤ ε.

Then does there exist a group homomorphism L and δϵ > 0 such that

d(f(x), L(x)) ≤ δϵ

for all x ∈ G1?
This problem was solved affirmatively by D. H. Hyers [11] under the as-

sumption that G2 is a Banach space. In 1978, Th. M. Rassias [16] firstly
generalized the above result and since then, stability problems of many other
functional equations have been investigated [4, 5, 6, 7, 8, 9, 12, 13, 14, 15]. In
1990, L. Székelyhidi [17] has developed his idea of using invariant subspaces of
functions defined on a group or semigroup in connection with stability ques-
tions for sine and cosine functional equations. In this paper, employing the
idea of L. Székelyhidi [17] we consider the Hyers-Ulam stability problem of the
following two trigonometric functional equations

f(x − y) − f(x)g(y) + g(x)f(y) = 0,(1.1)

g(x − y) − g(x)g(y) − f(x)f(y) = 0,(1.2)
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where f, g : G → C and G is an abelian group divisible by 2. We call A :
G → C additive provided that A(x + y) = A(x) + A(y) for all x, y ∈ G and call
m : G → C exponential provided that m(x + y) = m(x)m(y) for all x, y ∈ G.
We prove as results that if f, g : G → C satisfy the inequality

|f(x − y) − f(x)g(y) + g(x)f(y)| ≤ M

for all x, y ∈ G, then f, g satisfy one of the followings:
(i) f = 0, g : arbitrary,
(ii) f and g are bounded functions,
(iii) f(x) = A(x) + B(x) and g(x) = λA(x) + µB(x) + 1,
(iv) f(x) = λ

2 (m(x)−m(−x)), g(x) = 1
2 (m(x)+m(−x))+ µ

2 (m(x)−m(−x)),
where λ, µ ∈ C, A is an additive function, m is an exponential function and B
is a bounded function.

Also we prove that if f, g : G → C satisfy the inequality

|f(x − y) − f(x)g(y) + g(x)f(y)| ≤ M

for all x, y ∈ G, then f, g satisfy one of the followings:
(i) f and g are bounded functions,
(ii) f(x) = 1

2 (m(x) − m(−x)), g(x) = 1
2 (m(x) + m(−x)), where m is an

exponential function.

2. Stability of the equations

We first discuss the general solutions of the equations (1.1) and (1.2). We
refer the reader to Aczél ([1], p. 180) and Aczél–Dombres ([2], pp. 209–217)
for the proofs.

Lemma 2.1. Let G be an abelian group divisible by 2. Then the general solu-
tions f, g of the equation (1.1) are given by

f(x) =
λ

2
(m(x) − m(−x)),

g(x) =
1
2
(m(x) + m(−x)) +

µ

2
(m(x) − m(−x)),

or
f(x) = A(x), g(x) = λA(x) + 1,

and the nonconstant general solutions f, g of (1.2) are given by

f(x) =
1
2
(m(x) − m(−x)),

g(x) =
1
2
(m(x) + m(−x)),

where µ, λ ∈ C, A is an additive function and m is an exponential function.
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Lemma 2.2. Let f, g : G → C satisfy the inequality; there exists a positive
constant M such that

(2.1) |f(x − y) − f(x)g(y) + g(x)f(y)| ≤ M

for all x, y ∈ G. Then either there exist λ, ν ∈ C, not both zero, and L > 0
such that

(2.2) |λf(x) − νg(x)| ≤ L,

or else

(2.3) f(x − y) − f(x)g(y) + g(x)f(y) = 0

for all x, y ∈ G.

Proof. We prove that the equation (2.3) satisfied if the condition (2.2) fails.
Assume that |λf(x) − νg(y)| ≤ L for some L > 0 implies λ = ν = 0. Let

F (x, y) = f(x + y) − f(x)g(−y) + g(x)f(−y).

Then we can choose y1 satisfying f(−y1) ̸= 0. It is easy to show that

(2.4) g(x) = λ0f(x) + λ1f(x + y1) − λ1F (x, y1),

where λ0 = g(−y1)
f(−y1)

and λ1 = − 1
f(−y1)

.
By the definition of F and the use of (2.4) we have

(2.5)

f
(
(x + y) + z

)
= f(x + y)g(−z) − g(x + y)f(−z) + F (x + y, z)

=
(
f(x)g(−y) − g(x)f(−y) + F (x, y)

)
g(−z)

−
(
λ0f(x + y) + λ1f(x + y + y1) − λ1F (x + y, y1)

)
f(−z)

+ F (x + y, z)

=
(
f(x)g(−y) − g(x)f(−y) + F (x, y)

)
g(−z)

− λ0

(
f(x)g(−y) − g(x)f(−y) + F (x, y)

)
f(−z)

− λ1

(
f(x)g(−y − y1) − g(x)f(−y − y1) + F (x, y + y1)

)
f(−z)

+ λ1F (x + y, y1)f(−z) + F (x + y, z),

and

(2.6) f
(
x + (y + z)

)
= f(x)g(−y − z) − g(x)f(−y − z) + F (x, y + z).
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It follows from the equations (2.5) and (2.6),

f(x)
(
g(−y)g(−z) − λ0g(−y)f(−z)

− λ1g(−y − y1)f(−z) − g(−y − z)
)

+ g(x)
(
− f(−y)g(−z) + λ0f(−y)f(−z)

+ λ1f(−y − y1)f(−z) + f(−y − z)
)

= − F (x, y)g(−z) + λ0F (x, y)f(−z) + λ1F (x, y + y1)f(−z)

− λ1F (x + y, y1)f(−z) − F (x + y, z) + F (x, y + z).

Since F is a bounded function, if we fix y, z the right hand side of the above
equation is bounded function of x. Thus by the assumption that |λf(x) −
νg(y)| ≤ L for some L > 0 implies λ = ν = 0, the both sides of the above
equation become zero. Consequently we have
(2.7)

| − F (x, y)g(−z) +
(
λ0F (x, y) + λ1F (x, y + y1) − λ1F (x + y, y1)

)
f(−z)|

= |F (x + y, z) − F (x, y + z)| ≤ M.

Again by the assumption, we have F (x, y) ≡ 0. This completes the proof. ¤
Theorem 2.3. Let f, g : G → C satisfy the inequality (2.1). Then f, g satisfy
one of the followings:

(i) f = 0, g : arbitrary,
(ii) f and g are bounded functions,
(iii) f(x) = A(x) + B(x) and g(x) = λA(x) + µB(x) + 1
(iv) f(x) = λ

2 (m(x)−m(−x)), g(x) = 1
2 (m(x)+m(−x))+µ

2 (m(x)−m(−x)),
where λ, µ ∈ C, A is an additive function, m is an exponential function and B
is a bounded function.

Proof. First we assume that the inequality (2.2) holds. If f = 0, g is arbitrary
which is the case (i). If f is a nontrivial bounded function, in view of (2.1) g
is also bounded which is the case (ii). If f is unbounded, it follows from (2.2)
that ν ̸= 0 and

(2.8) g(x) = µf(x) + B(x)

for some µ ∈ C and a bounded function B. Putting (2.8) in (2.1) we have

(2.9) |f(x − y) − f(x)B(y) + B(x)f(y)| ≤ M.

Replacing x by y and y by x and using the triangle inequality we have

(2.10) |f(x) + f(−x)| ≤ 2M

for all x ∈ G. Replacing x by −x, y by −y in (2.9) and using the inequality
(2.10) we have for some M1 > 0,

(2.11) |f(−x + y) + f(x)B(−y) − B(−x)f(y)| ≤ M1.
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Using (2.9), (2.10), (2.11) and the triangle inequality we have

(2.12) |f(x)(B(y) − B(−y)) − f(y)(B(x) − B(−x))| ≤ M1 + 3M.

Since f is unbounded it follows from (2.12) that B(y) = B(−y) for all y ∈
G. Also, in view of (2.9), for fixed y ∈ G, x → f(x + y) − f(x)B(−y) is
a bounded function of x. Thus it follows from [10, p. 104, Theorem 5.2]
that B(y) is an exponential function. Since G is divisible by 2 we can write
B(x) = B(x

2 )B(x
2 ) = B(x

2 )B(−x
2 ) = B(0) and that B(y) ≡ 1 or 0. Since f is

unbounded, we have B ≡ 1. Replacing y by −y in (2.9) and using (2.10), we
have

(2.13) |f(x + y) − f(x) − f(y)| ≤ 3M.

By the well known Hyers-Ulam stability theorem [11], there exists an additive
function A(x) such that

(2.14) |f(x) − A(x)| ≤ 3M,

which gives the case (iii). Now if the equality (2.3) holds, then by Lemma 2.1,
f, g satisfies (iii) or (iv). This completes the proof. ¤

As a direct consequence of Theorem 2.3 we have the following.

Corollary 2.4. Let f, g : Rn → C be continuous functions satisfying (2.1).
Then f and g satisfy one of the followings:

(i) f ≡ 0 and g is arbitrary,
(ii) f and g are bounded functions,
(iii) f(x) = c · x + r(x), g(x) = λ(c · x + r(x)) + 1,
(iv) f(x) = λ sin(c ·x), g(x) = cos(c ·x)+λ sin(c ·x) for some c ∈ Cn, λ ∈ C

and a bounded function r(x).

Proof. The continuous solutions of the equation (1.1) are given by (iv) or
f(x) = c · x, g(x) = 1 + λc · x. This completes the proof. ¤

Now we prove the stability of the equation (1.2).

Lemma 2.5. Let f, g : G → C satisfy the inequality; there exists a positive
constant M such that

(2.15) |g(x − y) − g(x)g(y) − f(x)f(y)| ≤ M

for all x, y ∈ G. Then either there exist λ, ν ∈ C, not both zero, and L > 0
such that

(2.16) |λf(x) − νg(x)| ≤ L,

or else

(2.17) g(x − y) − g(x)g(y) − f(x)f(y) = 0

for all x, y ∈ G.
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Proof. Suppose that, for L > 0, |λf(x) − νg(y)| ≤ L does not hold unless
λ = ν = 0. Note that both f and g are unbounded. Let

(2.18) F (x,−y) = g(x − y) − g(x)g(y) − f(x)f(y).

Just for convenience, we consider the following equation which is equivalent to
(2.18).

(2.19) F (x, y) = g(x + y) − g(x)g(−y) − f(x)f(−y).

Since f is nonconstant, we can choose y1 satisfying f(−y1) ̸= 0. It is easy to
show that

(2.20) f(x) = λ0g(x) + λ1g(x + y1) − λ1F (x, y1),

where λ0 = − g(−y1)
f(−y1)

and λ1 = 1
f(−y1)

.
By the definition of F and the use of (2.20), we have

(2.21)

g
(
(x + y) + z

)
= g(x + y)g(−z) + f(x + y)f(−z) + F (x + y, z)

=
(
g(x)g(−y) + f(x)f(−y) + F (x, y)

)
g(−z)

+
(
λ0g(x + y) + λ1g(x + y + y1) − λ1F (x + y, y1)

)
f(−z)

+ F (x + y, z)

=
(
g(x)g(−y) + f(x)f(−y) + F (x, y)

)
g(−z)

+ λ0

(
g(x)g(−y) + f(x)f(−y) + F (x, y)

)
f(−z)

+ λ1

(
g(x)g(−y − y1) + f(x)f(−y − y1) + F (x, y + y1)

)
f(−z)

− λ1F (x + y, y1)f(−z) + F (x + y, z),

and

(2.22) g
(
x + (y + z)

)
= g(x)g(−y − z) + f(x)f(−y − z) + F (x, y + z).

By equating the above two equations we have

g(x)
(
g(−y)g(−z) + λ0g(−y)f(−z)

+ λ1g(−y − y1)f(−z) − g(−y − z)
)

+ f(x)
(
f(−y)g(−z) + λ0f(−y)f(−z)

+ λ1f(−y − y1)f(−z) − f(−y − z)
)

= − F (x, y)g(−z) − λ0F (x, y)f(−z) − λ1F (x, y + y1)f(−z)

+ λ1F (x + y, y1)f(−z) − F (x + y, z) + F (x, y + z).
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When y, z are fixed, the right hand side of the above equality is bounded, so
we have
(2.23)

F (x, y + z) − F (x + y, z)

= F (x, y)g(−z) +
(
λ0F (x, y) + λ1F (x, y + y1) − λ1F (x + y, y1)

)
f(−z).

Again considering (2.23) as a function of z for all fixed x, y, we have F (x, y) ≡ 0
which is equivalent to (2.17). ¤

Theorem 2.6. Let f, g : G → C satisfy the inequality (2.15). Then f, g satisfy
one of the followings:

(i) f and g are bounded functions,
(ii) f(x) = 1

2 (m(x) − m(−x)), g(x) = 1
2 (m(x) + m(−x)), where m is an

exponential function.

Proof. First we prove that if the inequalities (2.15) and (2.16) hold, then both
f and g are bounded functions. From (2.15), it is impossible that only one of
f and g is unbounded. Assume that both f and g are unbounded. In view of
(2.16), we can write

(2.24) g = µf + B

for some µ ̸= 0 and a bounded function B. Putting (2.24) in (2.15) we have

|µf(x+y)+B(x+y)−
(
µf(x)+B(x)

)(
µf(−y)+B(−y)

)
+f(x)f(−y)| ≤ M.

Since B is bounded, we have

f(x + y) − µ−1
(
(µ2 + 1)f(−y) + µB(−y)

)
f(x)

is bounded for fixed y ∈ G. Thus it follows from [10, p. 104, Theorem 5.2] that

µ−1
(
(µ2 + 1)f(y) + µB(y)

)
= m(y)

for some exponential m. Thus if µ2 = −1, we can write

(2.25) f = ±i(g − m),

where m is a bounded exponential function. Putting (2.25) in (2.15) we have

(2.26) |g(x − y) − g(x)m(y) − g(y)m(x)| ≤ M

for all x, y ∈ G.
Replacing x by y and y by x and using the triangle inequality we have

(2.27) |g(x) − g(−x)| ≤ 2M

for all x ∈ G. Replacing x by −x, y by −y and using the inequality (2.27) we
have for some M1 > 0,

(2.28) |g(−x + y) − g(x)m(−y) − m(−x)g(y)| ≤ M1.



574 JEONGWOOK CHANG AND JAEYOUNG CHUNG

Using (2.26), (2.27), (2.28) and the triangle inequality we have for some M∗ >
0,

(2.29) |g(x)(m(y) − m(−y)) − g(y)(m(x) − m(−x))| ≤ M∗ + 3M.

Since g is unbounded and m is bounded, it follows from (2.29) that m(y) =
m(−y) for all y ∈ G. Since G is divisible by 2 we have m ≡ 1. Putting y = x
in (2.26), using the triangle inequality we have |g(x)| ≤ 1

2 (M + |g(0)|) for all
x ∈ G, which contradicts to the assumption that f and g are unbounded. If
µ ̸= −1, we have

f =
µ(m − b)
µ2 + 1

, g =
µ2m + b

µ2 + 1
,

which contradicts to the assumption that both f and g are unbounded. If the
equation (2.17) holds, then by Lemma 2.1, we have the case (ii). This completes
the proof. ¤

Since every continuous exponential function m : Rn → C is given by m(x) =
ec·x for some c ∈ Cn, we have the following as a direct consequence of Theo-
rem 2.6:

Corollary 2.7. Let f, g : Rn → C be continuous functions satisfying (2.15).
Then f and g satisfy one of the followings:

(i) f and g are bounded measurable functions,
(ii) f(x) = cosh(c · x), g(x) = sinh(c · x), where c ∈ Cn.
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