
Hyper-BLAST: A Parallelized BLAST on
Cluster System

Hong-Soog Kim, Hae-Jin Kim, and Dong-Soo Han

School of Engineering
Information and Communications University
P.O. Box 77, Yusong, Daejeon 305-600, Korea

{kimkk,hjkim,dshan}@icu.ac.kr

Abstract. BLAST is an important tool in bioinformatics. It has been
used to find biologically similar sequences to the given query sequence
from the database of the annotated sequences. For high throughput pro-
cessing of huge number of query sequences, there have been many studies
on parallel batch processing of sequence similarity search using BLAST.
As the number of sequences in the database increases at exponential rate,
the search speed of BLAST itself becomes important. Although NCBI
has developed a parallel BLAST using the thread on SMP machines for
the speedup of BLAST, the speedup is still limited because the SMP
machine has restricted the number of processors due to its architecture.
In this paper, we present our parallelized BLAST on cluster systems
for further speedup. The main strategy used is the exploitation of the
inter-node parallelism, which can be extracted by logical partitioning
of the database. For the inter-node parallelism, we have designed and
implemented a logical database partitioning method, initiation and co-
ordination of the BLAST on remote node and communication protocol
for collecting remote node’s result. According to our performance test
with 2-way 8 node cluster system, roughly 12 times speedup has been
achieved in terms of response time of similarity search for individual
query sequence.

1 Introduction

For biologist, finding and annotating characteristics of novel genes and protein
sequences is an extremely important mission. The most reliable way to determine
a biological molecule’s structure and function is direct experimentation. It is,
however, much easier to obtain the DNA sequence of the gene corresponding to
a messenger RNA or protein than to experimentally determine gene’s function of
structure. This fact provides a strong motivation for developing computational
methods that can infer biological information from sequence alone [1].

BLAST (Basic Local Alignment Search Tool) [2,3,4] is one of the most widely
used similarity search tools available to computational biologist. It rapidly iden-
tifies statistically significant matches by comparing newly sequenced segments
of genetic material or proteins with already annotated nucleotide or amino acid

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 213–222, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



214 H.-S. Kim, H.-J. Kim, and D.-S. Han

query sequence 1

query sequence 2

query sequence n

...

subject sequence 1

subject sequence 2

subject sequence m

subject sequence i

subject sequence m-1

Database of
Annotated Sequences

...

...

similarity assessment

Fig. 1. Similarity search in BLAST

sequences in the database as shown in Fig. 1. This kind of search allows biol-
ogists to make inferences on the structure and function of the unknown gene
or to screen new sequences for further investigation using more sensitive and
computationally expensive methods. The information that BLAST provides in
a few hours would otherwise takes months of laboratory work [5].

Similarity search with BLAST would be more useful, if there is more anno-
tated sequences in the database. Because the time complexity of the similarity
search algorithm used in BLAST is proportional to the size of the database [2],
the response time of the BLAST becomes slow as the number of sequences in
the database grows. GenBank, the primary repository for DNA sequence data,
continues to grow at an exponential rate. It contains roughly 15,849,921,438 nu-
cleotides in 14,976,310 sequences as of year 2001 [6]. Historically, GenBank has
been doubling its size every 18 month, but that rate has accelerated to doubling
every 15 months due primarily to the enormous growth in data from expressed
sequence tags (ESTs). Keeping pace with the analysis of this data is difficult
task for biologists.

As a result, sequence similarity analysis using BLAST is becoming a bottle-
neck [7]. A huge sequence database can also bring more serious problem. If the
size of database exceeds the size of physical memory of the system, it may incur
frequent paging while BLAST program scans the database and it could result in
serious performance degradation. Therefore, as the size of the database grows,
the speedup of BLAST becomes quite important.

Although a parallel version of BLAST, which exploits intra-search level par-
allelism explained in 3.1, has been developed by NCBI (National Center for
Biotechnology Information) at the NIH (National Institute of Health) and Wash-
ington University, it is targeted only on SMP (Symmetric Multi-Processor) ma-
chines. Because SMP machine has certain limitation on the number of processors



Hyper-BLAST: A Parallelized BLAST on Cluster System 215

due to its architecture, the speedup of BLAST that can be achieved solely on one
SMP machine has some limitation. Hence, the speedup improvement of BLAST
on the SMP machine is not sufficient to cope with the current situation where
enormous sequences are newly added in the database at exponential rate. In or-
der to use more processors for more speedup of BLAST, we consider PC cluster
system as an alternative to SMP machine.

In this paper, we present Hyper-BLAST, a parallelized BLAST on cluster
system, which can provides scalable speedup in terms of response time. Hyper-
BLAST adds inter-node parallel execution techniques to the intra-search level
parallelism that is used by NCBI BLAST. Logical partitioning of database is
used to prepare and enable the inter-node parallel execution of intra-search level
parallelism. In our parallelized BLAST on cluster system, the master node drives
remote nodes to search similar sequence from logically partitioned database and
collects minimal but complete data for reporting the search results.

2 Related Work

There have been several researches on parallel processing of sequence similarity
analysis on multiprocessor systems. Braun et al. studied parallel processing of
sequence analysis using BLAST on workstation of cluster [8]. They provided a
good classification scheme for parallel processing of BLAST and reported im-
plementation of coarse grained level of parallelism (parallel batch processing of
similarity search). They pointed out that the parallel batch processing approach
has overhead for maintaining consistency of partitioned or distributed database.

The coarse grained level of parallelism is extracted from the fact that respec-
tive similarity searches for different query sequences can be done independently.
We call this kind of parallelism inter-search level parallelism in order to distin-
guish the intra-search level parallelism used in NCBI BLAST.

Efforts to parallelize FASTA and BLAST using the coarse grained level of
parallelism have been published since the early 1990s [9,10,11]. Recently, Dis-
perse system and BeoBLAST system have been reported. Disperse system paral-
lelized FASTA and SSEARCH (Smith-Waterman) program using Perl and UNIX
utilities such as rcp (or scp) and rsh (or ssh) [12]. While Disperse system used
UNIX utilities for initiating parallel execution of program on workers and tal-
lying the results from workers, BeoBLAST used queuing system (GNU Queue)
for executing BLAST and PSI-BLAST on a Beowulf cluster [13].

There also have been a few commercial products, such as High-Throughput
BLAST (HT-BLAST) of SGI [14] and Turbo BLAST of TurboGenomics [15],
based on coarse grained level of parallelism.

Albeit parallel batch processing of similarity analysis based on inter-search
level parallelism can achieve higher throughput over a set of query sequences, it
cannot improve the response time of the similarity search for individual query
sequence because the response time of a similarity search itself is dependent on
the computational power of each node or processor.



216 H.-S. Kim, H.-J. Kim, and D.-S. Han

3 Parallelization of BLAST on Cluster System

In this section, we explain intra-search level parallelism that is used in NCBI
BLAST, our extension of intra-search level parallelism for cluster system and
the other implementation details.

3.1 Intra-search Parallelism in NCBI BLAST

The NCBI BLAST is parallelized using the thread facility for SMP machine. The
parallelization of NCBI BLAST is based on task pool. The task is a similarity
assessment of the subject sequence in database for given query sequence. In
NCBI BLAST, each thread gets its task chunk (i.e., range of subject sequences
in database), aligns the query sequence with subject sequences in its chunk,
merges its search result into global search result and receives next chunk until all
the sequences in database are searched. All threads repeat these steps. As SMP
machine has one shared memory, access to subject sequences, assigning the task
chunk to thread and collection of slave thread’s search result are straightforward
using mutex for exclusive access to global data structure.

The parallelism in NCBI BLAST originates from the fact that similarity
assessments for every subject sequence in sequence database are mutually inde-
pendent. We call it intra-search level parallelism in order to distinguish it from
the inter-search level parallelism that was used in parallel batching processing
approach. In terms of the granularity of parallelism, intra-search level parallelism
is much finer than inter-search level parallelism.

Even though NCBI BLAST successfully extracted parallelism and achieved
some speedup in the similarity search of individual query sequence using intra-
search level parallelism, its speedup ratio is still limited by its underling parallel
processor system.

3.2 Extension of Intra-search Parallelism in Hyper-BLAST

In Hyper-BLAST, we extend application of intra-search level parallelism from
one SMP node to multiple nodes in cluster system by logically partitioning of the
sequence database, in which every node calculates its database partition from
the node configuration and confines its search space within its own database
partition. The intra-search level parallelism is realized in two levels: inter-node
and intra-node level.

In intra-node level, master thread of Hyper-BLAST on every node has its
logical database partition that is assigned by inter-node level realization of intra-
search parallelism. The master thread of Hyper-BLAST on each node allocates
a chunk of subject sequence to its slave threads on demand. Because the search
result from each node is only partial result, one designated node (master node)
collects the search result from the rest of nodes and then makes similarity search
report for the given query sequence from the collected results.

For inter-node level realization of intra-search parallelism, we implement
mechanisms for specifying computation node set and logical database partition



Hyper-BLAST: A Parallelized BLAST on Cluster System 217

for each computation node, executing Hyper-BLAST on each computation node
and controlling Hyper-BLAST program instances on the nodes. Since a cluster
system is distributed memory multiprocessor system, we devise message com-
munication protocol that can replace the read and write operation on shared
memory of the SMP machine.

For logical database partitioning, we assume that all computation nodes ac-
cess sequence database, query sequence and other internal data files for BLAST
execution through NFS (Network File System).

Specification of Computation Node Set. For the specification of compu-
tation node set and logical database partition, we use a node configuration file
that is specified in Hyper-BLAST command line option.

The node configuration file contains information on computation node set,
role of each computation node (master/slave node), degree of parallelism (DOP)
and the load weight for individual computation node. From the DOP and the
load weight for individual node, the logical database partition for a node is cal-
culated. In run-time, the master thread of Hyper-BLAST on computation node
confines its search space to the calculated database partition instead of original
database. Because NCBI BLAST uses memory mapped file I/O for database for
fast access, logical database partitioning can reduce the possibility of paging if
the whole sequence database is too large to fit into physical memory of a compu-
tation node. Paging is known to cause serious overhead in running application
that accesses a large set of data.

Initiation of Hyper-BLAST on Slave Nodes. As multiple Hyper-BLAST
process instances should be executed in different nodes of cluster system, it is
necessary to explicitly execute Hyper-BLAST program on remote nodes. For the
purpose of initiating Hyper-BLAST on remote nodes, we use rsh (remote shell)
based approach. Except for the master node, initiation of the Hyper-BLAST
program is performed using the rsh command in the below:

rsh node01 ’hyperblastall -i sample.seq -o sample.html -p blastx
-d nr -e 10.0 -m 0 -b 15 -v 15 -I T -T T -c cluster_nodes.cfg’ &

In the above rsh command for executing Hyper-BLAST on a remote node, all
command line options are the same as those of NCBI BLAST except -c option
added for specifying the node configuration file.

Since it could be a chore to make this kind of rsh command and node con-
figuration file, we also have developed the GUI-based Hyper-BLAST execution
environment (HBEE) program. In HBEE, users can check the node status and
resources such as number of processors, processor types and physical memory
size. While examining a node, users can add it to computation node set of Hyper-
BLAST, designate it as master node or slave node, and specify the number of
parallel processors used for Hyper-BLAST and its load weight. From the user’s
definition of computation node set, the HBEE generates node configuration file



218 H.-S. Kim, H.-J. Kim, and D.-S. Han

and series of rsh command for executing Hyper-BLAST on remote nodes that
are designated as slave nodes in the node configuration file.

Control of Hyper-BLAST Program on Slave Nodes. Once Hyper-BLAST
programs start on a master node and remote slave nodes, the master thread of
the Hyper-BLAST program at every computation node first identifies its role
as master or slave node and computes its database partition using the informa-
tion in the node configuration file. Then, every Hyper-BLAST program carries
out similarity search for the first query sequence in query sequence file that is
specified by the command line option -i.

For nodes that have the DOP value of two or more, the master thread of
the Hyper-BLAST program creates or reactivates as many slave threads as the
DOP value. The master thread assigns the chunk of sequences to its slave threads
on demand while the slave threads initiate the similarity search for the query
sequence from its assigned chunk of sequences.

The final similarity search result at each node is kept within in-memory data
structure. The in-memory data structure is a linked list of the sequence alignment
information between the query sequence and the similar sequence found in the
sequence database. Within the linked list of the sequence alignment information,
the sequence alignment information is sorted by its rank order.

When the Hyper-BLAST programs at the slave nodes finish their respective
similarity search and make a linked list of sequence alignment information, the
respective master threads of Hyper-BLAST at the slave nodes make a message
that corresponds to the sequence alignment information in the linked list, send
the message to the master node and wait for the acknowledgment of the message.
The master thread of Hyper-BLAST at the master node makes sequence align-
ment information from the message that is received from the slave node, insert it
into the linked list of sequence alignment information and send acknowledgment
to the slave node. If the sequence alignment information, which is made from
the message from the slave node, is less than the least sequence alignment infor-
mation in the linked list of the master node in terms of rank order, the sequence
alignment information is discarded. The acknowledgment for discarded sequence
alignment information makes the slave stop to send next data message.

When the master node receives the search results from all the slave nodes,
the linked list of sequence alignment information in the master node becomes
a complete similarity search result for the first query sequence in the query
sequence file. Then, the master thread of Hyper-BLAST makes the report for
the similarity search result and prints it. After printing the report, the master
thread of Hyper-BLAST program at the master node sends the control message
that orders slave nodes to start similarity search for the next query sequence in
the query sequence file.

Figure 2 depicts the run time behavior of Hyper-BLAST program instances
on the master node and the slave node. The master thread of Hyper-BLAST
determines each node’s logical database partition, controls the parallel search
activity and communication for search results, and makes similarity search re-



Hyper-BLAST: A Parallelized BLAST on Cluster System 219

M
a
s
t
e
r
 
N
o
d
e

H
y
p
e
r
-
B
L
A
S
T
 
I
n
i
t
i
a
t
i
o
n

M
a
s
t
e
r
 
T
h
r
e
a
d

C
r
e
a
t
e
 
o
r
 
a
c
t
i
v
a
t
e
 
s
l
a
v
e
 
t
h
r
e
a
d
s
 
w
i
t
h
 
i
n
i
t
a
l
 
D
B
 
c
h
u
n
k
s

S
l
a
v
e
 
T
h
r
e
a
d

S
e
a
r
c
h
 
s
i
m
i
l
a
r
 

s
e
q
u
e
n
c
e
s
 
i
n
 
t
h
e
 

a
l
l
o
c
a
t
e
d
 
D
B
 
c
h
u
n
k

R
e
c
o
r
d
 
s
e
a
r
c
h
 
r
e
s
u
l
t

R
e
q
u
e
s
t
 
n
e
x
t
 

D
B
 
c
h
u
n
k

S
l
a
v
e
 
T
h
r
e
a
d

S
e
a
r
c
h
 
s
i
m
i
l
a
r
 

s
e
q
u
e
n
c
e
s
 
i
n
 
t
h
e
 

a
l
l
o
c
a
t
e
d
 
D
B
 
c
h
u
n
k

R
e
c
o
r
d
 
s
e
a
r
c
h
 
r
e
s
u
l
t

R
e
q
u
e
s
t
 
n
e
x
t
 

D
B
 
c
h
u
n
k

S
l
a
v
e
 
T
h
r
e
a
d
 
C
r
e
a
t
i
o
n

S
l
a
v
e
 
T
h
r
e
a
d
 
J
o
i
n

O
n
-
d
e
m
a
n
d
 

D
B
 
C
h
u
n
k
 

A
l
l
o
g
c
a
t
i
o
n
 
L
o
o
p

S
l
a
v
e
 
N
o
d
e

M
a
s
t
e
r
 
T
h
r
e
a
d

C
r
e
a
t
e
 
o
r
 
a
c
t
i
v
a
t
e
 
s
l
a
v
e
 
t
h
r
e
a
d
s
 
w
i
t
h
 
i
n
i
t
a
l
 
D
B
 
c
h
u
n
k
s

S
l
a
v
e
 
T
h
r
e
a
d

S
e
a
r
c
h
 
s
i
m
i
l
a
r
 

s
e
q
u
e
n
c
e
s
 
i
n
 
t
h
e
 

a
l
l
o
c
a
t
e
d
 
D
B
 
c
h
u
n
k

R
e
c
o
r
d
 
s
e
a
r
c
h
 
r
e
s
u
l
t

R
e
q
u
e
s
t
 
n
e
x
t
 

D
B
 
c
h
u
n
k

S
l
a
v
e
 
T
h
r
e
a
d

S
e
a
r
c
h
 
s
i
m
i
l
a
r
 

s
e
q
u
e
n
c
e
s
 
i
n
 
t
h
e
 

a
l
l
o
c
a
t
e
d
 
D
B
 
c
h
u
n
k

R
e
c
o
r
d
 
s
e
a
r
c
h
 
r
e
s
u
l
t

R
e
q
u
e
s
t
 
n
e
x
t
 

D
B
 
c
h
u
n
k

O
n
-
d
e
m
a
n
d
 

D
B
 
C
h
u
n
k
 

A
l
l
o
g
c
a
t
i
o
n
 
L
o
o
p

M
a
k
e
 
i
n
-
m
e
m
o
r
y
 
d
a
t
a
 
s
t
r
u
c
t
u
r
e
 
f
o
r
 
l
o
c
a
l
 
s
e
a
r
c
h
 
r
e
s
u
l
t

P
a
r
s
e
 
c
o
m
m
a
n
d
 
l
i
n
e
 
o
p
t
i
o
n
,
 
c
h
e
c
k
 
n
o
d
e
 
i
d
e
n
t
i
t
y

a
n
d
 
c
a
l
c
u
l
a
t
e
 
i
t
s
 
l
o
g
i
c
a
l
 
D
B
 
p
a
r
t
i
t
i
o
n

M
a
k
e
 
c
o
m
m
.
 
m
e
s
s
a
g
e
 
f
o
r
 
s
e
a
r
c
h
 
r
e
s
u
l
t
 

a
n
d
 
s
e
n
d
 
i
t
 
t
o
 
t
h
e
 
m
a
s
t
e
r
 
n
o
d
e

M
a
k
e
 
i
n
-
m
e
m
o
r
y
 
d
a
t
a
 
s
t
r
u
c
t
u
r
e
 
f
o
r
 
l
o
c
a
l
 
s
e
a
r
c
h
 
r
e
s
u
l
t

M
a
k
e
 
i
n
-
m
e
m
o
r
y
 
d
a
t
a
 
s
t
r
u
c
t
u
r
e
 

c
o
r
r
e
s
p
o
n
d
i
n
g
 
 
t
o
 
r
e
c
e
i
v
e
d
 
m
e
s
s
a
g
e
 
f
r
o
m
 

s
l
a
v
e
 
n
o
d
e
 
a
n
d
 
m
e
r
g
e
 
i
t
 
i
n
t
o
 
l
o
c
a
l
 
s
e
a
r
c
h
 

r
e
s
u
l
t
s

S
e
n
d
 
a
c
k
n
o
w
l
e
d
g
e
m
e
n
t
 
t
o
 
p
r
e
v
i
o
u
s
 
m
e
s
s
a
g
e

b
a
s
e
d
 
o
n
 
m
e
r
g
e
 
r
e
s
u
l
t

W
a
i
t
 
f
o
r
 
a
c
k
n
o
w
l
e
d
e
m
e
n
t
 

f
o
r
 
s
e
n
t
 
m
e
s
s
a
g
e

S
e
a
r
c
h
 
r
e
s
u
l
t
 

c
o
l
l
e
c
t
i
o
n
 
f
r
o
m

t
h
e
 
s
l
a
v
e
 
n
o
d
e
s

L
o
o
p
 
f
o
r
 
s
e
n
d
 
i
n
g

l
o
c
a
l
 
s
e
a
r
c
h
 
r
e
s
u
l
t
 

M
a
k
e
 
r
e
p
o
r
t
 
f
o
r
 
s
e
a
r
c
h
 
r
e
s
u
l
t
s
 
a
n
d
 
p
r
i
n
t
 
i
t

S
e
n
d
 
s
e
a
r
c
h
 
r
e
i
n
i
t
a
i
o
n
 
m
e
s
s
a
g
e

W
a
i
t
 
f
o
r
 
s
e
a
r
c
h
 
r
e
i
n
i
t
i
a
t
i
o
n
 
m
e
s
s
a
g
e

P
a
r
s
e
 
c
o
m
m
a
n
d
 
l
i
n
e
 
o
p
t
i
o
n
,
 
c
h
e
c
k
 
n
o
d
e
 
i
d
e
n
t
i
t
y

a
n
d
 
c
a
l
c
u
l
a
t
e
 
i
t
s
 
l
o
g
i
c
a
l
 
D
B
 
p
a
r
t
i
t
i
o
n

G
e
t
 
n
e
x
t
 
q
u
e
r
y
 
s
e
q
u
e
n
c
e
 
f
r
o
m
 

t
h
e
 
q
u
e
r
y
 
s
e
q
u
e
n
c
e
 
f
i
l
e

G
e
t
 
n
e
x
t
 
q
u
e
r
y
 
s
e
q
u
e
n
c
e
 
f
r
o
m
 

t
h
e
 
q
u
e
r
y
 
s
e
q
u
e
n
c
e
 
f
i
l
e

I
n
t
e
r
-
n
o
d
e

C
o
m
m
u
n
i
c
a
t
i
o
n

F
ig

.2
.
C

on
tr

ol
flo

w
of

H
yp

er
-B

L
A

ST
pr

og
ra

m
in

st
an

ce
s

at
co

m
pu

ta
ti

on
no

de
s



220 H.-S. Kim, H.-J. Kim, and D.-S. Han

port. The slave threads of Hyper-BLAST, which actually do the similarity search
for given chunk of subject sequences within the logical database partition of the
computation node.

4 Performance Evaluation

For the performance evaluation of Hyper-BLAST, we measured the execution
time and calculated speedup on actual cluster system. The detailed specifications
of cluster system and other experiment conditions are summarized in Table 1.

In our test cluster system, the local disk of the computation node is used for
operating system and Hyper-BLAST program and data files are placed in the
remote RAID server. The query sequences for testing are obtained from the GI
2054475 sequence by chopping the first n letters. The size of the query sequence
is varied from 1000 bp to 5000 bp by 500 bp increment. Because Hyper-BLAST
program, data file and sequence database are placed in the remote RAID server
and all nodes access them through the NFS, the execution time can be affected
by NFS cache, disk cache and memory cache. However disabling these effects for
measurement is not simple. Hence, for the fair comparison of the response time,
we have measured the response time twice and selected the second result for the
measurements. The first execution of the Hyper-BLAST is for indirect enabling
of the possible cache benefits.

Figure 3 compares the speedup ratio for query sequences of which length
varies from 1000bp to 5000bp by 500bp increment.

As shown in Fig. 3, the speedup is proportional to the size of query sequence
but it continuously increases as more processors are used. The maximum speedup
using 16 processors in the cluster system ranges between 10.96 and 12.42. From
the experimental results, we can conclude that our implementation of parallelized
BLAST on cluster system gives scalable speedup as more processors are used for
the similarity search.

Table 1. Specification of cluster system

8 Node Cluster

Processors Dual Intel Pentium III 1GHz per Node
Memory 1024KB per Node
Network 100Mbps Switch
O.S Linux (Kernel version 2.4.18)
BLAST Hyper-BLAST based on NCBI BLAST Version 2.2.1

blastx
BLAST DB nr (929,420 sequences; 291,584,220 total letters)
Query sequence GI 20544475

Homo sapiens adenylate cyclase 2 (brain) (ADCY2) (to-
tal length: 6551 letters)



Hyper-BLAST: A Parallelized BLAST on Cluster System 221

1000
1500

2000
2500

3000
3500

4000
4500

5000

    query sequence size

2

4

6

8

10

12

14

16

Num. of Processors

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Speed-up

Fig. 3. Speedup comparison on 2-way 8 node cluster system

5 Conclusion and Future Work

BLAST is an important tool in bioinformatics. The exponential growth rate
of the sequence database requires faster BLAST. Hence, the speedup provided
by parallel NCBI BLAST on SMP machine becomes insufficient. To get more
speedup of NCBI BLAST, we have designed and implemented Hyper-BLAST on
cluster systems. Using logical partitioning of sequence database, Hyper-BLAST
extends the intra-search level parallelism from one SMP machine to multiple
computation nodes that are connected by network. A communication protocol
and a message format is devised to control of Hyper-BLAST programs on slave
nodes and collect final search results.

This extension of intra-search parallelism enables us to use more processors
for similarity search using BLAST and gives more speedup of individual query
sequence search. The performance evaluation result shows that Hyper-BLAST
gives scalable speedup in terms of response time as more processors are used.

Currently, we are studying the performance of Hyper-BLAST on large-scale
cluster systems. We anticipate that speedup might be saturated at some number
of multiple processors. Hence, future work includes identification of speedup sat-
uration point, modeling of speedup function and devising of combined approach
that uses parallel batch processing technique on the top of Hyper-BLAST for
more speedup and throughput.



222 H.-S. Kim, H.-J. Kim, and D.-S. Han

References

1. Durbin, R., Eddy, S., Krogh, A., Mitchison, G., eds.: Biological sequence analysis:
Probabilistic models of proteins and nucleic acids. Cambridge University Press
(1998)

2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic Local
Alignment Search Tool. Journal of Molecular Biology 215 (1990) 403–410

3. Altschul, S., Gish, W.: Local alignment statistics. Methods in Enzymology 266
(1996) 460–480

4. Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., Lipman,
D.: Gapped BLAST and PSI–BLAST: A new generation of protein katabase search
programs. Nucleic Acids Research 25 (1997) 3389–3402

5. Gish, W., States, D.: Identification of protein coding regions by database similarity
search. Nature Genetics 3 (1993) 266–272

6. NCBI: Growth of GenBank. Technical report, National Center for Biotechnology
Information (March 12, 2002)

7. Chi, E.H., Shoop, E., Carlis, J., Retzel, E., Ried, J.: Efficiency of shared-memory
multiporceossors for a genetic sequence similiarity search algorithm. Technical
report, Computer Science Dept., University of Minnesota (1997)

8. Braun, R.C., Pedretti, K.T., Casavant, T.L., Scheetz, T.E., Birkett, C.L., Roberts,
C.A.: Parallelization of local BLAST service on workstation clusters. Future
Generation Computer Systems 17 (2001) 745–754

9. Miller, P.L., Nadkarni, P.M., Carriero, N.M.: Parallel computation and FASTA:
Confronting the problem of parallel database search for a fast sequence comparison
algorithm. Bioinformatics (formerly CABIOS) 7 (1991) 71–78

10. Barton, G.J.: Scanning protein sequence databanks using a distributed processing
workstation network. Bioinformatics (formerly CABIOS) 7 (1991) 85–88

11. Julich, A.: Implementations of BLAST for parallel computers. Bioinformatics
(formerly CABIOS) 11 (1995) 3–6

12. Clifford, R., Mackey, A.J.: Disperse: A simple and efficient approach to parallel
database searching. Bioinformatics 16 (2000) 564–565

13. Grant, J.D., Dunbrack, R.L., Manion, F.J., Ochs, M.F.: BeoBLAST: Distributed
BLAST and PSI-BLAST on a Beowulf cluster. Bioinformatics 18 (2002) 765–766

14. Camp, N., Cofer, H., Gomperts, R.: High-Throughput BLAST. Technical report,
Silicon Graphics, Inc. (1998)

15. Bjorson, R.D., Sherman, A.H., Weston, S.B., Willard, N., Wing, J.: TurboBLAST:
A parallel implementation of BLAST based on the TurboHub process integration
architecture. Technical report, TruboGenomics, Inc. (2002)


	1 Introduction
	2 Related Work
	3 Parallelization of BLAST on Cluster System
	3.1 Intra-search Parallelism in NCBI BLAST
	3.2 Extension of Intra-search Parallelism in Hyper-BLAST

	4 Performance Evaluation
	5 Conclusion and Future Work

