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Hyper-g Priors for Generalized Linear Models

Daniel Sabanés Bové∗and Leonhard Held†

Abstract. We develop an extension of the classical Zellner’s g-prior to generalized
linear models. Any continuous proper hyperprior f(g) can be used, giving rise
to a large class of hyper-g priors. Connections with the literature are described
in detail. A fast and accurate integrated Laplace approximation of the marginal
likelihood makes inference in large model spaces feasible. For posterior parameter
estimation we propose an efficient and tuning-free Metropolis-Hastings sampler.
The methodology is illustrated with variable selection and automatic covariate
transformation in the Pima Indians diabetes data set.
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variable selection, fractional polynomials

1 Introduction

Assume that we have observed n independent responses yi coming from a generalized
linear model (GLM, see McCullagh and Nelder 1989) incorporating the covariate vectors
xi ∈ Rp via the linear predictors ηi = β0 + xTi β, i = 1, . . . , n. The response function
(inverse link function) h transforms ηi to the mean E(yi) = µi = h(ηi), which in turn
is mapped to the canonical parameter θi = (db/dθ)−1(µi) of the exponential family.
Here db/dθ is the first derivative of the function b as defined in the likelihood for y =
(y1, . . . , yn)T via

f(y |β0,β) ∝ exp

{
n∑
i=1

yiθi − b(θi)
φi

}
, (1)

where each θi depends on the intercept β0 and the vector β of regression coefficients
as described above. Often the canonical response function h = db/dθ is used where
θi = ηi = β0 +xTi β. The dispersions φi = φ/wi are assumed known and can incorporate
weights wi. The variance Var(yi) = φid

2b/dθ2(θi) is expressed through the variance
function v(µi) = d2b/dθ2((db/dθ)−1(µi)) as Var(yi) = φiv(µi).

A Bayesian analysis starts by assigning prior distributions to the unknown model
parameters β0 and β. However, usually there is not only uncertainty with respect to the
model parameters, but also to the model itself, see e. g. Clyde and George (2004). Let γ
be the model index contained in some model space Γ. Typically, the variable selection
problem is considered, where γ ∈ {0, 1}m collects binary inclusion indicators for all
m available covariates. Here we think more generally of uncertainty about the form
(including the dimension pγ) of the covariate vectors xγi, which may also comprise
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different transformations of the original variables. For example, when γ indicates a
quadratic transformation of xi, then xγi = (xi, x2

i )
T . Thus, priors f(β0,βγ | γ) need

to be assigned, for all models γ ∈ Γ. Manual elicitation of all these priors is clearly
infeasible when Γ is large. In this situation priors which automatically derive from γ
are attractive, and we will propose such priors in this paper. Model inference then uses
the posterior model probabilities

f(γ |y) ∝ f(y | γ)f(γ), γ ∈ Γ, (2)

which combine the marginal likelihood

f(y | γ) =
∫

Rpγ+1
f(y |β0,βγ , γ)f(β0,βγ | γ) dβ0dβγ (3)

with the prior model probabilities f(γ).

In the special case of the classical normal linear model with known error variance φ
and wi ≡ 1, the g-prior for the regression coefficients was proposed by Zellner (1986) as
a “reference informative prior”. It is a mean-zero normal distribution with covariance
matrix gφ(XT

γ Xγ)−1,

βγ | g, φ ∼ Npγ

(
0pγ , gφ(XT

γ Xγ)−1
)
, (4)

and is usually combined with a locally uniform (Jeffreys) prior on β0, assuming that
the design matrix Xγ = (xγ1, . . . ,xγn)T has been centered to ensure XT

γ 1n = 0pγ
(see Fernández et al. 2001). Often also the error variance φ is assumed unknown and
assigned a Jeffreys prior.

The g-prior can be interpreted as the conditional posterior of βγ given a locally uni-
form prior and an imaginary sample y0 = 0n from the normal linear model with design
matrix Xγ and scaled error variance gφ. This reflects the idea that after accounting
for the mean level β0 not included in the g-prior, there is no difference between ob-
servations due to the covariates in Xγ modelled through βγ . In addition to this nice
interpretation, the g-prior has other advantages, such as invariance of the implied prior
for the linear predictor under rescaling and translation of the covariates (Robert and
Saleh 1991, p. 71), and automatic adaption to situations with near-collinearity between
different covariates (Robert 2001, p. 193).

The hyperparameter g > 0 in (4) acts as an inverse relative prior sample size, hence
its influence on the results is quite strong. Larger values of g lead to preference of
less complex models, a phenomenon known as the Lindley-Jeffreys paradox (Lindley
1957; see also Robert et al. 2009, p. 161). Therefore, much research has been done in
developing automatic specifications of g (George and Foster 2000; Hansen and Yu 2001;
Fernández et al. 2001; Cui and George 2008). Moreover, a fixed g does not allow the
Bayes factor of a perfectly fitting model versus the null model go to infinity (Berger and
Pericchi 2001). The multivariate Cauchy priors of Zellner and Siow (1980) correspond
to fully Bayesian inference with an inverse-gamma hyperprior for g. Unfortunately,
the corresponding marginal likelihood f(y | γ) has no closed form. Therefore Liang
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et al. (2008) proposed the hyper-g prior, which is a special case of the incomplete
inverse-gamma prior by Cui and George (2008). These hyperpriors retain a closed form
expression for f(y | γ) which is vital for efficient model inference.

In this article we develop an extension of the classical g-prior (4) to GLMs. The
hyperprior on the hyperparameter g is handled in a flexible way, so that any continuous
proper hyperprior f(g) can be used. In Section 2, this generalized hyper-g prior is
derived and connections with the literature are described. Because model inference is
the main practical use of this automatic prior formulation, we will propose a fast and
accurate numerical approximation of the marginal likelihood in Section 3. Section 3 also
covers posterior parameter estimation with a tuning-free Markov chain Monte Carlo
(MCMC) sampler. The methodology is applied to variable selection in Section 4 and to
fractional polynomial modelling in Section 5. Section 6 discusses possibilities for future
research.

2 The generalized hyper-g prior

Section 2.1 derives the generalized hyper-g prior, using arguments analogous to the stan-
dard g-prior. Several similar proposals can be found in the literature and are described
in Section 2.2.

2.1 Prior construction

Consider the imaginary sample y0 = h(0)1n from the GLM with design matrix Xγ

(not including an intercept column 1n), original weights vector w = (w1, . . . , wn)T and
scaled dispersion gφ. Using an improper flat prior for the regression coefficients vector
βγ , its posterior given y0 is proportional to the likelihood (1),

f(βγ |y0, g, γ) ∝ exp

{
1
gφ

n∑
i=1

[
h(0)wiθi − wib(θi)

]}
. (5)

This distribution can be recognized as the Chen and Ibrahim (2003, formula 2.6) prior,
although the authors have only considered the case wi ≡ 1 and include the intercept
β0. Similar to their theorem 3.1, we can prove that the mode of this distribution is
at βγ = 0pγ (see the Appendix). It results from standard Bayesian asymptotic theory
(e. g. Bernardo and Smith 2000, p. 287) that this distribution converges for n → ∞ to
the normal distribution

βγ | g, γ ∼ Npγ

(
0pγ , gφc(X

T
γWXγ)−1

)
(6)

where c = v(h(0)) · dh/dη(0)−2 and W = diag(w), because the inverse of the expected
Fisher information I(βγ) evaluated at the mode is I(0pγ )−1 = gφc(XT

γWXγ)−1 (cf.
Chen and Ibrahim 2003, theorem 2.3).

The “generalized g-prior” (6) differs from the standard g-prior (4) only by the con-
stant c and the weight matrix W . Both are especially important in binomial regression
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Family Link c

Gaussian Identity 1
(Log) 1

Poisson Log 1
Identity (0)

Bernoulli Logit 4
Cauchit π2/4
Probit π/2
Complementary log-log e− 1

Gamma Log 1
Inverse-Gaussian (Log) 1

Table 1: Exponential families, usual link functions and resulting factors c. Note that
for the gamma and the inverse-Gaussian family, the natural links µ−1 and µ−2, respec-
tively, cannot be used because then h(0) =∞. Parenthesized links should not be used
because the uniqueness of the prior mode at βγ = 0pγ is not sure (Wedderburn 1976).
Parenthesized c’s point out problems there.

when wi is the sample size of the observed proportion, say yi = si/wi if si ∼ Bin(wi, µi)
is the number of successes: In Table 1 it can be seen that only for the Bernoulli family
c 6= 1. While technically, this scaling constant could be subsumed into the hyperprior on
g, it is important because it preserves the interpretation of g as the inverse relative prior
sample size, i. e., the prior contains 1/g as much information as the data y. The use of
a common hyperprior f(g) for different exponential families is thus simplified because
g always has the same meaning. Although binomial data can always be rephrased as
binary data with appropriately replicated covariate vectors and weights wi ≡ 1, this is
not possible for non-integer weights wi where W is absolutely necessary. Non-integer
weights are used, for example, for inverse probability weighting (Robins et al. 2000),
as sampling weights for survey data (Pfeffermann 1993) and in geographically weighted
regression (Brunsdon et al. 1998). Furthermore, note that the g-prior for the normal
linear model with independent heteroscedastic errors εi ∼ N(0, φ/wi) naturally arises
from (6).

Since the intercept β0 parametrizes the average linear predictor in each model, we can
use an improper flat prior f(β0) ∝ 1. Thus, our generalized g-prior does not shrink the
intercept towards zero, while the mean-zero prior on the regression coefficients reflects
the idea that Xγ has a priori no effect on the centered observations. The factor g
is assigned a (continuous) hyperprior f(g). In our approach f(g) must be proper to
ensure that Bayes factor comparisons with the null model, which does not include the
parameter g, are valid. Apart from that, f(g) can be chosen at complete liberty. As g
is assigned a hyperprior, we call the resulting prior a “generalized hyper-g prior”.
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2.2 Comparison with the literature

An immediate question is why we do not use the exact Chen and Ibrahim (2003) prior,
which is also a generalization of the standard g-prior. The main problem with this
conjugate prior given in (5) is that it does not have a closed form for non-normal expo-
nential families, where the normalizing constant of (5) is unknown. This complicates the
computation of the marginal likelihood and the MCMC sampling considerably. Chen
et al. (2008) propose a solution where they run an MCMC sampler on the full model,
and then derive estimates for submodels. However, this approach is not applicable in
problems with simultaneous variable selection and transformation as that presented in
Section 5, because no full model exists in that case. Regarding the hyperparameter g,
Chen and Ibrahim (2003) propose to assign it an inverse-gamma hyperprior.

Alternatively, Gupta and Ibrahim (2009) proposed the information matrix prior,
which uses the expected Fisher information matrix I(βγ) similarly to a precision matrix
for a normal distribution up to a scalar variance factor g:

fGI(βγ | g, γ) ∝ |I(βγ)|1/2 exp
{
− 1

2g
βTγ I(βγ)βγ

}
. (7)

This will only be a Gaussian distribution if the matrix I(βγ) actually does not depend
on βγ , e. g. for the normal linear model where the standard g-prior is reproduced by (7).
By contrast, the precision of our generalized g-prior in (6) results from evaluating I(βγ)
at the prior mode, producing a matrix which does not depend on βγ . Gupta and
Ibrahim (2009) fix the hyperparameter g at a “moderately large” value (g ≥ 1) and do
not consider inference for it.

The information matrix prior is strongly linked with the unit information prior
approach of Kass and Wasserman (1995), who proposed the general idea that the amount
of information in the prior on βγ should be equal to the amount of information about
it contained in one observational unit. The amount of information is measured by the
(expected) Fisher information, so that the precision is chosen as n−1I(0pγ ) in the normal
prior

fKW (βγ | g, γ) = Npγ

(
βγ |0pγ , nI(0pγ )−1

)
. (8)

This proposal is close to ours in (6), except that the hyperparameter is fixed at g = n.
Note that Kass and Wasserman (1995) also required the nuisance parameter β0 to be
(null-)orthogonal to the parameter of interest βγ , which we ensure by centering the
covariates around zero. The unit information prior was used by Ntzoufras et al. (2003)
and Overstall and Forster (2010) in the GLM context.

Hansen and Yu (2003, p. 156) also use the expected Fisher information, but evaluate
it at the maximum likelihood (ML) estimate β̂γ to obtain a prior precision matrix:

fHY (βγ | g, γ) = Npγ

(
βγ |0pγ , gI(β̂γ)−1

)
. (9)

Hansen and Yu find the dependence of their prior on the data y “hard to accept”,
although it can be interpreted as an empirical Bayes approach. Also in this flavour, the
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authors maximize a cost-modified (approximate) likelihood of g in order to eliminate g.
Subsequent model selection is then based on this function value (“minimum description
length”).

Instead of using the expected Fisher information matrix I(βγ), Wang and George
(2007) use the observed Fisher information matrix J(βγ). While for canonical response
functions the equality I(βγ) = J(βγ) holds, in general J(βγ) is different and depends
on the observed response vector. Wang and George (2007) evaluate the observed Fisher
information at the original response y and the ML estimate β̂γ to obtain the correlation
structure of the normal distribution:

fWG(βγ | g, γ) = Npγ

(
βγ |0pγ , gJ(β̂γ)−1

)
. (10)

By comparison, our generalized g-prior (6) does not use the original data y, but only
the design matrix Xγ . Analogously to Hansen and Yu (2003), Wang and George (2007)
select model-specific values for g by maximizing f(y | g, γ), but they also consider fully
Bayesian inference for g with flat or truncated-gamma hyperpriors on 1/(g + 1).

Marin and Robert (2007, p. 101) avoid the use of a Fisher information matrix alto-
gether when they propose the “non-informative g-prior”

fMR(β0γ | g, γ) = Npγ+1

(
β0γ |0pγ+1, g(XT

0γX0γ)−1
)

(11)

for binary regression with probit and logit link functions, where β0γ = (β0,β
T
γ )T denotes

the vector of all coefficients with corresponding full design matrix X0γ = (1n,Xγ).
Thus, the intercept β0 is included in the g-prior. Note that also Gupta and Ibrahim
(2009), Hansen and Yu (2003) and Wang and George (2007) originally do not separate
the intercept from the other regression coefficients. When Xγ is not centered, the
intercept is then a priori correlated with the other coefficients. In addition, it is also
shrunk to its prior mean, not necessarily a desired feature in applications. Marin and
Robert (2007) are able to assign g an improper hyperprior, f(g) ∝ g−3/4, which can
be regarded as a degenerate inverse-gamma distribution with shape −1/4 and scale 0,
because the hyperparameter g is also included in the null model with intercept only.

3 Implementation

In Section 3.1 we propose an accurate numerical approximation of the marginal likeli-
hood under the generalized hyper-g prior. Given a specific model, we can sample from
the posterior using a tuning-free Metropolis-Hastings scheme described in Section 3.2.
In Section 3.3 we investigate the performance of the numerical and an MCMC marginal
likelihood approximation in the conjugate setup, where exact values are known.
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3.1 Marginal likelihood computation

Under the generalized hyper-g prior, the marginal likelihood (3) of the GLM γ is

f(y | γ) =
∫

Rpγ+1
f(y |β0,βγ , γ)

∫
R+

f(βγ | g, γ)f(g) dg dβ0dβγ

=
∫

R+

f(y | g, γ)f(g) dg, (12)

where

f(y | g, γ) =
∫

Rpγ+1
f(y |β0,βγ , γ)f(βγ | g, γ) dβ0dβγ (13)

is the likelihood of g. Note that both (12) and (13) are only defined up to a constant
which we have fixed at unity, as we use the improper prior f(β0) ∝ 1. In general, no
closed form expressions are available. The obvious exception is the special case of a
Gaussian likelihood, which was mentioned in Section 1 and will be referred to again in
Section 3.3. Therefore, in order to be able to efficiently explore a large model space
Γ, we need to develop a fast but accurate numerical approximation to the marginal
likelihood. This will be a two-step procedure: The likelihood of g in (13) is computed
by a Laplace approximation. Plugging this into (12), the hyperparameter g will be
integrated out with respect to its prior by numerical integration. Together, this is an
integrated Laplace approximation (ILA), which was proposed more generally by Rue
et al. (2009).

The Laplace approximation (Lindley 1980; Tierney and Kadane 1986) of (13) is

f(y | g, γ) ≈
f(y |β∗0γ , γ)f(β∗0γ | g, γ)

f̃(β∗0γ |y, g, γ)

= f(y |β∗0γ , γ)(2π)(p+1)/2
∣∣R∗0γ∣∣−1/2

× (2πgφc)−p/2
∣∣XT

γWXγ

∣∣1/2 exp
{
−1

2
(gφc)−1β∗Tγ X

T
γWXγβ

∗
γ

} (14)

when f̃(β0γ |y, g, γ) is the Gaussian approximation of the conditional coefficients poste-
rior with mean vector β∗0γ and precision matrix R∗0γ . Since the conditional coefficients
prior can be seen to have a normal kernel f(β0γ | g, γ) ∝ exp

{
− 1

2β
T
0γR0γβ0γ

}
with

(singular) precision
R0γ = diag

{
0, (gφc)−1XT

γWXγ

}
, (15)

the Bayesian iterative weighted least squares (IWLS) algorithm (West 1985; Gamerman
1997) can be used to compute the moments of the Gaussian approximation. Note that
this is different and potentially more accurate than the approach by Rue et al. (2009,
p. 327) who preserve the sparsity of the prior precision R0γ in the resulting posterior
precision R∗0γ . The accuracy of the Laplace approximation (14) can be even further
improved by including higher-order terms of the underlying Taylor expansion. For
canonical response functions, Raudenbush et al. (2000) derived a convenient correction
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factor corresponding to a sixth-order Laplace approximation. In the applications of
Sections 4 and 5, we have used this correction (see the Appendix for details), which
clearly improved the ILA while requiring only slightly more computation time.

The one-dimensional integration in (12) is performed on the log-scale over z = log(g)
using Gauss-Hermite quadrature. First, we find the (approximate) posterior mode z∗

and variance σ∗2 of z using its unnormalized (approximate) posterior density

f̃(z,y | γ) = f̃(y | z, γ)f(z). (16)

The mode z∗ is numerically determined by the optimize routine in R (R Development
Core Team 2010; Brent 1973). The variance σ∗2 can be computed as the negative inverse
second derivative of the log posterior at z∗ by numerical differentiation (routine dfridr
from Press et al. 2007, p. 231). Second, we apply the Gauss-Hermite quadrature (Naylor
and Smith 1982)

f(y | γ) ≈
N∑
j=1

mj f̃(zj ,y | γ), (17)

where the actual weights mj = ωj exp(t2j )
√

2σ∗ and nodes zj = z∗ +
√

2σ∗tj depend on
z∗, σ∗ as well as original weights ωj and nodes tj , j = 1, . . . , N . These can be obtained
from the Golub and Welsch (1969) algorithm, which is implemented in the R-function
gauss.quad (Smyth et al. 2010). N = 20 seems to be sufficient, given that this includes
nodes in a range of about seven standard deviations around z∗ (as then

√
2t20 ≈ 7.6).

Note that the Gauss-Hermite approximation in (17) is exact if f̃(z,y | γ) is the product
of N(z | z∗, σ∗2) and a polynomial of at most order 2N − 1.

3.2 Metropolis-Hastings sampler

Given a model γ ∈ Γ we would like to sample from the joint posterior of the model-
specific parameters θγ = (βT0γ , z)

T . To this end, we propose a tuning-free Metropolis-
Hastings (MH) sampling scheme with proposal kernel

q(θ′γ |θγ) = q(β′0γ | z′,β0γ)q(z′) (18)

for the proposal θ′γ given the current sample θγ . The independence proposal density
q(z) is constructed by first linearly interpolating pairs

(
zj , f̃(zj ,y | γ)

)
and second nor-

malizing this function to unity integral,
∫max zj

min zj
q(z) dz = 1. Note that many pairs are

already available from the optimization and integration of (16) in the marginal likeli-
hood computation, and finer approximations can be obtained by incorporating suitable
additional grid points zj . Thus, q(z) is close to the posterior density f(z |y, γ), suggest-
ing high acceptance rates of the sampler. Also, generating random variates from q(z)
using inverse sampling is straightforward as the corresponding cumulative distribution
function is piecewise quadratic.

For the coefficients, q(β′0γ | z′,β0γ) is a Gaussian proposal density: Starting from the
current vector β0γ and the proposed prior covariance factor g′ = exp(z′), a single step



D. Sabanés Bové and L. Held 395

of the Bayesian IWLS is made, resulting in the mean vector and the precision matrix
of the proposal (Gamerman 1997). In order to compute the acceptance probability of
the move from θγ to θ′γ ,

α(θ′γ |θγ) = 1 ∧
f(y |β′0γ , γ)f(θ′γ | γ)
f(y |β0γ , γ)f(θγ | γ)

·
q(θγ |θ′γ)
q(θ′γ |θγ)

, (19)

note that the prior contributions have the form f(θγ | γ) = f(βγ | g, γ)f(g)g, the last
factor g being due to the change of variable z = log(g) in the proposal parametrization.
For the reverse proposal kernel value q(θγ |θ′γ), another IWLS step starting from the
proposed vector β′0γ and the current factor g = exp(z) is necessary.

The MH sampler can also be used to compute an MCMC estimate of the marginal
likelihood f(y | γ), providing an independent check of the numerical estimate presented
in Section 3.1. We will use the method by Chib and Jeliazkov (2001, section 2.1), which
was competitive in a review by Han and Carlin (2001) and is still a benchmark for new
developments (see e. g. Nott et al. 2008). The estimate is based on the basic identity

f(y | γ) =
f(y |θ∗γ , γ)f(θ∗γ | γ)

f(θ∗γ |y, γ)
, (20)

which holds for any θ∗γ . Chib and Jeliazkov (2001) recommend to select θ∗γ close to the
mode of f(θγ |y, γ). Detailed balance of the Markov chain ensures that the unknown
posterior ordinate can be estimated by

f(θ∗γ |y, γ) ≈
∑B
j=1 α(θ∗γ |θ

(j)
γ )q(θ∗γ |θ

(j)
γ )∑B

k=1 α(θ(k)
γ |θ∗γ)

, (21)

where the θ(j)
γ are the posterior samples and the θ(k)

γ are iid draws from the proposal
distribution q(θγ |θ∗γ). Since each acceptance probability in (21) requires two additional
IWLS steps, 4B additional IWLS steps are required if B posterior samples are used.

3.3 Performance in the conjugate case

To investigate the performance of the proposed algorithms, we consider the special
case of normal linear regression with fixed error variance φ. Using the g-prior (4), the
conditional coefficients posterior is Gaussian,

f(β0γ |y, g, γ) = N (β0 | ȳ, φ/n) Npγ

(
βγ | g(g + 1)−1β̂γ , g(g + 1)−1φ(XT

γ Xγ)−1
)
,

(22)
where the ordinary least squares estimate β̂γ = (XT

γ Xγ)−1XT
γ y is shrunk by the factor

g/(g+1). Thus, the Laplace approximation (14) of the likelihood of g is exact and given
by

f(y | g, γ) = (g + 1)−pγ/2 exp
{

(g + 1)−1

[
−SSRγ

2φ

]}
· exp

{
−SSEγ

2φ

}
, (23)
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where SSEγ and SSRγ are the error and regression sums of squares, respectively.
From the form of (23) we see that an inverse-gamma hyperprior IG(a, b) on g + 1 will
be conjugate to this likelihood. Since g > 0 must be ensured, this distribution must
be truncated to (1,∞), yielding the incomplete inverse-gamma prior (Cui and George
2008, p. 891)

f(g) = M(a, b)(g + 1)−(a+1) exp{−b/(g + 1)} (24)

with normalising constant

M(a, b) =
ba∫ b

0
ta−1 exp(−t) dt

(25)

and corresponding marginal likelihood

f(y | γ) =
M(a, b)
M(aγ , bγ)

exp
{
−SSEγ

2φ

}
, (26)

where the updated parameters aγ = a + pγ/2 and bγ = SSRγ/(2φ) + b determine the
posterior of g in model γ.

For illustration, we consider the ozone data introduced by Breiman and Friedman
(1985) in the notation of Sabanés Bové and Held (2010), where n = 330. Deciding
whether to include each of the nine meteorological covariates z0 and z4, . . . , z11 in the
linear regression of the daily maximum ozone concentration y yields a model space Γ
of size 29 = 512. For all γ ∈ Γ, the ILA (17) and the MCMC estimate (20) of the
exact marginal likelihood value (26) were computed fixing the variance at φ = 19.75
(the estimate in the full ordinary linear model) and using the hyperprior parameters
a = 0.01, b = 0.01. Figure 1 shows that the errors of the ILA and the MCMC estimates
are very small here compared to the absolute true values.

For all models, the acceptance rates of the MH algorithm were above 97%. Figure 2
shows that even for the model with the lowest acceptance rate, the true posterior density
of z = log(g) is very close to its ILA estimate q(z). This explains the almost perfect
acceptance rates of the MH scheme.

4 Variable selection

We illustrate the methodology for non-normal data with the Pima Indians diabetes data
set (Frank and Asuncion 2010; Ripley 1996), which contains n = 532 complete records
on diabetes presence and m = 7 associated covariates described in Table 2. First, we
restrict ourselves to variable selection in the logistic regression model, yielding a model
space Γ of size 27 = 128. In Section 5, we will also consider power transformations of
the covariates.

Three different hyperprior distributions for the covariance factor g are compared for
a fully Bayesian analysis:

F1 f(g) = IG(g | 1/2, n/2), corresponding to the Zellner and Siow (1980) approach;
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(a) Errors of the ILA estimates.
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(b) Errors of the MCMC estimates. The verti-
cal bars represent 95% MCMC confidence intervals
(coverage is 95.1% here).

Figure 1: Errors of the ILA and the MCMC estimates (y-axes) compared to the exact
log marginal likelihood values (x-axes) for all 512 models. The MCMC estimates are
based on B = 4500 samples which were saved after burn-ins of length 1000 (every 2nd
iteration). Note that the log marginal likelihood values include the additional additive
term log

√
2πφ/n compared to (26).

Variable Description

y Signs of diabetes according to WHO criteria (Yes = 1, No = 0)
x1 Number of pregnancies
x2 Plasma glucose concentration in an oral glucose tolerance test [mg/dl]
x3 Diastolic blood pressure [mm Hg]
x4 Triceps skin fold thickness [mm]
x5 Body mass index (BMI) [kg/m2]
x6 Diabetes pedigree function
x7 Age [years]

Table 2: Description of the variables in the Pima Indians diabetes data set.
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Figure 2: True posterior density of z (solid line) compared with the ILA (dashed line)
and MCMC (histogram) estimates. Small ticks above the horizontal axis indicate where
nodes zj for the construction of the ILA estimate q(z) were located (cf. Section 3.2).

F2 f(g) = 1/n(1 + g/n)−2, corresponding to the hyper-g/n prior (Liang et al. 2008,
p. 416);

F3 f(g) = IG(g | 0.001, 0.001), which is a standard choice for variance parameters.

We also consider model-specific empirical Bayes estimation of g using the likelihood of
g in (13), abbreviating this approach as EB. Moreover, the standard criteria AIC and
BIC are computed for each model. We use the prior model probabilities

f(γ) =
1

m+ 1

(
m

pγ

)−1

(27)

for an appropriate multiplicity adjustment (George and McCulloch 1993; Scott and
Berger 2010). Posterior model probabilities then follow from (2), where for EB the
maximized likelihood of g in (13) and for BIC the approximation exp(−1/2 BIC) (e. g.
Kass and Raftery 1995) is used instead of f(y | γ). Similar model weights proportional
to exp(−1/2 AIC) can also be calculated for AIC as proposed by Buckland et al. (1997).

In Table 3, the resulting posterior probabilities and AIC weights for variable inclusion
are shown. All methods clearly select x1, x2, x5 and x6. The corresponding model is
the maximum a posteriori (MAP) model in F1, F2, F3 and BIC, while for EB and
AIC also x7 is included in the top model. This covariate would be included as well in
the median probability model (Barbieri and Berger 2004) for all methods except BIC.
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F1 F2 F3 EB AIC BIC

x1 0.961 0.965 0.968 0.970 0.972 0.946
x2 1.000 1.000 1.000 1.000 1.000 1.000
x3 0.252 0.309 0.353 0.384 0.309 0.100
x4 0.248 0.303 0.346 0.376 0.296 0.103
x5 0.998 0.998 0.998 0.998 0.998 0.997
x6 0.994 0.995 0.996 0.996 0.998 0.987
x7 0.528 0.586 0.629 0.659 0.670 0.334

Table 3: Posterior probabilities and AIC weights for variable inclusion in the Pima
Indians diabetes data.

For x3 and x4, the evidence for inclusion is consistently weak. For comparison, Holmes
and Held (2006) used vague iid normal priors for all coefficients and a flat model prior
f(γ) = 2−7, obtaining clear evidence for inclusion of the MAP covariates.

It is interesting that the inclusion probabilities under F1, F2 and F3 are qualitatively
similar. The reason could be that the sample size is relatively large in this example,
reducing the importance of the hyperprior specification for g. For EB, most inclusion
probabilities are even higher than for F3. The AIC weights are more similar to F2
probabilities (except for x7). The BIC based probabilities are mostly lower, and close
to the (not shown) probabilities under F1 when a flat model prior is used.

While the posterior inclusion probabilities are visibly different for the six approaches,
the model-averaged fits to the data are very close, as shown in Figure 3a. In parallel
to sampling the parameters leading to these fitted probabilities for F1, F2, F3 and EB,
we also estimated the marginal likelihood by MCMC. The resulting MCMC estimates
were close to the ILA estimates, comparison plots looking like Figure 3b for F3. Note
that the coverage of the MCMC confidence intervals is lower than in Figure 1b, because
the ILA approximations are not exact.

5 Fractional polynomials

Fractional polynomials (FPs) are used for systematic power transformations of the co-
variates x1, . . . , xm (Royston and Altman 1994). They widen the class of ordinary poly-
nomials insofar as the powers are taken from the fixed set {−2,−1,−1/2, 0, 1/2, 1, 2, 3},
which also contains square roots, reciprocals and the logarithm by the Box and Tidwell
(1962) convention x0 ≡ log(x). For each covariate xk, at most two powers are chosen
and collected in the tuple pk, while the corresponding coefficients are collected in the
vector αk, determining the FP transform xpk

k αk. The special case pk1 = pk2 is handled
by multiplication with the logarithm, e. g. x(2,2)

k =
(
x2
k, x

2
k log(xk)

)
. Variable selection

is embedded in this framework, because xk is not included in the model if pk = ∅.
Each model is thus uniquely identified by γ = (p1, . . . ,pm), the covariate vectors are
xγi = (xp1

1i , . . . , x
pm
mi )T and the vector of regression coefficients is βγ = (αT1 , . . . ,α

T
m)T .
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(b) Errors of the ILA estimates with respect to the
MCMC estimates of the log marginal likelihood un-
der F3, for all 128 models. The MCMC estimates
are based on (at least) B = 5000 samples which
were saved after burn-ins of length 1000 (every 2nd
iteration). The vertical bars represent 95% MCMC
confidence intervals (coverage is 72.7% here).

Figure 3: Results in the Pima Indians variable selection example.
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Sabanés Bové and Held (2010) implemented Bayesian model selection for normal linear
FP models, and more details on FPs can be found in references therein.

The model space Γ comprises 45m models, and thus the use of an automatic prior
for the parameter βγ , conditional on the model γ, is very attractive. The generalized
g-prior (6) is automatic and only depends on the global hyperparameter g. We will
again compare the three fully Bayesian approaches (F1, F2, F3) with the empirical
Bayes procedure (EB) which were introduced in Section 4 and avoid manual specifica-
tion of g. The prior model probabilities f(γ) =

∏m
k=1 f(pk) depend on the prior FP

transformation probabilities

f(pk) =
1
3

(
7 + |pk|
|pk|

)−1

(28)

which have the same form as (27): each degree |pk| ∈ {0, 1, 2} is equally probable,
and all tuples pk of the same degree are equally probable. This implements Jeffreys’s
“simplicity postulate” that simpler models must have greater prior probability than
more complex models (Jeffreys 1961, section 1.6), and indeed the null model has the
largest prior probability 3−m.

For the Pima Indinas diabetes data the model space Γ has size 457 ≈ 3.7 · 1011,
rendering an exhaustive evaluation of all models γ ∈ Γ infeasible. Therefore we use an
MCMC model composition (Madigan and York 1995) approach: Starting from the null
model, we move through Γ by successive slight modifications of the configuration γ. The
modifications are accepted with MH acceptance probabilities, which ensures that models
with higher posterior probability are more likely to be visited; see Sabanés Bové and
Held (2010) for details. For all four approaches (F1, F2, F3 and EB), we ran this model
sampler for one million iterations. To get an idea of the computational complexity, note
that on average 10.8 (F2) and 22.1 (EB) models could be evaluated per second (on
2.8 GHz CPUs). All computations have been implemented in an R-package including an
efficient C++ core for the MCMC parts, which is available from the first author.

For all four approaches Table 4 shows clear evidence for inclusion of the covariates
x2, x5, x6 and x7 with posterior inclusion probabilities over 99%, while the other three
covariates have inclusion probabilities below 15%. In comparison with the variable
inclusion results for the untransformed covariates in Table 3, it is interesting that x1 is
no longer important when FP transformations are considered, while x7 is much more
important.

In addition to examining the marginal inclusion probabilities, it is necessary to look
at the transformations of the covariates. Since all four approaches produce similar vari-
able inclusion probabilities and also share the MAP model xi = (x2i, x

−2
5i , x

−1/2
6i , x−2

7i )T ,
we only look at the F1 approach (the three others give very similar results). In order to
account for model uncertainty, it is best to look at model-averaged estimates of variable
transformations, conditional on variable inclusion. To this end we varied the trans-
formation of one of the covariates x2, x5, x6, x7 while fixing the others at their MAP
configuration. Averaging over the 44 models each results in the effect estimates shown
in Figure 4. Plasma glucose concentration (x2) seems to have a strong positive linear
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F1 F2 F3 EB

x1 0.119 0.125 0.135 0.144
x2 1.000 1.000 1.000 1.000
x3 0.050 0.052 0.054 0.054
x4 0.032 0.033 0.033 0.035
x5 0.999 0.999 0.999 0.999
x6 0.992 0.993 0.993 0.994
x7 0.999 0.999 0.999 0.999

Table 4: Posterior probabilities for variable inclusion in the Pima Indians diabetes data
when FP transformations are considered. The probabilities are based on 671 525 (F1),
719 929 (F2), 758 616 (F3), and 777 531 (EB) visited models.

association with diabetes log-odds, while the estimated positive effect of BMI (x5) is
levelling off non-linearly for (rare) high values and is weaker overall. Even smaller is the
estimated positive effect of diabetes pedigree function (x6) with the largest increase in
diabetes risk between x6 = 0.1 and x6 = 0.5. The estimated association of age (x7) is
clearly non-linear, with higher diabetes risk for middle-aged participants. These results
are qualitatively similar to those obtained by Cottet et al. (2008, p. 665) for a larger
subset of the original Pima Indians diabetes data set.

The marginal posterior distributions for the covariance factor g differ slightly be-
tween the three hyperprior choices F1, F2 and F3. Averaging over the best 1000 models
in terms of posterior probability which have been visited by the model sampler, we get
the histograms for z = log(g) in Figure 5. The corresponding posterior means E(g |y)
decrease from 282.5 for F1, 219.2 for F2 to 179.1 for F3, and this trend is also visible
in the histograms. The results suggest a stronger prior shrinkage of the regression coef-
ficients than that proposed by the unit information prior’s fixed value g = n = 532 (cf.
Section 2.2), as P(g < n |y) ranges from 90.9% for F1 to 95.7% for F3.

6 Discussion

In this article, we presented a generalization of the g-prior to GLMs, which can be
interpreted analogously to the classical g-prior for normal linear models. In our imple-
mentation, the shrinkage-controlling hyperparameter g can be assigned any hyperprior,
thus giving rise to a large class of generalized hyper-g priors. For mixtures of classi-
cal g-priors, Liang et al. (2008) investigate theoretical model selection and prediction
consistency properties. It would be desirable to also investigate such properties for our
generalized hyper-g prior class. However, as fewer closed form expressions are available,
derivation of comparable proofs will be more difficult in the GLM family.

Another important area of future research is the thorough comparison of the general-
ized hyper-g prior with the other approaches in the literature summarized in Section 2.2.
For example, exhaustive simulation studies could shed light on different performances of
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(a) Covariate x2 (plasma glucose concentration).
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(b) Covariate x5 (BMI).
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(c) Covariate x6 (diabetes pedigree function).
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(d) Covariate x7 (age).

Figure 4: Model-averaged FP transformations of selected Pima Indians covariates under
hyperprior F1. Means (solid lines), pointwise (dashed lines) as well as simultaneous
(dotted lines) 95% credible intervals are given. Small ticks above the x-axes indicate
data locations.
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Figure 5: Comparison of marginal posteriors for z = log(g) under hyperpriors F1, F2
and F3. The histograms are based on the model average over the respective 1000 models
with highest posterior probability visited by the model samplers.

the priors in variable selection. Perhaps also theoretical results can be derived to explain
the different properties of the approaches. An advantage of our approach is that we al-
low arbitrary hyperpriors for g while still providing a fast and accurate deterministic
approximation to the marginal likelihood.

Bayesian model selection for FPs in GLMs was in fact the motivating application
for this work. With huge model spaces to explore, the accurate numerical marginal
likelihood approximation is vital for this and similar typical applications of the general-
ized hyper-g prior. Alternative MCMC estimates of the marginal likelihood were used
to demonstrate the very good accuracy of the ILA estimates. Yet, MCMC would not
be suited for replacing the deterministic ILA approach in the stochastic model search,
because the computation is slower by orders of magnitude and would require careful
automatic monitoring of convergence. Of course, the deterministic marginal likelihood
approximation could be used for any type of stochastic model search, such as those
recently proposed by Hans et al. (2007) and Dobra (2009).

Finally, we note that the classical g-prior has recently been extended in other di-
rections as well. In the context of supervised machine learning, Zhang et al. (2009)
replace XT

γ Xγ by a (possibly singular) kernel matrix Kγ and prove consistency proper-
ties for the normal linear model. Maruyama and George (2010) remove the restriction
of pγ ≤ n − 1 for normal linear models by working with the singular value decomposi-
tion (SVD) of the design matrix Xγ . A similar extension is the “generalized singular
g-prior” defined by West (2003) in the factor regression context. Along these lines,
our generalized hyper-g prior could also be extended to the pγ > n case via the SVD
W 1/2Xγ = UγDγVγ . We could just use the latent parameter δγ = Vγβγ of reduced
dimension kγ = n− 1 instead of βγ = V T

γ δγ . Defining the corresponding design matrix
as Zγ = W−1/2UγDγ , we have Xγβγ = Zγδγ and retain ZTγ 1n = 0kγ . Assigning
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the prior distribution δγ ∼ Nkγ (0kγ , gφcD
−2
γ ) then induces a normal prior on βγ with

mean zero and singular precision (gφc)−1XT
γWXγ , and thus directly generalizes (6).

Investigation of this approach for GLMs with many covariates is another possibility for
future research.

Appendix

Proof of prior mode zero

Consider the density function from (5). Dropping for brevity the notational dependency
on the model γ, it can be rewritten as

f(β | g,y0) ∝ exp
{

1
gφ
wT
(
h(0)θ − b(θ)

)}
, (29)

where θ = (θ1, . . . , θn)T and b(θ) =
(
b(θ1), . . . , b(θn)

)T . To prove that the mode is at
β = 0p, note that this is a solution of the score equation

∂

∂ β
log f(β | g,y0) =

1
gφ

(
h(0)

∂ θ

∂ βT
− ∂ b(θ)

∂ θT
∂ θ

∂ βT

)T
w = 0p,

because β = 0p implies that b′(θi) ≡ b′(θ) = µ = h(0) and hence

∂ b(θ)
∂ θT

= diag
(
b′(θ1), . . . , b′(θn)

)
= h(0)In.

Higher-order Laplace approximation

Denote the standard Laplace approximation (14) by f̃LA(y | g, γ). Then Raudenbush
et al. (2000, p. 148) show that

f(y | g, γ) ≈ f̃LA(y | g, γ)

[
1− 1

8

n∑
i=1

d
(3)
i b2i −

1
48

n∑
i=1

d
(6)
i b3i +

5
24
kT (R∗0γ)−1k

]
(30)

is a sixth-order Laplace approximation when the canonical response function is used.
Here d

(m)
i = dmh/dηm(η∗i ) evaluated at η∗i = xT0γiβ

∗
0γ , bi = xT0γi(R

∗
0γ)−1x0γi and

k =
∑n
i=1 d

(2)
i bix0γi. Note that the quadratic forms can be efficiently computed using

the Cholesky decomposition R∗0γ = LLT , e. g. kT (R∗0γ)−1k = ‖v‖2 where Lv = k.
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