
Hyper-graph Matching via Reweighted Random Walks

Jungmin Lee Minsu Cho Kyoung Mu Lee

Department of EECS, ASRI, Seoul National University, 151-742, Seoul, Korea

jmlee.vision@gmail.com chominsu@gmail.com kyoungmu@snu.ac.kr

http://cv.snu.ac.kr

Abstract

Establishing correspondences between two feature sets

is a fundamental issue in computer vision, pattern recogni-

tion, and machine learning. This problem can be well for-

mulated as graph matching in which nodes represent feature

points while edges describe pairwise relations between fea-

ture points. Recently, several researches have tried to em-

bed higher-order relations of feature points by hyper-graph

matching formulations. In this paper, we generalize the pre-

vious hyper-graph matching formulations to cover relations

of features in arbitrary orders, and propose a novel state-of-

the-art algorithm by reinterpreting the random walk con-

cept on the hyper-graph in a probabilistic manner. Adopt-

ing personalized jumps with a reweighting scheme, the al-

gorithm effectively reflects the one-to-one matching con-

straints during the random walk process. Comparative ex-

periments on synthetic data and real images show that the

proposed method clearly outperforms existing algorithms

especially in the presence of noise and outliers.

1. Introduction

In computer vision, pattern recognition, and machine

learning research, establishing correspondences between

two feature sets is a fundamental and important issue [13,

14, 11, 3]. Given two sets of features extracted from images,

the task is to find each feature’s corresponding feature in the

other set while preserving the relations with other features.

This task is widely used in various vision problems such as

scene registration, object recognition, feature tracking, and

two- or three-dimensional shape matching. It is challeng-

ing to find perfect correspondences due to various reasons:

imperfect feature descriptor, deformation in feature location

due to viewpoint change or class variation, and outlier prob-

lem. The correspondence problem is well formulated as

graph matching. Each graph is constructed with nodes rep-

resenting features, and edges describing relations between

two features. Correspondences are established by determin-

ing the mapping between two graphs, which preserves as

much attributes as possible. Since the graph matching task

is proven to be NP-hard [11], we need to find an approxi-

mated solution.

Conventional graph matching approaches mainly fo-

cus [7, 19, 12, 11, 5, 4, 10] on pairwise similarity be-

tween two correspondences such as distances among fea-

ture points. Pairwise relations, however, are not enough

to incorporate the information about the entire geometrical

structure of features. To overcome the limitation of pair-

wise similarity, several researchers [20, 6, 2] have tried to

embed higher-order information into their problem formu-

lations. They define the correspondence task as the hyper-

graph matching problem and use hyper-edges in the graph

to represent higher-order relations of feature points. How-

ever, the existing methods are not able to achieve a robust

solution since the mapping constraints (such as one-to-one)

are not effectively incorporated but mainly considered at

their final discretization steps.

In this paper, we generalize the previous hyper-graph

matching formulations to cover relations of features in arbi-

trary orders, and propose a novel state-of-the-art algorithm

by reinterpreting the random walk concept on the hyper-

graph in a probabilistic manner. In our formulation, rela-

tions in different orders are embedded altogether in a recur-

sive manner, yielding a single higher-order similarity tensor.

The hyper-graph matching problem is solved by ranking on

an association hyper-graph via random walks. In particular,

adopting personalized jumps with a reweighting scheme [4]

into the random walk process, the algorithm effectively re-

flects matching constraints to produce a robust performance

to large deformation and outlier noise. In experimental eval-

uations on both synthetic and real data, the performance is

quantitatively evaluated and compared to those of existing

hyper-graph matching methods [20, 6]. The proposed algo-

rithm achieves a state-of-the-art performance showing ro-

bustness to both deformation and outlier noises.

1.1. Related Works

Since the graph matching problem is known as NP-hard,

various approaches have tried to solve the problems by re-

1633

laxed approximations [7, 19, 12, 11, 5, 4, 10]. Gold and

Rangarajan proposed the Graduated Assignment (GA) [7],

Wyk and Wyk introduced the Successive Projection Graph

Matching (SPGM) [19], and Leordeanu et al. designed the

Integer Projected Fixed Point (IPFP) [12] method. GA,

SPGM, and IPFP are iterative methods while the mapping

constraints are considered during their optimization pro-

cess. Leordeanu and Hebert presented the Spectral Match-

ing (SM) [11] and Cour et al. proposed the Spectral Match-

ing with Affine Constraint (SMAC) [5]. SM and SMAC uti-

lize the spectral property to calculate rank-1 approximation

of the affinity matrix. Lee et al. [10] solved the graph match-

ing problem by stochastic sampling, which simulates the

mapping solution space. Cho et al. [4] provided a novel ran-

dom walk view for graph matching and incorporated map-

ping constraints by a reweighting jump scheme. All these

approaches [7, 19, 12, 11, 5, 4, 10] are restricted to the nor-

mal graph embedding unary and pairwise relations.

On the other hand, recent hyper-graph matching meth-

ods [20, 6, 2] incorporate higher-order similarity measures

to achieve more accurate results. Zass and Shashua pro-

posed Hyper-Graph Matching (HGM) [20], which intro-

duces a novel view that the matching problem and its cor-

responding solution are related by the Kronecker product.

Duchenne et al. proposed Tensor Matching (TM) [6], which

can be interpreted as a higher-order extension of SM. It

takes rank-1 approximation of the affinity tensor as a so-

lution by using higher-order tensor power iteration. Cher-

tok and Keller [2] also focused on rank-1 approximation of

the affinity tensor. They calculated rank-1 vector by tak-

ing the leading left singular vector of the unfolded affin-

ity tensor. However, all these existing higher-order ap-

proaches [20, 6, 2] are unable to effectively incorporate

the matching constraints during their rank-1 approximation

stage. The results of [4] show that incorporating the map-

ping constraints in the approximation has an important role

in graph matching. Reinterpreting the random walk ap-

proach of [4] in the domain of hyper-graphs, the proposed

algorithm effectively reflects the one-to-one matching con-

straints during random walks for hyper-graph matching.

2. Generalized Hyper-graph Matching

A hyper-graph G = (V , E ,A) consists of nodes v ∈ V ,

hyper-edges e ∈ E , and attributes a ∈ A associated with

the hyper-edges. As illustrated in Fig. 1, a hyper-edge e
encloses a subset of nodes with size δ(e) from V , where

δ(e) denotes the order of each hyper-edge. The goal of the

hyper-graph matching problem is to establish mapping be-

tween nodes of two hyper-graphs GP = (VP , EP ,AP) and

GQ = (VQ, EQ,AQ).
Our generalized formulation covers matching of hyper-

graphs having hyper-edges of any order δ(e). Suppose a set

of all possible node correspondences C = VP ×VQ, and k-

Figure 1. An example of hyper-graph with four nodes

{v1, · · · , v4} and five edges {e1, · · · , e5} in circles and rect-

angles, respectively. Orders of edges might vary from edge to

edge. The three edges that connect two nodes are e2(v1, v3),
e4(v2, v4), and e5(v3, v4). Two hyper-edges connect three nodes,

e1(v1, v2, v4) and e3(v1, v3, v4), respectively.

tuples cw1
= (vPp1

, vQq1), · · · , cwk
= (vPpk

, vQqk) ∈ C among

them. For k-th order hyper-graph matching, the similarities

of the k-tuples are measured by comparing attributes of two

k-th order hyper-edges ePp1,··· ,pk
and eQq1,··· ,qk , which mean

the hyper-edges connecting vPp1
, · · · , vPpk

and vQq1 , · · · , v
Q
qk

,

respectively. Denoting the k-th order similarity function by

Ωk(·, ·), the k-th order similarity of the k-tuple is measured

by Ωk(a
P
p1,··· ,pk

,aQq1,··· ,qk). Generalizing this, we also con-

sider other types of lower-order hyper-edges as well as the

k-th order hyper-edges and formulate them into the k-th or-

der tensor form in a recursive manner as follows:

H
(k)
w1,··· ,wk

= Ωk(a
P
p1,··· ,pk

,aQq1,··· ,qk)

+λ(k−1)
k

∑

l=1

H
(k−1)
{w1,··· ,wk}\wl

,

H(1)
wi

= Ω1(a
P
pi
,aQqi), (1)

where λ(k) represents the weighting factor of k-th order

similarity value and the superscript on H denotes the di-

mension of a tensor. Note that subscripts are used to repre-

sent element indices in vectors, matrices, and tensors. Here,

we define overall order δ which is the maximum order value

among all hyper-edges:

δ = max
e∈{EP∪EQ}

δ(e). (2)

The overall order δ implies that we can measure similarities

up to the order of δ. Thus, the resulting similarity tensor

H(δ) becomes a single high-order tensor, which contains

similarity information of all the orders. In the rest of the

paper, we abbreviate H(δ) as H.

The solution of hyper-graph matching is determined as a

subset of candidate correspondences C and efficiently repre-

sented using a binary assignment matrix X ∈ {0, 1}
nP×nQ

,

1634

Figure 2. An example of an association hyper-graph. There are

two and three nodes in the graph GP and GQ, respectively. There

are six possible correspondences between two graphs (left). An as-

sociation hyper-graph consists of six nodes, which represent can-

didate correspondences. There are five hyper-edges which connect

some of candidate correspondences. For example, the hyper-edge

weight e1 is defined by the similarity of v11, v12, and v21 (right).

where nP and nQ denote the numbers of nodes in GP and

GQ, respectively. If vPp ∈ VP matches to vQq ∈ VQ,

Xp,q = 1, otherwise Xp,q = 0. In graph matching prob-

lems, it is natural to impose two-way constraints (i.e., one-

to-one constraints) that make X a permutation matrix:

X1nQ×1 ≤ 1nP×1, XT1nP×1 ≤ 1nQ×1, (3)

where 1n×1 denotes an all-ones vector with size n and the

inequalities hold for every element. For a convenient repre-

sentation, the vectorized version x of the matrix X is used.

The hyper-graph matching score is defined for an assign-

ment x as follows:

S(x) =
∑

w1,··· ,wδ

Hw1,··· ,wδ
xw1

· · ·xwδ
. (4)

The resulting score S(x) is the summation of similarity

values associated with all δ-tuples of correspondences in a

mapping x. Since H itself also contains similarity values

of all the lower-orders, S(x) amounts to the summation of

all similarity values in all orders. Using the tensor prod-

uct [16], it is simply represented by

S(x) = H⊗1 x · · · ⊗δ x. (5)

Then, the goal of the hyper-graph matching problem

becomes finding the assignment vector x∗ (or assignment

matrix X∗), which maximizes the matching score function

S(x) under the constraints of Eq.(3);

x∗ = argmax
x

S(x). (6)

3. Proposed Method

This section interprets the hyper-graph matching prob-

lem based on random walks, and explains our algorithm in

the framework.

Figure 3. Description of the random walks along hyper-edges.

A random walker in the node v2 travels along the hyper-edge

e1 with the probability H1,2,3/(H1,2,3 +H2,4,5), or e2 with

H2,4,5/(H1,2,3 +H2,4,5). Each hyper-edge covers two other

nodes except the node v2 and the random walker randomly

chooses one of the two nodes. For example, if we assume that

H2,4,5 is greater than H1,2,3, the random walker has higher

chance to travel along the hyper-edge e2 and to select v4 or v5.

3.1. Association Hypergraph

To solve the hyper-graph matching problem in a random

walk view, it is necessary to define an association graph [4].

As illustrated in Fig. 2, we construct an association hyper-

graph GW = (VW , EW ,AW) by considering each candi-

date correspondence cw = (vPp , v
Q
q) as a node vw ∈ VW .

Here, a random walk from a node vw1
to another node

vw2
on this graph GW implies a walk from a correspon-

dence cw1
to another correspondence cw2

between GP and

GQ. In the basis hyper-graphs GP and GQ, two hyper-

edges ePp1,··· ,pδ
and eQq1,··· ,qδ are derived from δ-tuple of

correspondences cw1
= (vPp1

, vQq1), · · · , cwδ
= (vPpδ

, vQqδ).
Hence, a hyper-edge ew1,··· ,wδ

in the association hyper-

graph GW embeds the similarity value of the δ-tuple, which

is defined by Eq. (1) and assigned as attribute weights.

The construction of GW allows us to solve the hyper-graph

matching problem by ranking the nodes v ∈ VW in GW .

The higher score a node in GW has, the better correspon-

dence between GP and GQ it represents.

3.2. Random Walks on Hypergraph

In the random walk [17] framework on a normal graph

(i.e., δ = 2), the random walker on a node vi travels to an-

other node vj with the probability proportional to the edge

weight of ei,j , which corresponds to Hi,j (H becomes a

matrix) in the case of our formulation. Classical random

walks make the transition matrix P by normalizing each

row of the H: P = D−1H, where Dii is i-th row sum

of H. We generalize this idea for higher-order cases (i.e.,

δ > 2) [21]. In a hyper-graph, two steps are required to

move the random walker from one node to another one as

illustrated in Fig. 3. First, the random walker on a node

moves along one of its connected hyper-edges with a proba-

bility proportional to the weight of that hyper-edge. Second,

the random walker uniformly selects another node from

1635

Figure 4. Description of the absorbing node. The absorbing node

soaks weights from every node. For example, it soaks dmax − d2
of weight from the node v2. As a result, a random walker in

the node v2 moves to the absorbing node with the probability

1 − d2/dmax, or travels along hyper-edges (e1 or e2) with the

probability d2/dmax.

chosen hyper-edge’s nodes and moves to that node. Addi-

tionally, we may assume that H is super-symmetric so that

H is invariant under any permutation of {cw1
, · · · , cwδ

}. It

is compatible with the fact that the similarity of the δ cor-

respondence tuple is independent of their sequences. Thus,

the transition tensor and the updating rule for the hyper-

graph random walks can be described as follows:

Pw1,··· ,wδ
= Hw1,··· ,wδ

/(H⊗2 1 · · · ⊗δ 1)w1
, (7)

x(t+1) = P⊗2 x
(t) · · · ⊗δ x

(t), (8)

where 1 is all one vector and x(t) is distribution of x at

t-th iteration. Note that the division in Eq. (7) is element-

wise, and (H⊗2 1 · · · ⊗δ 1)w1
corresponds to the sum of

all hyper-edge weights for node vw1
. The resulting tensor

P is stochastic in the probabilistic sense.

In the association hyper-graph, every node represent a

candidate correspondence. There are not only true corre-

spondences (inliers) but also false ones (outliers). Every

node in the graph has one vote (outgoing probabilities are

summed to one). When using the standard normalization of

Eq. (7) in our matching problem, the probabilities relevant

to outlier nodes are likely to be scaled up since the outlier

nodes usually have small weights in the association hyper-

graph.

3.3. Affinitypreserving Random Walks

To address this issue by extending the approach of [4],

an absorbing node is added to the association hyper-graph

as shown in Fig. 4. The absorbing node is designed to soak

dmax−dw of weight from the node vw, where dw represents

the degree (sum of the weight values associated with a cer-

tain node) of the node vw and dmax represents the maximum

value among dw which are defined as follows:

dw =
∑

w2,··· ,wδ

Hw,w2,···wδ
= (H⊗2 1 · · · ⊗δ 1)w, (9)

Algorithm 1 Reweighted Random Walks Hyper-graph

Matching

1: Given similarity tensor H, reweight α, and inflation β
2: Initialize the mapping matrix X uniformly

3: dmax = maxw
∑

w2,··· ,wδ
Hw,w2··· ,wδ

4: Derive the transition tensor P = H/dmax

5: repeat

6: (Affinity-preserving random walking)

7: x = P⊗2 x · · · ⊗δ x

8: (Reweighting with the two-way constraints)

9: y = exp(βx/maxx): element-wise exponential

10: repeat

11: Normalize across rows:

12: Yp,q = Yp,q/
∑nQ

q=1 Yp,q

13: Normalize across columns:

14: Yp,q = Yp,q/
∑nP

p=1 Yp,q

15: until Y converges

16: y = y/‖y‖1
17: (Random walking with reweighted jumps)

18: x = αx+ (1− α)y
19: x = x/‖x‖1
20: until x converges

21: Discretize X by the matching constraints

dmax = max
w

dw, (10)

where subscript (·)k represents k-th element in a vector.

Adding the absorbing node enables the random walks to

transit with probability proportional to the original weight

value, that is the affinity-preserving property [4]. Since the

probability of the random walker staying in the absorbing

node is not our concerns in the matching problem, we can

simply rewrite Eq. (7) as follows:

P = H/dmax. (11)

3.4. Reweighting Jumps

While we now have the affinity-preserving random walk

framework on the hyper-graph, the one-to-one mapping

constraints in Eq. (3) are not considered during the random

walk process. To impose the matching constraints on the

random walks, we employ the personalized PageRank ap-

proach [9]:

x(t+1) = αP⊗2 x
(t) · · · ⊗δ x

(t) + (1− α)r, (12)

where, r is the personalized vector and α means a bias be-

tween random walking and personalized jumps. It means

that the random walker travels along with its hyper-edges

with a probability α, or jumps according to the probabil-

ity distribution r with a probability 1 − α. We impose

1636

Figure 5. An example of calculating higher-order similarity ten-

sor. Three candidate correspondences form two triangles. Higher-

order similarity tensor can be calculated by comparing correspond-

ing angles. See Eq. 14.

the one-to-one constraints on the random walks using the

reweighting jump r. Adopting a reweighting function f(·),
the reweighted random walks is formulated by

x(t+1) = αP⊗2 x
(t) · · · ⊗δ x

(t)

+(1− α)f(P⊗2 x
(t) · · · ⊗δ x

(t)).
(13)

Here, the reweighting function f(·) guides the current solu-

tion to move toward a solution that satisfies the mapping

constraints of Eq. (3). We define f(·) as two steps fol-

lowing the approach of [4]; the inflation and the Sinkhorn

bistochastic normalization [18]. The inflation step makes

nodes with a high probability become higher, and makes

nodes with a small probability become smaller. The bis-

tochastic normalization step makes the current state dis-

tribution become more likely to be a permutation matrix,

which satisfies the one-to-one constraints. The entire pro-

cedure of proposed the affinity-preserving reweighted ran-

dom walks method on the hyper-graph is described in Algo-

rithm 1. The final step makes the converged distribution into

a binary permutation matrix, which can be done by any dis-

cretization method. The Hungarian [15] method is known

to be optimal for this linear assignment problem.

4. Experiments

In this section, we evaluate the performances of several

existing hyper-graph matching approaches by conducting

experiments on both synthetic point-set data and real im-

age data. For HGM [20] and TM [6] methods, we use

the authors’ MATLAB codes. We termed ours RRWHM,

which is the abbreviation of Reweighted Random Walks

Hyper-graph Matching. Our RRWHM is also implemented

in MATLAB, and the parameters, α and β, are empirically

tuned as 0.2 and 30, respectively. Each quantitative result in

our synthetic experiments is acquired from averages of 100

random trials.

4.1. Synthetic Pointsset Matching

In the point-set matching test, deformation noise and out-

liers are added to simulate a real matching problem. First,

we randomly generate nin inlier points using the normal dis-

tribution N(0, 1) in 2D domain P , which become nodes in

the graph GP . To generate points in the second domain Q,

the Gaussian deformation noise N(0, σ2) is independently

added to the nin points. Outlier noise is simulated using ad-

ditional nout random Gaussian points (i.e., N(0, 1)) to each

domain.

In the synthetic point-set matching experiment, it is im-

possible to directly compare two points by the unary sim-

ilarity (δ = 1) since there is no distinctive descriptor for

a single point. For pairwise cases (δ = 2), we can com-

pare distances of two point sets to compute the pairwise

similarity values. However, this measure is very sensitive

to the scale change (i.e., invariant up to translation and ro-

tation). To achieve scale invariance, we exploit triplets of

correspondences (δ = 3) as shown in Fig. 5, where the sine

values of three angles in each triangle are compared each

other [6].

Hw1,w2,w3
= exp

[

−
1

σs

3
∑

k=1

| sin(θPwk
)− sin(θQwk

)|

]

,

(14)

where θPwk
and θQwk

denote angles of nodes related to the

correspondence wk in the domain P and Q, respectively. In

the entire experiment, we empirically set σs = 0.5 for the

best performance.

When constructing the higher-order similarity tensor, the

storage size of the tensor should be considered. Suppose we

have m by m point-matching problem, then there will be

m2 possible candidate correspondences. For the δ = 3 case,

the size of the resulting full-affinity tensor will be
(

m2

3

)

, an

order of O(m6), which demands a huge amount of mem-

ory. Thus, in this work, to make the higher-order similarity

tensor sparse, we sample n = nin + nout triangles per point

and find n2 nearest neighbors using the approximate nearest

neighbor searching algorithm [1, 6].

The experimental results are plotted in Figs. 6 and 7.

To compare the robustness of the higher-order feature, we

also evaluate the performance of the state-of-the-art pair-

wise graph matching algorithm [4] denoted as 2nd Order.

In the deformation test, we vary the deformation noise σ
from 0 to 0.2 with the interval 0.025 while nin is fixed to

20, 30, and 40. In the outlier noise test, the number of out-

liers nout varies from 0 to 20 with the interval 2, while σ is

set to 0, 0.1, and 0.2.

The performances of each method are measured in both

accuracy and scores. The accuracy represents the ratio be-

tween the number of correctly selected correspondences and

that of the inlier points nin. The matching score is defined

by S(X) in Eq. (4). In most experiments, the proposed

1637

(a) Accuracy with 20, 30, and 40 inlier points (left from right).

(b) Matching score with 20, 30, and 40 inlier points (left from right).

Figure 6. Performance according to the deformation change. The top row shows accuracy and the bottom row shows matching score.

method outperforms the others in the sense of both the ac-

curacy and the matching score. HGM does not gain a good

performance due to the information loss at its marginaliza-

tion step, and TM does not deal with the presence of out-

liers or large amount of deformation noise in computing the

principal eigenvector of the affinity tensor H. To the con-

trary, RRWHM clearly outperforms them since its affinity-

preserving property and reweighting scheme enable to avoid

adverse effects from deformation and outliers. Without de-

formation noise, the second-order method of [4] performs

best in accuracy on the outlier experiment as shown at the

left-top of Fig. 7. This is mainly because pairwise distance

measure has a more robust characteristic to outliers for ideal

case without deformation. The second-order method [4],

however, does not show satisfactory performance in the

presence of deformation noise in all the other experiments.

4.2. Image Matching Problem

We perform two feature matching experiments using real

images. In the first image experiment, we perform a fea-

ture tracking task on the House image sequence1. 30 fea-

ture points are manually tracked over all image sequence

(110 images) to construct the ground-truth data. This im-

age sequence is taken from the same object but the view-

point varies along the sequence, that is, the deformation

noise in real situation. The larger the sequence gap is,

1CMU Image Data Base: http://vasc.ri.cmu.edu/idb/

html/motion/

the larger the deformation noise imposed to each point is.

The performance of each method is tested along every se-

quence gap (from 10 to 100 with interval 10). In this ex-

periment, the third-order similarity measure is used to cal-

culate higher-order similarity tensor Hw1,w2,w3
in the same

way as Eq. (14). The sparseness of H is also acquired by

following the same procedure of Sec. 4.1. A comparative

example is shown in Fig. 8 (a)-(d), and the overall perfor-

mance comparison is plotted in Fig. 8 (e). While HGM and

TM gradually degrade with the increasing sequence gaps,

RRWHM gives almost perfect accuracy in this experiment.

In the second image experiment, we test on 30 im-

age pairs taken from MSRC v2 dataset2 and Caltech 101

dataset3. The feature points are extracted automatically us-

ing the MSER feature detector [14] so that in this exper-

iment outlier feature points from background clutters are

present unlike the previous House sequence experiment.

Then, 500 correspondences with the lowest SIFT descrip-

tor distances [13] are collected for candidate matches. The

higher-order similarity tensor H is constructed according

to Eq. (14) using these 500 matches. For the sparseness

of H, elements with lower values than 0.1 are discarded.

For evaluation, we manually labelled ground truths for all

candidate correspondences. Some comparative examples

2MSRC v2: http://research.microsoft.com/en-us/

projects/objectclassrecognition/
3Caltech 101: http://www.vision.caltech.edu/Image_

Datasets/Caltech101/

1638

(a) Accuracy with 0, 0.1, and 0.2 deformation noise (left from right).

(b) Matching score with 0, 0.1, and 0.2 deformation noise (left from right).

Figure 7. Performance according to the outlier change. The top row shows accuracy and the bottom row shows matching score.

are shown in Fig. 9, and the average performance compar-

ison on the dataset is summarized in Table 1. Note that

average matching accuracy values are underestimated since

our ground truths are generously labelled not considering

matching constraints. The results show our RRWHM out-

performs the others also in this real image experiment with

outliers.

Table 1. Performance on the real image dataset (30 pairs)

Methods HGM TM RRWHM

Avg. Accuracy (%) 41.36 41.12 45.03

Avg. Relative Score (%) 81.50 81.57 98.38

More information and the source code will be pro-

vided at our project site: http://cv.snu.ac.kr/

research/˜RRWHM/.

5. Conclusion

We introduced a generalized formulation of the hyper-

graph matching problem to make it possible to embed sim-

ilarity measures of arbitrary orders, and proposed a state-

of-the-art hyper-graph matching method based on a random

walk view. Extending the reweighted random walks [4] to

hyper-graphs, our RRWHM achieves a robust performance

against deformation and outlier noises. Experimental evalu-

ations demonstrate that our method clearly outperforms the

previous hyper-graph matching approaches [20, 6] on both

synthetic and real problems.

References

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and

A. Wu. An optimal algorithm for approximate nearest neigh-

bor searching. ACM, 1994. 1637

[2] M. Chertok and Y. Keller. Efficient high order matching.

PAMI, 2010. 1633, 1634

[3] M. Cho, J. Lee, and K. M. Lee. Feature correspondence and

deformable object matching via agglomerative correspon-

dence clustering. 2009. 1633

[4] M. Cho, J. Lee, and K. M. Lee. Reweighted random walks

for graph matching. ECCV, 2010. 1633, 1634, 1635, 1636,

1637, 1638, 1639

[5] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching.

NIPS, 2007. 1633, 1634

[6] O. Duchenne, F. Bach, I. Kweon, and J. Ponce. Tensor-based

algorithm for high-order graph matching. CVPR, 2009.

1633, 1634, 1637, 1639

[7] S. Gold and A. Rangarajan. A graduated assignment algo-

rithm for graph matching. PAMI, 1996. 1633, 1634

[8] L. Grady. Random walks for image segmentation. PAMI,

2006.

[9] T. Haveliwala. Topic-sensitive pagerank. WWW, 2002. 1636

[10] J. Lee, M. Cho, and K. M. Lee. A graph matching algo-

rithm using data-driven markov chain monte carlo sampling.

ICPR, 2010. 1633, 1634

[11] M. Leordeanu and M. Hebert. A spectral technique for corre-

spondence problems using pairwise constraints. ICCV, 2005.

1633, 1634

1639

(a) An example input pair. (b) HGM: 17 correct matches out of 30.

(c) TM: 27 correct matches out of 30. (d) RRWHM: 30 correct matches out of 30. (e) Accuracy according to the sequence gap.

Figure 8. Experiments on images from House object with different viewpoints. (a) is an input pair. (b), (c), and (d) are the matching results

when the sequence gap is 80. Correct and incorrect matches are denoted as yellow and red lines, respectively. (e) is the performance plot

according to the sequence gap (view change). These figures are best viewed in color.

(a) HGM: 12 correct matches out of 15 (b) TM: 10 correct matches out of 15 (c) RRWHM: 14 correct matches out of 15

(d) HGM: 10 correct matches out of 15 (e) TM: 8 correct matches out of 15 (f) RRWHM: 12 correct matches out of 15

(g) HGM: 8 correct matches out of 11 (h) TM: 5 correct matches out of 11 (i) RRWHM: 9 correct matches out of 11

Figure 9. Experiments on images from MSRC v2 and Caltech 101 dataset. Correct matches for the objects are denoted as cyan lines. These

figures are best viewed in color.

[12] M. Leordeanu, M. Hebert, and R. Sukthankar. An integer

projected fixed point method for graph matching and map

inference. NIPS, 2009. 1633, 1634

[13] D. Lowe. Object recognition from local scale-invariant fea-

tures. 1999. 1633, 1638

[14] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust

wide baseline stereo from maximally stable extremal re-

gions. 2002. 1633, 1638

[15] J. Munkres. Algorithms for the assignment and transporta-

tion problems. SIAM, 1957. 1637

[16] P. A. Regalia and E. Kofidis. The higher-order power method

revisitiedl: Convergence proofs and effenctive initialization.

ICASSP, 2000. 1635

[17] E. Seneta. Non-negative Matrices and Markov Chains.

Springer, 1981. 1635

[18] R. Sinkhorn. A Relationship Between Arbitrary Positive Ma-

trices and Doubly Stochastic Matrices. Annals of Mathemat-

ical Statistics, 1964. 1637

[19] B. J. van Wyk and M. A. van Wyk. A pocs-based graph

matching algorithm. PAMI, 2004. 1633, 1634

[20] R. Zass and A. Shashua. Probabilistic graph and hypergraph

matching. CVPR, 2008. 1633, 1634, 1637, 1639

[21] D. Zhou, J. Huang, and B. Schlkopf. Learning with hyper-

graphs: Clustering, classification, and embedding. In NIPS,

2006. 1635

1640

