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Tensor networks represent the state-of-

the-art in computational methods across

many disciplines, including the classical

simulation of quantum many-body systems

and quantum circuits. Several applications

of current interest give rise to tensor net-

works with irregular geometries. Finding

the best possible contraction path for such

networks is a central problem, with an ex-

ponential effect on computation time and

memory footprint. In this work, we imple-

ment new randomized protocols that find

very high quality contraction paths for ar-

bitrary and large tensor networks. We test

our methods on a variety of benchmarks,

including the random quantum circuit in-

stances recently implemented on Google

quantum chips. We find that the paths ob-

tained can be very close to optimal, and

often many orders or magnitude better

than the most established approaches. As

different underlying geometries suit differ-

ent methods, we also introduce a hyper-

optimization approach, where both the

method applied and its algorithmic pa-

rameters are tuned during the path find-

ing. The increase in quality of contraction

schemes found has significant practical im-

plications for the simulation of quantum

many-body systems and particularly for

the benchmarking of new quantum chips.

Concretely, we estimate a speed-up of over

10,000× compared to the original expec-

tation for the classical simulation of the

Sycamore ‘supremacy’ circuits.

1 Introduction

Since the advent of the density-matrix renormal-
ization group algorithm, invented to study one-
dimensional lattice systems of quantum degrees
of freedom, tensor networks have permeated a
plethora of scientific disciplines, finding use in
fields such as quantum condensed matter [1–4],
classical statistical mechanics [5–7], information
science and big-data processing [8, 9], systems
engineering [10], quantum computation [11], ma-
chine learning and artificial reasoning [12–14] and
more. The underlying idea of tensor network
methods is to use sparse networks of intercon-
nected low-rank tensors to represent data struc-
tures that would otherwise be expressed in (very)
high-rank tensor form, which is hard to manip-
ulate. Due to this ubiquity, techniques to per-
form (multi)linear algebraic operations on ten-
sor networks accurately and efficiently are very
useful to a highly interdisciplinary community of
researchers and engineers. Of these operations,
tensor network contraction, i.e., the evaluation of
a scalar quantity that has been expressed as a
tensor network, is the most common.

When a system under consideration gives rise
to a tensor networks with a regular structure,
such as lattices, the renormalization group ap-
paratus is often employed to perform tensor
network contractions with controllable accuracy.
This approach has been successful in tackling
a variety of classical and quantum many-body
problems [5–7, 15–20]. Efficient tensor network
contraction is also possible in special cases in
which network topology (e.g., trees), values of
tensor entries, or both are restricted [21–26]. De-
spite these results, contracting tensor networks
with arbitrary structure remains (at least) #P-
hard in the general case [27, 28]. This is true, in
particular, for tensor networks that model ran-
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Figure 1: Sample tensor networks: (a) simplified network
for a rectangular 7x7 qubit 1 + 40 + 1 depth random
quantum circuit with 742 rank-3 tensors; (b) a random
5-regular network with 100 tensors, arising in, e.g., SAT
problems; and (c) random planar network with 184 ten-
sors, arising in, e.g., the statistical-mechanical evaluation
of knot invariants.

dom quantum circuits, a fact that has recently
inspired proposals for quantum algorithms run-
ning on these circuits that aim towards a prac-
tically demonstrable quantum computational ad-
vantage over classical computers [11, 29–39]. The
key idea is that, unlike quantum algorithms (e.g.,
Shor or Grover) that require deep quantum cir-
cuits and high gate fidelities — inaccessible in
the near future — to become manifestly advanta-
geous, the task of sampling bit strings from the
output of random quantum circuits is expected
to be hard to simulate classically even for low-
depth circuits and low-fidelity gates. The precise
threshold for observing such a quantum advan-
tage is nonuniversal and ultimately depends on
the efficiency of the classical simulation for each
particular combination of circuit model and quan-
tum chip architecture. This motivates the de-
velopment of high-performance simulation tech-
niques for these quantum systems, predominantly
based on finding good contraction paths for ten-
sor networks, that runs in parallel to the race for
the development of higher qubit count and qual-
ity devices [40–42].

Inspired by the classical simulation of quantum
circuits, here we introduce a new framework for
exact contraction of large tensor networks with
arbitrary structure (see examples in Fig. 1). The
first key idea of this framework is to explicitly
construct the contraction tree for a given tensor
network, combining agglomerative, divisive, and

optimal drivers for forming sub-trees at different
scales. The second key idea is to hyper-optimize
the generation of these trees, and to do this with
respect to the entire tree and thus the total con-
traction cost, rather than just the leading scal-
ing, given by the line-graph tree-width for exam-
ple. We also establish a powerful set of simpli-
fications for efficiently pre-processing tensor net-
works prior to contraction.

Using this framework we are able to find
very high-quality contraction paths, achieving
speedups that scale exponentially with the num-
ber of tensors in the network compared to es-
tablished approaches, for a variety of problems.
The drivers we test include recently introduced
contraction algorithms based on graph parti-
tioning and community structure detection [43],
previously theorized [11] and recently imple-
mented [44] algorithms based on the tree decom-
position of graphs, as well as new heuristics that
we introduce in this work. Furthermore, observ-
ing that different graph structures favor different
algorithms, we implement a hyper-optimization
approach, where both the method applied and its
parameters are varied throughout the contraction
path search, leading to automatically customized
contraction algorithms that often achieve near-
optimal performance.

We demonstrate the new methodology intro-
duced here on a range of benchmarks. First, we
test on problems defined on random graph fam-
ilies, such as simulation of solving MAX-CUT
with quantum approximate optimization as well
as weighted model counting. We find substan-
tial improvements in performance compared to
previous methods reported in the literature. We
then simulate random quantum circuits recently
implemented by Google on the Bristlecone and
Sycamore architectures. We estimate a speed-up
of over 10,000× in the classical simulation of the
Sycamore ‘supremacy’ circuits compared to what
is given in [45]. In general, our algorithms out-
perform all others for the same task, by a wide
margin on general networks and by a narrower
margin on planar structures. These findings thus
illustrate that our methods can lead to significant
performance gains across a spectrum of tensor
network applications. This is the main result of
this paper.

The remainder of this paper is organized as
follows. In Sec. 2 we formalize the problem of
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finding the optimal contraction path for arbitrary
tensor networks. In Sec. 3 we introduce and
explain the various algorithms employed in our
heuristics. In Sec. 4 we test our methods on a va-
riety of benchmarks, including the random quan-
tum circuit instances recently implemented on
Google Bristlecone and Sycamore quantum chips,
the simulation of the quantum adiabatic opti-
mization algorithm for solving the MAX-CUT
problem on random regular graphs, and exact
weighted model counting on problem instances
from a recent competition. We conclude in Sec. 5.

2 Problem statement

We denote an edge-weighted graph by G = (V,E),
where V is the vertex set and the set of 2-tuples
of vertex indices E ⊂ {(u, v) : u, v ∈ V } is the
edge set, along with a weight function w : E →
R

+ that assigns a positive real number to each
edge. For each vertex v, define the incidence set
sv = {e : e ∈ E and v ∈ e}, which is the set of
edges incident to vertex v, such that |sv| = dv,
the degree of vertex v.

To define a tensor network, we augment G with
(i) a discrete variable xe for each edge e ∈ E,
whose set of possible values is given by D(e) with
|D(e)| = w(e), (ii) an ordered tuple tv : Ndv

→ sv

for each vertex v ∈ V , and (iii) a multivari-
ate function or tensor Tv : D(tv(1)) × · · · ×
D(tv(dv)) → C, where tv(i) denotes the ith el-
ement of tuple tv, for every vertex v ∈ V . That
w is defined to be a real-valued function even
though D(e) ∈ Z

+ ∀ e ∈ E is simply a choice
that allows for extra flexibility in the design of
contraction algorithms, see, e.g., the Boltzmann
greedy algorithm below.

With these definitions, a tensor network con-
traction can be represented as a sequence of ver-
tex contractions in graph G. Each vertex con-
traction removes common edges between pairs
of tensors, if any, and represents a product op-
eration on the corresponding tensors, in which
one takes the inner product over common indices
or an outer product if there are no common in-
dices. For simplicity, in what follows we consider
only pairwise contractions, which are common
practice. Multiway contractions are also possible,
but they can always be decomposed to sequences
of pairwise contractions. For some applications,
only a subset of V must be contracted, while in

others all vertices in V are contracted into a sin-
gle vertex. Here we will focus on the latter case,
as it underlies the former. We will assume that
G initially has no loops, i.e., edges connecting
vertices to themselves, and that multiple edges
are always contracted simultaneously, so that no
loops occur throughout the contraction.

To represent the sequence of vertex contrac-
tions, we define a rooted binary tree B =
(VB, EB), with the first |V | vertex indices denot-
ing leaves, using two tuples l and r such that l(v)
and r(v) are the indices of the ‘left’ and ‘right’
children of vertex v ∈ VB, respectively, if any.
This defines a tree embedding of G [46]. Finally,
we assign an incidence set sv to each v ∈ VB,
starting with leaves, according to

sv =

{

{e : e ∈ E and v ∈ e} if v is a leaf index ,

sl(v) ⊕ sr(v) otherwise ,

(1)
with si ⊕ sj = (si ∪ sj) \ (si ∩ sj). The composite
of (B,S), where S = {sv : v ∈ VB}, defines a
contraction tree of G.

For a given tensor network contraction tree,
one can quantify the space and time cost of con-
tracting the network. First, the total space re-
quired for the contraction of a network is given,
up to an O(|V |) prefactor, by 2W , for contraction
width

W = ecmax(B,S) , (2)

where ecmax is the maximum edge congestion for
this tree embedding of G [47]. In our notation,

ecmax(B,S) = max
v∈VB

∑

e∈sv

log2w(e) . (3)

A space-optimal contraction tree for G is then
defined by

Bspace(G) = argmin
B∈B|V |

ecmax(B,S) , (4)

where B|V | is the set of all rooted binary trees
with |V | leaves. For systems of boolean variables
or qubits, w = 2 and ecmax(B,S) = maxv∈VB

|sv|.
The contraction width is then equal to the max-
imum vertex degree in the minors of G obtained
throughout the contraction path represented by
B [43], as illustrated in the example of Fig. 2.
The same logic extends to any constant w.

Similarly, the time complexity of the contrac-
tion is captured by the contraction cost

C(B,S) =
∑

v∈VB

2vc(B,S,v) , (5)
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Figure 2: For the graph shown in (a), two possible con-
traction trees (b) and (c), showing intermediate tensors
and congestions. Each edge in a tree has an associated
tensor and subgraph. The size of the tensor is exponen-
tial in the number of indices (denoted by unique colors)
running along that edge — the edge congestion. Each
vertex in a tree represents a pairwise contraction of two
tensors, as well as a bi-partitioning of the parent edge’s
subgraph (the dashed grey line shows one example of
this). The cost of that pairwise contraction is exponen-
tial in the number of indices passing through that vertex
— the vertex congestion. Assuming each index is the
same size, the tree (c) thus has both a higher maximum
contraction width (in bold) and total contraction cost
than tree (b).

where vc is the vertex congestion [47]

vc(B,S, v) =
∑

e∈sl(v)∪sr(v)

log2w(e) . (6)

Again using the case of qubits as an example, the
number of operations required to obtain the ten-
sor corresponding to a non-leaf vertex v by con-
tracting its children is proportional to 2|sl(v)∪sr(v)|.
More precisely, assuming every contraction is an
inner product, for real (complex) tensors, the
associated FLOP count will be a factor of two
(eight) times more than C: one (six) FLOP(s)
for the multiplication and one (two) FLOP(s) for
the addition. A time-optimal contraction tree for
G is then

Btime(G) = argmin
B∈B|V |

C(B,S) . (7)

Btime(G) and Bspace(G) are not necessarily the
same and hence a strategy that aims to find one

Method Optimal Edge weights Hyper edges Targets

Exhaustive search yes yes yes total cost

Line graph tree decomposition dependsa no yes leading cost

Community detection no yes no total cost

Boltzmann-greedy no yes yes total cost

Hyper-graph partitioning no yes yes total cost

Table 1: Contraction path optimization methods detailed
in Secs. 3.1-3.5. For each method, we list its name,
whether it is guaranteed to find the optimal contraction
path, whether it incorporates edge weights (i.e., bond
dimensions), whether it naturally handles hyper-edges,
and whether it targets the total contraction cost or just
the leading cost (single most expensive contraction).

a
QuickBB will eventually find the optimal contraction

with respect to leading cost but not FlowCutter.

is not guaranteed to also find or approximate the
other.

3 Tensor network contraction path op-

timization

We have shown that the optimization of the con-
traction path for a given tensor network corre-
sponds to minimization of a vertex or edge con-
gestion measure over the possible tree embed-
dings of the network. Instead of performing this
minimization, here we will use methods that op-
timize contraction paths based on quantities that
are proxies to these congestion measures, as ex-
plained below. Our heuristics are based on estab-
lished algorithms for a variety of common graph
theoretic tasks, such as balanced bipartitioning
or community detection, some of which, unlike
tree embedding, have seen decades of develop-
ment and improvement, thus affording great ben-
efits in performance to our methods. We stress,
however, that all contraction path optimization
tools studied in this work except for those in-
troduced in Secs. 3.1 and 3.2 are original contri-
butions, and that graph theory algorithms used
to perform a particular task (e.g., graph parti-
tioning) are interchangeable with any other algo-
rithm that can perform the same task. Finally,
we also note that all the algorithms we test ex-
cept for the exhaustive search of Sec. 3.1 are not
guaranteed to find the global minimum of the con-
gestion measures. Nevertheless, as will be seen
below, they can often get arbitrarily close to the
optimum. A summary of the methods we intro-
duce below is shown in Tab. 1
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3.1 Exhaustive search

One method for finding contraction trees is to
exhaustively search through all of them and re-
turn whichever minimizes the desired target W
or C. Since outer products are rarely ever ben-
eficial, an efficient but virtually optimal way to
perform this search is to adopt a dynamic pro-
gramming approach that builds the tree consid-
ering connected subgraphs only [48]. We refer to
this optimizer as Optimal and for our results use
the version implemented in opt einsum [49].

3.2 Line-Graph Tree Decompositions -

QuickBB & FlowCutter

The most common approach to contracting arbi-
trary tensor networks in recent years, motivated
by the results of Markov and Shi [11], has been
to find a tree decomposition of the line graph of
G. From this tree decomposition, an edge elim-
ination ordering can be constructed such that
the complexity of the corresponding contraction
is upper bounded by the tree-width of the line-
graph minus one. Practically speaking, we turn
an edge ordering, (e1, e2, e3, . . .) into a contrac-
tion tree as follows. First, find the subgraph
of G induced by the next edge in the ordering,
ei. Update G by contracting all of the tensors in
this subgraph to form a single vertex (if there are
more than 2 tensors use an exhaustive or greedy
approach to find a contraction sequence for this
small subgraph only). Repeat until all edges in
the ordering have been processed.

In the tensor network literature the most
commonly used tree decomposition finder is
QuickBB [50], which implements a depth-first
‘branch and bound’ search. Broadly speak-
ing this approach emphasizes performance for
graphs with modest numbers of edges, where in-
deed QuickBB has been shown to work well [42].
More recently, the FlowCutter tree decomposi-
tion finder [51, 52], has been applied to tensor
networks [44]. FlowCutter takes more of a ‘top-
down’ approach which emphasizes performance
on graphs with large numbers of edges. Both
function as ‘any-time’ algorithms, able to yield
the best found solution after setting an arbitrary
time. On the other hand, neither of these op-
timizers take edge weights into account, which
may be a significant disadvantage in the many-
body setting, where, unlike in quantum circuits,

bond dimensions can vary significantly.

3.3 Community detection via edge betweenness

- Hyper-GN

One of the methods for the contraction of tensor
networks with arbitrary structure introduced in
Ref. [43] is based on detecting communities in the
network. Qualitatively, a community is a subset
of the vertices in a network that is densely con-
nected internally and sparsely connected with its
complement. Detecting communities in networks
is a central problem in the study of complex net-
works [53, 54].

The intuition behind using the community
structure to contract an arbitrary tensor network
is that it is advantageous to contract all the
edges between vertices that belong to a commu-
nity first. That is because the vertex that re-
sults from the contraction of all edges within a
community, which we call a community vertex, is
sparsely connected with the rest of the network.
Thus, when a community structure exists and is
detected in the network, the adherence of contrac-
tions to this community structure is expected to
lead to community vertices with a maximum de-
gree that is lower than that of the same number of
vertices reached by an arbitrary sequence of con-
tractions of the original network. This approach
hence effectively minimizes the contraction cost,
i.e., yields a contraction sequence that approxi-
mates the one defined by the space-optimal con-
traction tree.

A popular community structure detection al-
gorithm is the one of Girvan and Newman [55].
It operates by evaluating a quantity called edge
betweenness centrality, defined as

g(e) =
∑

s,t∈V

σst(e)/σst , (8)

where σst is the total number of shortest paths
between vertices s and t, and σst(e) is the number
of those paths that pass through edge e ∈ E.
The algorithm starts with an empty edge list and
repeats two steps:

1. remove e′ = argmax
e∈E

g(e) from E and add it

to the list,

2. calculate g(e) ∀ e ∈ E,

until exhausting E. Multiple edges can be pro-
cessed simultaneously, since they have the same
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g. The resulting list of edges, sometimes called
a dendrogram, defines the detected community
structure: if one sequentially removes the list en-
tries from E until G becomes disconnected, then
the resulting connected components are the com-
munities of G. The algorithm then proceeds by
splitting each connected component into smaller
communities, and the process repeats all the way
down to the individual vertex level.

The output of the Girvan-Newman method is
also a contraction path: one simply has to tra-
verse the edge list in reverse, each entry defining
a contraction of the endpoints of the correspond-
ing edge. One can incorporate edge weights (and
thus bond dimensions) into Eq. (8), possibly ran-
domized with some strength τ , to generate varied
paths. We call the optimizer based on repeated
sampling of these paths Hyper-GN.

3.4 Agglomerative contraction trees -

Hyper-Greedy

One simple way to construct a contraction tree
is greedily from the bottom up. Here, one ig-
nores any overall structure of the graph G and
instead heuristically scores each possible pairwise
contraction. Based on these scores, a pair of ten-
sors can be chosen and contracted into a new ver-
tex and the list of scores then updated with any
new possible contractions. Whilst we know the
exact cost and output size of each pairwise con-
traction, we do not know the effect it might have
on the cost and size of later contractions, mean-
ing we must instead carefully choose the heuristic
score function.

Given two tensors Ti and Tj whose contraction
yields Tk, one reasonable choice for the heuristic
cost function is

cost(Ti, Tj) = size(Tk) − α(size(Ti) + size(Tj))
(9)

with α a tunable constant. If we take α = 1 then
this cost is directly proportional to the change
in memory should we perform the contraction.
Whereas instead taking α = 0 essentially just pri-
oritizes the rank of the new tensor. Since we will
want to sample many greedy paths we also intro-
duce a ‘Boltzmann factor’ weighting of the costs
such that the probability of selecting a pairwise
contraction is

p(Ti, Tj) ∝ exp (−cost(Ti, Tj)/τ) , (10)

with τ an effective temperature governing how
‘adventurous’ the path finding should be. Repeat-
edly generating contraction trees using this com-
bination of cost and weighting, whilst potentially
tuning both α and τ , leads to the Hyper-Greedy

optimizer. Hyper-Greedy generally outperforms
other greedy approaches and is quick to run, mak-
ing it a simple but useful reference algorithm.

3.5 Divisive contraction trees - Hyper-Par

The greedy or agglomerative approach is a natu-
ral way to think about building contraction trees
from the bottom up. However, as introduced in
[43] we can also try and build contraction trees
from the top down in a divisive manner. The key
here is that each node in a contraction tree repre-
sents not only an effective tensor but a subgraph
of the initial graph describing the full tensor net-
work. As we ascend a contraction tree, merging
two nodes corresponds to a pairwise contraction
of the two effective tensors. In reverse, as we de-
scend a contraction tree, splitting a node corre-
sponds to a bipartitioning of subgraph associated
with that node.

Practically we start with the list of ‘childless’
vertices - initially just the root of the tree corre-
sponding to the full graph, {VG}. We take the
next childless vertex, V , and partition it into
V = V1 ∪ V2. If |V1| > 1 we append it to the
list of childless vertices and similarly if |V2| > 1.
This process can be repeated until the full con-
traction tree is generated. Such a divisive ap-
proach is very similar to the community detec-
tion scheme introduced earlier, however, whilst
the Girvan-Newman algorithm naturally yields
the entire contraction tree, here we create single
contractions one at a time. This allows one to
combine partitioning with other optimizers. For
example, we can instead partition a vertex V
into k partitions, V1, V2, . . . , Vk and then use the
Optimal or Hyper-Greedy optimizer to ‘fill in’
the contraction tree — essentially find the con-
traction path for a tensor network composed just
of the tensors corresponding to each of these new
subgraphs. Similarly, if the size of V drops below
some threshold, we can again use either Optimal

or Hyper-Greedy to find the remaining part of
the contraction tree corresponding just to the leaf
tensors in V .

The cost of an individual contraction - a ver-
tex bi-partitioning - is given by the product of

Accepted in Quantum 2021-03-06, click title to verify. Published under CC-BY 4.0. 6



Figure 3: (a) Segment of tensor network with six ten-
sors, one of which (black filled circle) is a COPY tensor.
(b) COPY tensor replaced by a hyperedge. Recursive
hypergraph bipartitioning yields the separator hierarchy
drawn as dashed lines, with thicker lines for higher level
in the hierarchy. (c) After a separator hierarchy is found,
the hyperedge is replaced by a connected subgraph of
COPY tensors whose edges intersect each separator at
most once. The results of the contraction of networks
(a) and (c) are identical.

the dimensions of the involved indices. These
include any outer indices of the subgraph, plus
any indices that cross the newly created partition.
Since the outer indices are independent of the
partition, minimizing the number of indices cut
by a partition also minimizes the cost of the cor-
responding contraction. This is still essentially
a greedy approach - it only considers the cost
of a single contraction and strictly minimizing
this cost (corresponding to choosing a min-cut)
could likely create more expensive contractions
down the line. However, one way to heuristi-
cally adjust this is to control how balanced to
make the partitions, in other words, how much
to match the size of each partition. Specifically,
we can define the imbalance parameter, ǫ, such
that |Vi| ≤ (1 + ǫ)|V |/k for i = 1 . . . k, where k
is the number of partitions. If ǫ is close to zero,
then the partitions are forced to be very similar
in size, whilst if ǫ is close to k the partitions are
allowed to be of any size.

Taking into account the internal structure of
the tensors in a problem allows for further flexi-
bility in the recursive bipartition process, which
in turn can lead to significant performance gains.
As an example, consider the case of a COPY ten-
sor, whose entries are 1 only when all indices
are equal and 0 otherwise. These tensors appear,
for example, when modeling circuits of controlled
gates (see, e.g., Sec. 4.6.1) or satisfiability formu-
las [26, 43]. Each COPY tensor in a network can
be replaced by any connected graph of COPY ten-
sors without changing the result of the contrac-
tion [4]. By replacing all COPY tensors in the
network with hyperedges, one can perform recur-
sive hypergraph bipartitioning with more freedom

in the search for short cuts compared to the origi-
nal graph. To revert back to a ‘traditional’ tensor
network after partitioning, each hyperedge can be
replaced by a low-rank COPY tensor subgraph
that cuts each separator at most once, as illus-
trated in Fig. 3. Another important use-case for
hyperedges is to efficiently treat batch and out-
put indices, though these are not benchmarked
in this work.

We employ the partitioner KaHyPar [56, 57]
to generate our contraction trees for a number of
reasons. Aside from offering state-of-the-art per-
formance, it also can handle hypergraphs (and
thus arbitrary tensor expressions), allows key pa-
rameters such as the imbalance to be specified,
and takes into account edge weights (and thus ar-
bitrary bond dimensions). Repeatedly sampling
contraction trees whilst tuning the parameters k,
ǫ and the cut-off to stop partitioning leads us
to the optimizer we call Hyper-Par. Note that
the line graph and greedy methods of Secs. 3.2
and 3.4, respectively, also support hypergraphs
natively.

In passing, we note that (hyper)graph parti-
tioning has been used as a simplification tool for
computational tasks in other research fields, see,
e.g., [58].

3.6 Stochastic Bayesian Optimization

The Optimal contraction tree optimizer runs un-
til completion whilst QuickBB and FlowCutter

are natively any-time algorithms. For the remain-
ing three optimizers – Hyper-GN, Hyper-Greedy

and Hyper-Par – we use a combination of ran-
domization and Bayesian optimization [59] to in-
telligently sample ever better contraction paths.
This allows all three of them to run as parallel
any-time algorithms.

For the Hyper-GN and Hyper-Par optimizers,
randomization can be introduced as a noise of
the edge weights of the initial graph G. For
the Hyper-Greedy optimizer the Boltzmann sam-
pling of greedy contractions yields another source
of randomization. Due to the high sensitivity
of the contraction width W and cost C to the
contraction path, simply sampling many paths
and keeping the best already offers significant
improvements over single shot versions of these
same algorithms. However we can further im-
prove the performance if we allow the heuristic
parameters of each optimizer to be tuned as the
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sampling continues. We use the baytune [60] li-
brary to perform this optimization, which uses
Gaussian processes [61] to model the effect of the
parameters on the target score – either W or C
– and suggest new combinations which are likely
to perform well.

3.7 Tensor Network Simplifications

Next we describe a series of simplifications based
simply on tensor network structure and sparsity
of the tensors that we perform iteratively until
no more operations are possible. These are all
designed to decrease the complexity of the ten-
sor network prior to invoking the full contraction
path finders, and are performed as efficient local
searches.

The first of these is diagonal-reduction of ten-
sor axes, as introduced for quantum circuits
in [62]. For a k-dimensional tensor, ti1i2...ik

, with
indices i1i2 . . . ik, if for any pair {ix, iy}

ti1i2...ik
= 0 ∀ ix 6= iy (11)

then we can replace t with a (k− 1)-dimensional
tensor, t̃ with elements t̃...ix = t...ixiyδ

ix

iy
, where

the δ copy can be implemented by re-indexing
iy → ix everywhere else in the tensor network,
thus resulting in ix becoming a hyperedge. This
enables the use of the hypergraph machinery de-
tailed in Sec. 3.5.

The second pre-processing step we perform is
rank-simplification. Here we generate a greedy
contraction path that targets rank reduction only
(i.e. with respect to Eq. (9) and (10) sets α = τ =
0). We then perform any of the pairwise contrac-
tions such that the rank of the output tensor is
not larger than the rank of either input tensor. If
the tensor network has no hyperedges, this corre-
sponds to absorbing all rank-1 and rank-2 tensors
into neighbouring tensors, a process which can-
not increase the cut-weight across any partition
for example.

The third pre-processing step we perform is
antidiagonal-gauging. Here, again assuming we
have a k-dimensional tensor ti1i2...ik

, if for any
pair of indices {ix, iy} of matching size d we find

ti1i2...ik
= 0 ∀ ix 6= d− iy (12)

then we can flip the order of either index ix or iy
throughout the tensor network. This corresponds
to gauging that index with a ‘reflected’ identity,
for example if d = 2 the Pauli matrix X. This
simplification does not help on its own but merely
produces tensors which can then be diagonally
reduced using the prior scheme.

The fourth simplification we perform is
column-reduction. Here, if for any k-dimensional
tensor ti1i2...ik

we find an index ix and ‘column’ c
such that

ti1i2...ik
= 0 ∀ ix 6= c (13)

then we can replace every tensor, t...ix , featuring
that index with the (k − 1)-dimensional tensor t̃
corresponding to the slice t...[ix=c], removing that
index from the network entirely. This can be pic-
tured as projecting the index into the basis state
|c〉.

The final possible processing step is split-
simplification. Here if any tensor, t, has an ex-
act low-rank decomposition across any biparti-
tion of its indices – i.e. ti1...j1... =

∑

k li1...,krj1,...,k

with max(size(l), size(r)) < size(t) – we perform
it. This is done using the SVD, and is the one
simplification that increases the number of ten-
sors in order to decrease the cut-weight across
partitions.
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We apply the above set of simplifications
iteratively but deterministically until no method
can find any operation to perform. For all
methods that compare to zero we use a relative
precision of 10−12 unless otherwise stated. The
order they are applied in can produce very
different networks – we find cycling through the
order {antidiagonal-gauging, diagonal-reduction,
column-reduction, rank-simplification, split-
simplification} produces good results. Indeed
for quantum circuits generally the resulting
tensor networks often have almost no sparsity
among tensor entries. Note for methods such
as Hyper-GN which cannot handle hyperedges
we skip the diagonal-reduction. Finally, if
aiming to reuse a contraction path, one needs
to maintain the sparsity structure from network
to network, possibly excluding any variable
tensors from the simplification steps that detect
sparsity. For most circuits terminated with a
layer of Hadamard gates, if one only changes
the sampled bit-string x then even this is not
usually necessary.

4 Results

We benchmark our contractors on six classes
of tensor networks with complex geometry –
random regular graphs, random planar graphs,
square lattices, weighted model counting formu-
lae, QAOA energy computation, and random
quantum circuits. In each set of results we set
a time limit or maximum number of shots for
each of the optimizers to run for, and then tar-
get either the contraction width, W , or contrac-
tion cost C. As a reminder, W is essentially the
space requirement of the contraction (log2 of the
size of the largest intermediate tensor) whilst C is
the time requirement (the total number of scalar
operations). The Optimal algorithm is able to
search for either the minimum W or C, whilst
Hyper-GN, Hyper-Greedy and Hyper-Par can tar-
get either through the guided Bayesian optimiza-
tion. Finally, there is no way to specifically bias
QuickBB and FlowCutter towards either W or
C so in each case the optimizer runs identically.
If an optimizer can run in parallel, we allow it 4
cores to do so. An open source implementation of
the optimizers, compatible with opt einsum [49]
and quimb [63], is available at [64].

To give some context to the relative scale of

W and C, a complex, single precision tensor of
size 227 requires 1GB of memory, and a con-
sumer grade GPU can usually achieve a few ter-
aFLOPs in terms of performance, corresponding
to C ∼ 1015 over an hour. In the final results
section we benchmark various contractions and
indeed find this real-world performance. At the
extreme end of the scale, the most powerful su-
percomputer in the world currently, Summit, has
a few petabytes of memory, corresponding very
roughly to W ∼ 47, though this is obviously dis-
tributed among nodes and utilizing it for a single
contraction would need, among many other tech-
nical considerations, significant inter-node com-
munication. Summit has also achieved sustained
performance of a few hundred petaFLOPs [65],
which over an hour might correspond to C ∼ 1020,
but is unlikely to do so if distributed contraction
is required (i.e. for high W ).

4.1 Random Regular Graphs

We start by benchmarking tensor networks with
geometries defined by random regular graphs,
as studied in [43, 44]. These graphs arise in
the study of many computational problems, such
as satisfiability, but also problems defined on
graphs with nonuniform degree distribution can
often be reduced to equivalent problems on low-
degree regular graphs [66]. For such a k-regular
graph, every vertex is connected randomly to k
others, with total number of vertices |V |. We
treat each of the edges as tensor indices of size
2 and associate a rank-k tensor with each vertex.
None of the simplifications of Sec. 3.7 are appli-
cable. An example of such a network is shown in
Fig. 1(b). For each size |V |, degree k and target
∈ {W,C}, we generate 100 sample regular graphs
uniformly [67], and allow 5 minutes of search time
per instance for each optimizer. The reference
Optimal path finder we instead run for 24 hours
and only show data points where all but one or
two of the instances successfully terminated so as
not to bias those points towards easy instances.

The results are shown in Figs. 4(a)-(f). First
of all we note that for small sizes all optimiz-
ers return similar performance, indeed, close
to Optimal. As |V | increases however the
same ranking emerges in each combination of
k and {W,C}: (from worst to best) QuickBB,
Hyper-Greedy, FlowCutter, Hyper-GN, then fi-
nally Hyper-Par. We attribute the improve-
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Figure 4: Mean contraction width (top row) and cost (bottom row) of random regular graphs of degree k = 3, 4, 5
(left, centre and right columns respectively) as a function of the number of vertices (tensors) in the network, |V |, for
various contraction path optimizers each allowed 5 minutes to search. The shaded regions show standard deviations
across 100 random graph instances. An example graph with k = 5 is shown in Fig. 1(b).

ment of Hyper-GN over previous studies [44] to
the use of guided stochastic sampling. There
are some interesting performance comparisons
when it comes to targeting contraction width W
or cost C. For example, while Hyper-Greedy

beats QuickBB for width across the board, the
results are much closer for contraction cost. On
the other hand, the advantage of Hyper-Par

over Hyper-GN and FlowCutter is much more
pronounced when considering cost rather than
width.

4.2 Random Planar Graphs

A contrasting class of geometries to consider is
that of planar graphs, encountered for example
in the study of physical systems defined on a 2D
lattice or in evaluating knot invariants [68]. To
investigate these in a generic fashion, we gener-
ate random planar graphs with |V | ∈ [20, 200]
using the Boltzmann sampler described in [69].
An instance of the generated graphs is shown
in Fig. 1(c). Whilst these are much more ran-
dom than square lattices for example, we find
nonetheless that the results are broadly represen-

tative. Similarly to the random regular graphs,
for each vertex with k edges we associate a rank-
k tensor with bond dimensions of size 2 and al-
low each optimizer 5 minutes per instance to ex-
plore contraction paths. In [44] it was shown
that the optimal contraction path with respect
to W for planar graphs can be found in poly-
nomial time. Also, planar tensor networks can

be contracted in subexponential time O(2
√

|V |)
as a consequence of the planar separator theo-
rem [22, 43, 70]. In Fig. 5(a) and (b) we plot the
mean contraction width, W , and cost, C, as a
function of the ‘side length’ of the graph,

√

|V |.
Alongside a sub-exponential scaling for all the
optimizers we see a very different ranking of opti-
mizer performance as compared to random regu-
lar graphs, with Hyper-Greedy performing best.
For small sizes, again the performance of all opti-
mizers is close to Optimal, and in fact the differ-
ence between methods remains relatively small
throughout the size range.
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Figure 5: Mean contraction width W (top) and cost C
(bottom) for randomly generated planar graphs as a func-
tion of number of vertices |V |, for various path optimizers
each allowed 5 minute to search. The shaded regions
show standard deviations across random graph instances.
The 35,162 graph instances studied are approximately
uniformly distributed over the

√

|V | bins shown, and an
example instance is shown in Fig. 1(c).

4.3 Regular Square Lattice

To emphasize that the utility of these optimizers
is not restricted to randomly structured graphs,
we now compare the best of them with a naive
Time Evolving Block Decimation (TEBD) style
approach on a square 2D lattice. While such an
approach – contracting a Matrix Product State
boundary from one side to the other – usually
would be combined with canonicalization and
compression, doing it exactly yields a natural
comparison point for a simple, manually chosen
contraction path. In Fig. 6 we show W and C
for such an approach (labelled TEBD-Exact), the
best of Hyper-Greedy or Hyper-Par, as well as
Optimal, for 2D square lattice TNs with bond
dimension 2. As well as showing open and peri-
odic boundary conditions (OBC and PBC), we
show the case for when the lattice geometry is
defined on hyper-edges rather than the vertices.
This is a common scenario when evaluating parti-
tion functions of classical spin models. While the
hyper-edges can be converted to COPY tensors
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Figure 6: Contraction width W (top row) and contraction
cost C, for square lattice geometry - either with vertices
representing the underlying lattice (left column) or hyper-
edges (right column). Insets to right illustrate the four
possible TNs with L = 5. Note that the hyper-edge case
can be exactly transformed into the normal case but the
reverse is not generally true.

to yield the standard TN geometry, this makes
the TN harder to contract.

For OBC, we find W is significantly reduced
from the TEBD-Exact scaling 1 of 2L (Fig. 6(a))
as well as C (Fig. 6(b)). Contracting the hyper-
edge form of the TN also yields an advantage
for both. For PBC the TEBD-Exact path yields
the same, optimal contraction width (Fig. 6(c))
but carries a significantly worse scaling contrac-
tion cost (Fig. 6(d)). Contracting the hyper-edge
form of the TN again yields an advantage for
both. In all cases we see either Hyper-Greedy or
Hyper-Par very closely tracks the Optimal width
and cost at accessible sizes.

4.4 Exact Weighted Model Counting

We now move on to exact weighted model count-
ing, an important #P-complete task, central to
problems of inference in graphical models, eval-
uating partition functions in statistical physics,
calculating network reliabilities, and many oth-
ers [71–73]. The problem can be cast as comput-

1With canonicalization but no compression the scaling

would be W ∼ L.
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ing the following sum:

x =
∑

{v}

#vars
∏

v

wv

#clauses
∏

i

Cv̄i
, (14)

where {v} is all combinatorial assignments of ev-
ery binary variable, wv is a vector with the ‘posi-
tive’ and ‘negative’ weight of variable v, and Cv̄i

the ith clause containing variables v̄i, given by
the tensorization of the OR function. Such an
expression can directly be thought of as an hy-
per tensor network, with tensors (nodes) wv, Cv̄i

and tensor indices (hyper-edges) v. Key here is
that we directly handle constructing contraction
trees for such hyper-graphs, and thus do not need
to map Eq. (14) into a ‘normal’ tensor network
form.
To test our contraction optimizers we assess all

100 private weighted model counting (track-2) in-
stances from the Model Counting 2020 competi-
tion [74]. After constructing the tensor network
representation of x we run the simplification pro-
cedure, actively renormalizing the tensors since
for some instances x > 102000. We find the simpli-
fications to be very powerful here – of the 100 in-
stances, 63 simplify all the way to a single scalar,
whilst the remaining 37 instances require actual
contraction of a much reduced tensor network.
We invoke our hyper-optimizer on these, allow-
ing 64 repeats and access to both the greedy and
KaHyPar drivers. Of these, 1 instance was excep-
tionally difficult (W & 100), whilst the remain-
ing (shown in Fig. 7) all had contraction paths
with W < 20 and C < 108 making them eas-
ily contractable. Overall the 99 solved instances
compares favourably with the best score of 69
achieved in the competition [74]. For those 69 in-
stances we confirmed all results against the ADDMC

solver [75].

4.5 QAOA Energy Evaluation

The Quantum Approximate Optimization Algo-
rithm (QAOA) [76] is a promising approach for
optimization on near-term quantum devices. It
involves optimizing the energy of an ansatz cir-
cuit, followed by the sampling of potential solu-
tion bitstrings. Here we explore the first part, a
task that has been studied before [77] and is iden-
tical to computing the energy of a unitary ansatz
for a many-body model. The p-layer ansatz cir-
cuit for target graph G with constraint weights

Figure 7: Example hyper tensor networks, post-
simplification, representing weighed model counting for-
mulae from the MCC2020 model counting competition.

wj,k for j, k ∈ E(G) is given by:

|γ̄, β̄〉 = UB(βp)UC(γp) · · ·UB(β1)UC(γ1)|+〉
(15)

where

UC(γ) =
∏

j,k∈E(G)

e−iγwjkZjZk (16)

UB(β) =
∏

j∈G

e−iβXj (17)

for the two length-p vectors of parameters ᾱ and
β̄. The energy of this is given by a sum of local
terms:

E =
∑

j,k∈E(G)

wj,k 〈γ̄, β̄|ZjZk |γ̄, β̄〉 (18)

where for each term any unitaries outside the ‘re-
verse lightcone’ of j, k can be cancelled.

We study MAX-CUT problems on random 3-
regular graphs of size N , for which wj,k = 1,
equivalent to an antiferromagnetic Ising model.
Note that whilst the problem is defined on such
a graph, G, the actual tensor networks for each
energy term have very different geometries com-
pared to Sec. 4.1, since they arise from the re-
peated application of 3p layers of gates followed
by unitary cancellation. Indeed, in the limit of
large N , they are not random at all [77]. First
we form the 3N

2 energy term tensor networks, and
simplify each using all five methods from Sec. 3.7.
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We invoke our hyper-optimizer on these, allowing
64 repeats and access to both the greedy and
KaHyPar drivers. In Fig. 8 we report the maxi-
mum contraction width, Wmax and total contrac-
tion cost, Ctotal, across terms, averaged over 10
instances of the random regular graphs, as a func-
tion of N and p.

We note that up to and including p=4,
throughout the range of N , Wmax remains less
than ∼ 28 and Ctotal less than ∼ 1010, putting
such simulations easily within the range of single
workstations. As an example, on a CPU with
4 cores, performing all of the contractions for
N = 54 and p = 4 takes on the order of sec-
onds. Stepping up to p = 5 increases the diffi-
culty significantly, especially in the N = 40 − 120
range. The peak here is due to cycles of length
≤ p appearing in G for small enough N , which
dramatically increase the complexity of each ten-
sor network.

4.6 Random Quantum Circuits

The final class of tensor networks we study is
those corresponding to random quantum circuits

executed on a range of quantum chip geometries.
In particular, we look at sizes and depths previ-
ously explored in the context of so-called ‘quan-
tum supremacy’ [37, 38, 45, 78]. Quantum cir-
cuits can be naturally cast as tensor networks
and then simulated via contraction, as shown
in [11]. In recent years, random quantum cir-
cuits have been used both as a test-bed for ten-
sor network contraction schemes as well as set-
ting the benchmark for demonstrating ‘quantum
supremacy’ [41, 62, 79–82]. Practically speak-
ing, such simulations can also allow the fidelity
of real quantum chips to be benchmarked and
calibrated [38, 45, 81].

The simplest quantity to compute here is the
‘transition amplitude’ of one computational basis
state to another through a unitary describing the
quantum circuit. Assuming we start with the
N qubit all-zero bit-string |0⊗N 〉, the transition
amplitude for output bit-string x can be written:

cx = 〈x|UdUd−1 . . . U2U1 |0⊗N 〉 , (19)

where we have assumed some notion of circuit
depth, d, such that each unitary Ui contains a
‘layer’ of entangling gates, the exact composition
of which depends on the specific circuit definition.
The process for computing cx takes place in sev-
eral steps; (a) construct the tensor network cor-
responding the circuit; (b) perform some purely
structure dependent simplifications of the tensor
network; (c) find the contraction path for this
simplified network; and (d) actually perform the
contraction using the found path. Steps (a) and
(b) are very cheap, and moreover we can re-use
the path found in step (c) to contract any ten-
sor with matching structure but different tensor
entries, such as varying x.

4.6.1 Gate Decompositions

We find that pre-processing the tensor networks
with the methods from Sec. 3.7 before attempt-
ing to find contraction paths is an important step,
particularly for optimizers such as QuickBB and
Hyper-Greedy that scale badly with the num-
ber of edges and vertices. A tensor network for
cx initially consists of: rank-1 tensors describ-
ing each of the input and output qubit states;
rank-2 tensors describing single qubit gates; and
rank-4 tensors describing two-qubit gates. The
first processing step is deciding how to treat
the two-qubit gates. A tensor describing such
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a gate can be written goaob

iaib
, such that ia (ib) is

the input index and oa (ob) the output index
of qubit a (b). Whilst goaob

iaib
is unitary with re-

spect to iaib → oaob, a low rank decomposition
can potentially be found by grouping the indices
{ia, oa}, {ib, ob} or {ia, ob}, {ib, oa} and perform-
ing an SVD on the resulting matrix. In the first
case this yields two rank-3 tensors:

goaob

iaib
=

χ
∑

ξ=1

loa

iaξr
ob

ibξ , (20)

where we have dropped any zero singular vectors
and absorbed the remaining singular values into
either of the left and right tensors l and r, each
of which is now ‘local’ to either qubit a or b, con-
nected by a bond of size χ. The second case yields
the same but with an effective SWAP (which can
be implemented purely as a relabelling of tensor
indices) of the qubit states first:

goaob

iaib
=

χ
∑

ξ=1

2
∑

i′
ai′

b
=1

loa

i′
aξr

ob

i′
b
ξ
δ

i′
b

ia
δ

i′
a

ib
. (21)

The options for a gate are thus to: (a) perform
no decomposition; (b) perform a spatial decom-
position – Eq. (20); or (c) perform a swapped
decomposition – Eq. (21). By default we only
perform a decomposition if the bond dimension,
χ, yielded is less than 4; all controlled gates
fall into this category for a spatial decomposi-
tion, whereas the ISWAP gate for instance has
χ = 2 for the swapped decomposition. Such ex-
act decompositions would also be performed au-
tomatically using the split-simplification scheme
of Sec. 3.7. Another option is to discard small
but non-zero singular values which will result in
a drop in the fidelity of cx [45, 83] – unless explic-
itly noted we do not perform this form of ‘com-
pression’.

4.6.2 Random Quantum Circuit Geometries

We benchmark the contraction path optimizers
against different random quantum circuits exe-

cuting on three different quantum chip geome-
tries: (i) a rectangular 7×7 lattice of 49 qubits;
(ii) a 70 qubit ‘Bristlecone’ lattice; and (iii) a 53-
qubit ‘Sycamore’ lattice.

For the first two we use the updated, harder
versions of the random circuit definitions first sug-
gested in [38], which are available at [84]. We
adopt the notation (1+d+1) for depth d to em-
phasize that the technically first and last layer of
single qubit gates (which add no real complexity)
are not counted. In both cases the entangling
gate used is the controlled-Z which has a χ = 2
spatial decomposition.

For the Sycamore architecture, we use the
same circuits that were defined and also actu-
ally executed in the recent work [45]. Here each
two-qubit gate is a separately tuned ‘fermionic
simulation’ gate which has no low-rank decompo-
sition if treated exactly. On the other hand, if
a swapped decomposition is performed, the two
smallest singular values are quite small and on av-
erage discarding them leads to a fidelity drop of a
fraction of a percentage point – for a single gate.
If this approximation is used for every single en-
tangling gate in the circuit, however, the error
is compounded. For our main results, labelled
‘Sycamore-53’, we thus perform no gate decom-
position and consider perfect fidelity transition
amplitude calculations only. Results where the
χ = 2 swapped decomposition has been used we
label ‘Sycamore-53*’. We also note that the defi-
nition of circuit ‘cycles’, m, used in [45] is about
twice as hard as the rectangular and Bristlecone
circuit definition of depth, d, since per layer al-
most all qubits are acted on with an entangling
gate rather than approximately half respectively.

In the following table we report the number
of network vertices and edges for representative
depths of each circuit geometry after simplifica-
tions. The first two columns, |V |, |E| are for
the case where hyperedge introduction is avoided,
the last two columns, ˜|V |, ˜|E|, are for the case
where the full simplification scheme introduced
above has been applied. Using the ratio ˜|V |/ ˜|E|
as a heuristic figure of merit, we see that the net-
works resulting from the Sycamore circuit model
are considerably denser. One may thus anticipate
that Sycamore benchmarks will be more challeng-
ing for our methods. This expectation will be
borne out in Sec. 4.6.4.
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Circuit |V | |E| |Ṽ | |Ẽ|
Rectangular-7×7 (1+40+1) 734 1101 790 425

Bristlecone-70 (1+40+1) 1036 1554 1086 574

Sycamore-53 (m=20) 381 754 381 754

Sycamore-53* (m=20) 754 1131 1125 748

We note that if the swap decomposition is
not applied to the Sycamore circuits then no
diagonal-reductions can take place and the result-
ing simplified tensor network is the same in both
cases.

4.6.3 2D Circuit Specific Optimizers -
qFlex/PEPs

Before presenting results for contraction width
and cost for these random circuits, we introduce
one final form of contraction path optimizer that
has been successfully applied to circuits acting on
2D lattices [81, 82]. Here one performs the spatial
decomposition of the entangling gates, regardless
of rank, such that every tensor is uniquely lo-
calized above a single qubit register. One can
then contract every tensor in each of these spa-
tial slices resulting in a planar tensor network
representing cx with a single tensor per site. Al-
though the two works, [81] and [82], have signifi-
cant differences in terms of details (and goals be-
yond the computation of a single perfect fidelity
amplitude), the core object treated by each is
ultimately this planar tensor network, which is
small enough that we can report optimal contrac-
tion widths and costs for. We call this optimizer –
which flattens the circuit tensor network into the
plane before finding the optimal W or C from
that point onwards – qFlex/PEPs. With regards
to a swapped decomposition, in order to maintain
the spatial locality of the tensors this method can
only benefit in the first and last layer of gates [45].

4.6.4 Results

In Fig. 9(a)-(f) we report the mean contraction
width,W , and cost, C, for each geometry and op-
timizer as a function of circuit depth, d, or cycles,
m. For these large tensor networks we allow each
optimizer one hour to search for a contraction
path. While this is not an insignificant amount
of time, we note that many optimizers converge
to their best contraction paths much quicker, and
moreover that contraction paths can be re-used
if only changing tensor values from run to run.
We show the variance in W and C across 10 in-
stances, despite the fact the tensor network struc-

ture is the same, since all the optimizers aside
from qFlex/PEPs are naturally stochastic.

We first note that across the board, the
Hyper-Par optimizer again performs best, with
little variance from instance to instance. Perfor-
mance of the remaining optimizers is more diffi-
cult to rank. The tensor network simplification
scheme employed here results in significant im-
provement over previous results even when using
QuickBB to perform the actual path optimization,
particularly when |E| or |Ẽ| is moderate. As the
tensor networks get larger QuickBB is consistently
outperformed by the other line-graph based opti-
mizer FlowCutter.

For the Rectangular-7x7 and Bristlecone-70 cir-
cuits, which both use a CZ entangling gate, the
diagonal reduction of tensors greatly simplifies
the tensor networks. The methods that make
use of this, aside from Hyper-Greedy, perform
best here, with similar values of C, though in-
terestingly Hyper-Par is able to target a lower
contraction width. Hyper-GN and qFlex/PEPs

do not use the diagonal simplification and here
show similar performance.

In the case of Sycamore-53 the entangling
fSim [85] gates are close to but not exactly
ISWAP gates. As a result there are no diagonal
reductions to be made and the simplified tensor
network has no hyper-edges. Whilst FlowCutter,
Hyper-GN and Hyper-Par find similar contrac-
tion widths, Hyper-Par achieves a much lower
contraction cost. This is likely due to its ability
to search imbalanced partition contraction trees
such as ‘Schrödinger style’ (full wavefunction)
evolution. Note that for the entangling gates an
approximate swapped χ=2 decomposition can be
made, resulting in a drop in fidelity based on how
many of the m layers of gates this is applied to.
The qFlex/PEPs method results in [45] make use
of this in the first and last layer of gates for a
drop in total fidelity of ∼5% that reduces W by
∼4 and C by ∼24. We only show the exact results
here so as to compare all methods on exactly the
same footing. If the swapped decomposition is
used for all layers (Sycamore-53*) then at m=20
the corresponding drop in total fidelity is likely
to be ∼50%. For the best performing optimizers
in Fig. 9(c) and (f) we find little gain in doing so.
We also emphasize that for the highest values of
m, the estimates for classical computation cost
in [45] are not based on the qFlex [81] simulator
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Figure 9: Mean contraction width (upper row) and cost (lower row) as a function of gate depth (or number of
‘cycles’) for perfectly simulating a single output amplitude of random quantum circuits defined on three different
qubit geometries – Rectangular-7x7 (left column), Bristlecone-70 (central column) and Sycamore-53 (right column)
– for different contraction path optimizers each allowed an hour to search. The shaded regions show the standard
deviation across 10 random circuit instances, non-zero despite the network structure of each being identical, since all
optimizers but the qFlex/PEPs approach are naturally stochastic.

and moreover involve the unbiased sampling of
many bit-strings at low fidelity.

4.7 Practical Performance

In this final results section, we examine how the
high quality contraction paths obtained so far
transform into practical performance. Whilst the
contraction cost estimates the time complexity of
contracting a tensor network, this is irrelevant if
the contraction width is too large to fit the com-
putation into available memory. One method to
bring down the space requirement of any con-
traction is slicing, also known as ‘variable pro-
jection’ [41] or ‘bond cutting’ [81].

4.7.1 Slicing

A tensor network can always be thought of as |E|
nested summations of the product of the entries
of the |V | tensors. Such an expression is asso-
ciative and a contraction tree is equivalent to a
re-arrangement of the summations and the inser-
tion of a sequence of |V | − 1 parentheses defining

intermediate tensors to form. However, we can
also choose to perform any subset of the summa-
tions last, moving them back to the exterior of
the expression. We’ll call the corresponding set
of indices ssliced. For each fixed value of this exte-
rior sum, the remaining expression corresponds
to a tensor network of |V | nodes, but with all
the edges in ssliced removed. In each network,
the fixed value of indices corresponds to taking
slices of any tensors with those indices. The to-
tal number of such sliced tensor networks is then
dsliced =

∏

e∈ssliced
w(e), each of which can be con-

tracted independently, optionally using the same
tree as the original network.

The advantage of doing this is twofold: (i) the
contraction width and thus required memory of
each sliced tensor network, Ws, is generally re-
duced; and (ii) the sum over independent contrac-
tions is ‘embarrassingly parallel’ and so can be
easily distributed. The disadvantage is that the
contraction cost of each sliced tensor network gen-
erally increases beyond C/dsliced (due to redun-
dantly repeated contractions) meaning the total
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Figure 10: Sliced contraction width vs. cost for com-
puting a single amplitude of an m = 20 cycle random
Sycamore circuit using the Hyper-Par optimizer. The
two sets of markers correspond to how the fSim gate is
applied: either the tensor is not decomposed and left
rank-4, or the two qubits are first swapped and then a
decomposition is performed with only the two dominant
singular values kept – Sycamore-53 and Sycamore-53*
respectively. Points joined by a line are sliced from the
same original contraction tree, with colour given by what
contraction width was being targeted by the Bayesian
optimization. Each optimizer targeting a particular Ws

was allowed 1 hour to search.

sliced cost, Cs, rises. Choosing which indices to
slice is thus a balancing act between reducing the
memory footprint without increasing the cost too
much.

We employ a method similar to [41] to choose
which indices to slice. Given a contraction tree B,
it is simple to compute the new width and cost
with any index removed using Eqs. (3) and (6).
We greedily choose single indices to slice based
on this, repeating the process until the sliced
contraction tree width reaches the desired target.
Repeating this process a few times with a slight
randomization to the cost score allows us to sam-
ple a moderate number of combinations for ssliced

and choose whichever achieves target Ws whilst
minimizing Cs. Crucially, we can slice trial con-
traction trees and report Cs within the Bayesian
optimization loop, thus explicitly targeting paths
which slice well.

In Fig. 10 we demonstrate the effect of differ-
ent levels of slicing for the deepest Sycamore-53
circuit (m=20), with either no fSim gate decom-
position, or the approximate χ=2 gate decompo-
sition for all layers (Sycamore-53*), which now
shows an appreciable benefit. We allow the opti-
mizer an hour to find paths with the lowest Cs

for a given targetWs. If a path targeting a neigh-

bouring Ws achieves a lower Cs, this is shown in-
stead, and the points connected by a line. One
can see that the required memory can be brought
down by a factor of ∼ 16, 000 whilst keeping the
FLOPs increase < 10. Across this same range
performing the swapped decomposition yields no
benefit. Beyond that, the increase to Cs becomes
significant, with the swapped decomposition be-
coming advantageous for heavily sliced contrac-
tions. For reference, WS ∼ 27 is required to fit a
contraction on a standard consumer GPU. Inter-
estingly, the paths which achieve lowest overall
Cs when targeting a large Ws (dark purple), are
not good candidates for heavy slicing (yellow).
Instead, the Bayesian optimizer targets a variety
of different paths specific to each level of slicing.

4.7.2 Benchmarks

To demonstrate that the contraction paths and
calculated costs translate well into real world per-
formance, we here report actual times for con-
tracting a single perfect fidelity amplitude on a
single GPU for various circuits. All tensor net-
work manipulations and contractions were per-
formed using quimb [63]. For each run, we al-
low the path optimizer to search for 1 hour in
the space of paths sliced to Ws = 27. We then
compile the resulting contraction using JAX [86]
and run it on a NVIDIA Quadro P2000 which
has 5GB of memory and theoretical single pre-
cision performance of 3.031 teraFLOPs. Both
the path finding and compilation time are one-off
costs per circuit and the times we report are only
for performing the contraction. All the examples
shown require some degree of slicing to fit onto
the GPU, so we also show the sliced cost and how
this compares to the best non-sliced cost. This
slicing overhead is the increase in cost induced
by squeezing the contraction into 5GB of mem-
ory. Finally we compare the achieved FLOP rate
to theoretical maximum for the GPU.

The results are shown in Tab. 2. For this
specific task, and to the best of our knowledge,
these generally represent state-of-the-art perfor-
mance. For the rectangular and Bristlecone ge-
ometries, there is little inefficiency induced by
slicing the contractions down to fit into memory.
On the other hand, the performance extracted
from the GPU via JAX is not great, likely due
to the fact that the corresponding tensor net-
works have hyper-edges resulting in pairwise con-
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Circuit time (sec) Cs Slicing Overhead (Cs/Cbest) dsliced FLOPs Efficiency

Bristlecone-70 (1+32+1) 4.18 × 10−1 4.91 × 1010 1.24× 2 31.0%

Bristlecone-70 (1+36+1) 1.74 × 101 2.06 × 1012 1.05× 25 31.1%

Bristlecone-70 (1+40+1) 2.77 × 102 3.14 × 1013 1.65× 28 29.9%

Rectangular-7×7 (1+32+1) 3.38 × 10−1 2.84 × 1010 1.49× 2 22.2%

Rectangular-7×7 (1+40+1) 4.80 × 101 8.12 × 1012 1.35× 27 44.6%

Rectangular-7×7 (1+48+1) ∗9.40 × 104 1.20 × 1016 1.33× 218 33.7%

Sycamore-53 (m=12) 5.74 × 102 1.80 × 1014 7.51× 29 82.6%

Sycamore-53 (m=14) ∗4.98 × 103 1.37 × 1015 13.6× 212 72.8%

Sycamore-53 (m=16) ∗8.01 × 106 2.41 × 1018 13.0× 222 79.4%

Sycamore-53 (m=18) ∗8.18 × 107 2.64 × 1019
42.6× 224 85.2%

Sycamore-53 (m=20) ∗9.74 × 1010 3.10 × 1022
6410× 234 84.1%

Sycamore-53* (m=12) 7.87 × 102 2.42 × 1013 1.67× 29 8.16%

Sycamore-53* (m=14) ∗2.92 × 103 2.53 × 1014 2.63× 212 22.9%

Sycamore-53* (m=16) ∗3.01 × 106 3.43 × 1017 7.43× 222 30.1%

Sycamore-53* (m=18) ∗2.66 × 107 3.62 × 1018 11.3× 224 36.0%

Sycamore-53* (m=20) ∗7.17 × 109 1.50 × 1021
431× 232 55.3%

Table 2: Benchmark times and other information for computing a single amplitude of random circuits, in single
precision. The time shown is for the contraction only, using a NVIDIA Quadro P2000 for which a target sliced
contraction width Ws = 27 suffices for its 5GB of memory. Times with an asterisk are estimates extrapolated from
computing the first 100 of dsliced contractions. The sliced cost, Cs, is always higher than the best cost without slicing,
Cbest (shown in Figs. 9(d), (e) and (f)). As such, the ‘slicing overhead’ indicates the inefficiency induced by squeezing
the contraction into 5GB. The FLOPs efficiency compares the theoretical single precision performance of the Quadro
P2000, 3.031 teraFLOPs, with (8Cs/time).

tractions that do not dispatch to matrix-matrix
multiplication. For Sycamore-53, there are no
hyper-edges and the realised FLOP rate is close
to the theoretical limit of the GPU. On the other
hand, there is much greater inefficiency induced
by slicing the contractions down toWs = 27. For
m = 20 this overhead is very significant, rep-
resenting the far right point of Fig. 10. From
that same figure it can be seen that perform-
ing the swapped decomposition alleviates the slic-
ing overhead, and indeed we find this to be the
case with the Sycamore-53* benchmarks, though
the introduction of hyperedges again lowers the
FLOPs efficiency. From Fig. 10 it can also be
seen that there are steady gains to be made by
allowing a higherWs, either through simply more
memory or moving to a distributed computing
setting. In the latter case, sliced indices might
instead be suggestive of how to partition the ini-
tial tensors.

4.7.3 Estimated Runtime of Sampling Sycamore

So far the reported contraction costs have been
those associated with computing a single transi-
tion amplitude of the circuit with perfect fidelity.
In order to classically simulate taking M approx-

imately unbiased samples of the circuit at fidelity
f we require a few extra steps.

Firstly, since the circuits in [45] are chaotic,
rather than computing the probability distribu-
tion over all bit strings we can assume that any
marginal distribution on Nu qubits is uniform
once a certain number of qubits, Nf , are traced
out. We can therefore uniformly select a bit-
string, xu, to fix the final state of the first Nu

qubits to, and simply compute the the probabil-
ity distribution over the remainingNf qubits con-
ditioned on xu. If we sample xf from this final
marginal, with probability given by

p(xf |xu) =
1

Z
| (〈xu| ⊗ 〈xf |) |ψ〉 |2 , (22)

for some normalization Z, then the bitstring
xuxf will be an approximately unbiased sample
from ψ. Crucially, if Nf is small enough and
the qubits chosen sensibly, the cost of computing
p(xf |xu) for all 2Nf final bitstrings, {xf }, is gen-
erally very similar to that of computing a single
amplitude. The TN contracted here is now like
Eq. (19) but with Nf output indices left open.
Secondly, we can simulate fidelity f by sampling
from ρ = (1 − f)1/2N + f |ψ〉 〈ψ|, which in prac-
tice means yielding with probability f a bitstring
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from ψ but uniformly sampled bitstrings the re-
mainder of the time. If ψ itself has fidelity g we
can take f → f̃ = f/g to compensate.
In [65], sliced tensor network contractions were

performed on the supercomputer Summit, which
we can use as a basic reference to estimate
the cost of classically simulating the supremacy
task [45]. The contractions here involve no
caching or communication between nodes, but
do make use of out-of-core contractions, enabling
a sliced width of Ws=32. If we take Nf = 6
on Sycamore-53* (qubits 10, 17, 26, 36, 27, 18)
we find a sliced contraction cost of Cs = 1020.17,
which in reference to Fig. 10 is indeed very sim-
ilar to single amplitude cost. To sample M =
1, 000, 000 bitstrings at fidelity f = 0.002 with
wavefunction fidelity g ∼ 0.5 (due to swapped
fSim decompositions) we thus need to perform
Mf

g
= 4000 contractions. In [65] a sustained rate

of 281 petaFLOPs was achieved, corresponding
to a 68% FLOPs efficiency. Taking this as an
upper bound we get

8 × 1020.17 × 4000

281 × 1015
= 195 days (23)

to perform the task, or 241 days if we take the
FLOPs efficiency of 55% from Table 2. Both rep-
resent a speed-up of over 10, 000× with regard to
the estimated time of performing the sampling
task classically in [45]. Reducing the slicing over-
head via distributed contraction or better slicing
algorithms might well bring this down further.
Another interesting prospect is whether fidelity
f can be targeted via an algorithm with better
speed-up than the basic 1/f here.

5 Summary and conclusion

We have introduced heuristic algorithms for the
contraction of arbitrary tensor networks that
show very good performance across a range of
benchmarks. These explicitly construct a con-
traction tree and target the cost of all opera-
tions in the contraction. Through a stochastic
hyper-optimization over the parameters of each
of the algorithms, we obtain near-optimal con-
traction paths that yield exponential speedups
over the state-of-the-art contraction algorithms.
We find that the contractor based on hypergraph
partitioning, in particular, often outperforms all
other methods. We demonstrated how this trans-
lates to superior performance in the simulation of

computing amplitudes on Google quantum chips.
In particular, we have estimated a speed-up of
over 10,000× compared to the original expecta-
tion for the classical simulation of the Sycamore
‘supremacy’ circuits.

While our contraction path optimization meth-
ods find near-optimal paths for all the bench-
marks we have tried, in some cases their advan-
tage over less sophisticated methods is modest.
The reason is that for the associated families of
graphs, e.g., planar graphs and grids, good con-
traction paths are easy to find by either inspec-
tion or naive greedy search. In all other cases,
however, the performance advantage over already
established tensor network contraction methods
is much more pronounced.

Due to the generality of tensor networks, our
results can help advance applications in a vari-
ety of fields. The algorithms introduced here
can be directly employed in the calibration of
ever larger quantum chips, with techniques such
as cross-entropy benchmarking. They can also
form the basis of decoders based on contraction
of disordered tensor networks, an increasingly
important component of quantum error correc-
tion [87–89]. They are also immediately appli-
cable to computational tasks related to artificial
intelligence, such as inference and model count-
ing [44], to reliability engineering [10], and more.
While without slicing our hyper-optimized con-
tractors essentially achieve optimality in practice
for the vast majority of problem instances, im-
provements in slicing strategies may be attain-
able. Finally, incorporating controllable schemes
for approximate contractions into the methodol-
ogy introduced here is a promising domain of fu-
ture research. At a most basic level, one can
easily perform truncated singular value decom-
positions after every few contraction steps of our
algorithms, which would further increase perfor-
mance (even to polynomial time and space, de-
pending on the truncation scheme) at the ex-
pense of accuracy. This may enable computa-
tions of observables in quantum many-body sys-
tems with disorder or irregular geometries, which
have so far remained mostly out of the reach of
tensor network methods.
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[2] R. Orús, Ann. Phys. (N. Y). 349, 117 (2014).

[3] J. C. Bridgeman and C. T. Chubb, J. Phys.
A Math. Theor. 50, 223001 (2017).

[4] J. D. Biamonte and V. Bergholm,
arXiv:1708.00006 (2017), arXiv:1708.00006
.

[5] M. Levin and C. P. Nave, Phys. Rev. Lett.
99, 120601 (2007).

[6] G. Evenbly and G. Vidal, Phys. Rev. Lett.
115, 180405 (2015).

[7] G. Evenbly, Phys. Rev. B 95, 045117 (2017).

[8] A. Cichocki, N. Lee, I. Oseledets, A.-H.
Phan, Q. Zhao, and D. P. Mandic, Found.
Trends Mach. Learn. 9, 249 (2016).

[9] A. Cichocki, N. Lee, I. Oseledets, A.-H.
Phan, Q. Zhao, M. Sugiyama, and D. P.
Mandic, Found. Trends Mach. Learn. 9, 431
(2017).

[10] L. Dueñas-Osorio, M. Y. Vardi, and J. Rojo,
Struct. Saf. 75, 110 (2018).

[11] I. L. Markov and Y. Shi, SIAM J. Comput.
38, 963 (2008).

[12] E. Stoudenmire and D. J. Schwab, in
Advances in Neural Information Process-
ing Systems 29 , edited by D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (Curran Associates, Inc., 2016)
pp. 4799–4807.

[13] E. M. Stoudenmire, Quantum Sci. Technol.
3, 034003 (2018).

[14] C. Roberts, A. Milsted, M. Ganahl, A. Zal-
cman, B. Fontaine, Y. Zou, J. Hidary, G. Vi-
dal, and S. Leichenauer, arXiv:1905.01330
(2019), arXiv:1905.01330 .

[15] H. C. Jiang, Z. Y. Weng, and T. Xiang,
Phys. Rev. Lett. 101, 090603 (2008).

[16] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80,
155131 (2009).

[17] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu,
L. P. Yang, and T. Xiang, Phys. Rev. B 86,
045139 (2012).

[18] H.-H. Zhao, Z. Y. Xie, T. Xiang, and
M. Imada, Phys. Rev. B 93, 125115 (2016).

[19] M. Bal, M. Mariën, J. Haegeman, and
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