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A new generalized hyper-parallel tempering Monte Carlo simulation method is presented. The

method is particularly useful for simulation of many-molecule complex systems, where rough

energy landscapes and inherently long characteristic relaxation times can pose formidable obstacles

to effective sampling of relevant regions of configuration space. In this paper, we demonstrate the

effectiveness of the new method by implementing it in a grand canonical ensemble for the

Lennard-Jones fluid and the restricted primitive model. Coexistence curves and critical behavior

have been explored by the new method. Our numerical results indicate that the new algorithm can

be orders of magnitude more efficient than previously available techniques. © 1999 American

Institute of Physics. @S0021-9606~99!50945-8#

I. INTRODUCTION

Molecular simulations of complex systems are difficult,

particularly at low temperatures, because configurations can

get easily trapped in local energy minima, thereby precluding

sampling of other, relevant regions of phase space. The in-

herently long characteristic relaxation times that often pre-

vail in complex fluids further aggravate matters. Over the

last few years several, powerful methods have been proposed

to overcome the first difficulty; some examples are provided

by multicanonical sampling,1,2 1/k sampling,3 simple

tempering,4,5 expanded ensembles,6 J-walking,7,8 and parallel

tempering.9–11 While these methods are relatively effective

at overcoming high-energy barriers, they do little to ‘‘accel-

erate’’ the slow relaxation of complex, many-molecule sys-

tems at low temperatures.

It has been increasingly recognized that open ensembles

provide an effective means for overcoming slow-relaxation

problems; molecules can get in and out of a system, thereby

circumventing diffusional bottlenecks. In this paper we draw

elements from simple and parallel tempering, J-walking, ex-

panded ensembles, and histogram reweighting to propose a

new, powerful Monte Carlo method for simulation of many-

molecule systems. In doing so we combine the proven ben-

efits of tempering or extended ensemble techniques with

those of open-ensemble simulations. In this new method,

configurations can hop simultaneously along several inten-

sive variables. Furthermore, our formulation is well-suited

for further combinations of expanded ensemble ~or ‘‘simple

tempering’’! with parallel tempering. To distinguish our

more general formulation from conventional ~one-variable!
parallel tempering, throughout this manuscript we refer to

the new method as ‘‘hyper-parallel tempering Monte Carlo’’

~HPTMC!. As shown in this manuscript, hyper-parallel tem-

pering is significantly more efficient than existing methods

for simulation of phase transitions. The new algorithm is

relatively simple, and has the added benefit of being easily

incorporated into molecular-dynamics or Monte Carlo simu-

lation programs with minor modifications to existing codes.

In order to demonstrate the usefulness of HPTMC, in

this paper, we have chosen to work with two systems: The

Lennard-Jones fluid and the restricted primitive model of

electrolyte solutions. On the one hand, the Lennard-Jones

fluid has generally been adopted as a benchmark system on

which to test new algorithms. Extensive studies of its phase

behavior facilitate significantly comparisons to literature data

and to existing algorithms. On the other hand, the restricted

primitive model has attracted considerable interest over this

past decade; its liquid–liquid phase transition at low tem-

peratures has posed a challenge to theoreticians, and litera-

ture data have often been called into question. We use

HPTMC to study that phase transition.

The paper is organized as follows. We begin by describ-

ing in detail how hyper-parallel tempering works. We then

define the models and give a brief description of method-

ological technicalities used in our work, such as histogram

reweighting and finite-size scaling techniques. We then

present the results for the Lennard-Jones fluid and the re-

stricted primitive model, and we compare these to available

data. We conclude the paper by discussing the advantages

and disadvantages of the new method, and by outlining some

of its possible future applications.

II. HYPER-PARALLEL TEMPERING MONTE CARLO

For the sake of generality, we consider an arbitrary en-

semble whose partition function is given by

Z5(
x

V~x !w~x !)
j

exp~ f j q j~x !!, ~1!

where x denotes the state of the system, V(x) is the density

of states, w(x) is an arbitrary weighting function for state x,

f j’s are generalized forces or potentials, and the q j’s are the

corresponding conjugate generalized coordinates of the sys-

tem. A grand canonical ensemble can thus be recovered by

setting

w~x !5exp~2bU~x !!, f 5bm , q~x !5N~x !, ~2!
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where b51/kBT , T is temperature, U(x) is the potential en-

ergy corresponding to configuration x, m is the specified

chemical potential, and N(x) is the number of particles in

configuration x. Alternatively, an isobaric-isothermal NPT

ensemble can be recovered by setting

w~x !5exp~2bU~x !!, f 52bP , q~x !5V~x !, ~3!

where V(x) is the volume that corresponds to configuration

x.

We now consider a composite ensemble consisting of M,

noninteracting replicas of the above mentioned ensemble,

each at a different set of generalized forces and weighting

function. The complete state of the composite ensemble is

specified through x5(x1 , x2 , . . . , xM)T, where x i denotes

the state of the ith replica. We define the partition function of

the composite ensemble according to

Zc5)
i51

M

Z i . ~4!

The un-normalized probability density of the composite state

x is given by

p~x!5)
i51

M

w i~x i!)
j

exp~ f j ,i q j~x i!!. ~5!

To sample configurations from the composite ensemble,

a Markov chain is constructed in such a way as to asymp-

totically generate configurations according to the limiting

distribution function appearing in Eq. ~5!. Two types of trial

moves are used to realize that Markov chain:

~1! Standard Monte Carlo trial moves are used to locally

update each of the replicas of the system. Since replicas

do not interact with each other, standard Metropolis

acceptance–rejection criteria ~for the underlying en-

semble! are employed within each replica.

~2! Configuration swaps are proposed between pairs of rep-

licas i and i11, so that

x i
new

5x i11
old ,

~6!
x i11

new
5x i

old .

To enforce a detailed-balance condition, the pair of replicas

to be swapped is selected at random, and the trial swap is

accepted with probability:

pacc~x i↔x i11!5minF1,
w i~x i11! w i11~x i!

w i~x i! w i11~x i11!

3)
j

exp~2D f j Dq j!G , ~7!

where D f j5 f j ,i112 f j ,i is the difference in generalized force

f j between the two replicas, and Dq j5q j(x i11)2q j(x i) is

the difference of the corresponding conjugate generalized co-

ordinates.

So far tempering has been discussed for the case in

which several fields are sampled at the same time. A further

generalization is to now couple the technique to that of ex-

panded ensembles ~or ‘‘simple tempering’’!, so one can

simulate long polymer chains at high densities more effi-

ciently. In this latter generalization, the whole simulation

system consists of several expanded grand canonical en-

sembles. Each replica includes a tagged chain, whose length

fluctuates during the simulation. When a swap trial move is

attempted, these tagged chains are also switched. The corre-

sponding acceptance criterion can be obtained by following a

development analogous to the one presented above. More

details of the generalization and its application are given

elsewhere.27

III. MODELS AND SIMULATION METHODS

A. Models

In this work, we apply the hyper-parallel tempering

method to two different molecular models. The first is the

Lennard-Jones fluid. The potential energy between a pair of

particle i and j, separated by a distance r i j , is defined by

U i j54eF S s

r i j
D 12

2S s

r i j
D 6G , ~8!

where e is the depth of the attractive well, and s is a param-

eter that controls the size of the particles. In this work, the

Lennard-Jones potential-energy function is truncated at a

cutoff distance rc . To be consistent with previous studies,

we choose rc52.5s , and the potential is left unshifted.

The restricted primitive model ~RPM! of an ionic solu-

tion consists of 2N hard spheres of diameter s , half of them

carrying a negative charge and the other half carrying a posi-

tive charge. A solvent is not modeled explicitly; instead, it is

simply considered as a dielectric continuum with dielectric

constant D. The charged spheres interact via a Coulomb po-

tential,

U i j5H 1` , r i j>s

e2

4pDD0

z iz j

r i j

, r i j,s
, ~9!

where z ie and z je are the charges carried by ions i and j,

respectively, e is the charge of the electron e51.602

310219 C, and D0 is the dielectric permeability of vacuum,

D058.85310212 C2 N21 m22. Note that the restricted

primitive model requires that uz iu5uz ju.
Throughout this work results are reported in reduced

units. For the Lennard-Jones fluid, the reduced temperature

is defined as T*5kBT/e , where kB is Boltzmann’s constant.

The reduced density is defined as r*5Ns3/V , with N being

the number of particles and V the volume of the simulation

box. For the restricted primitive model, the reduced tempera-

ture is defined as T*54pDD0skBT/e2, and the reduced

density is given by r*52Ns3/V .

B. Simulation details

In this work, the hyper-parallel tempering method is

implemented in the grand canonical ensemble. By substitut-

ing Eq. ~2! into Eq. ~7!, we arrive at the following accep-

tance criteria for swapping two replicas:

pacc~x i↔x i11!5min@1,exp~DbDU2D~bm !DN !#
~10!
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where Db5b i112b i , DU5U(x i11)2U(x i), D(bm)

5b i11m i112b im i , and DN5N(x i11)2N(x i).

Two kinds of trial moves are employed, namely, trial

displacements of particles and trial creations or destructions

of particles. The relative frequency of these two kinds of trial

moves is set to be unity. For the restricted primitive model,

the conventional Ewald sum method is used to calculate

long-range contributions to the energy arising from the slow-

decaying Coulomb potential. Conducting boundary condi-

tions are employed in our calculations; It has been pointed

out in the literature that such a boundary condition is essen-

tial for simulations of ionic systems.20,21 Particle creations

and destructions are conducted in pairs to preserve electro-

neutrality. A distance-bias Monte Carlo scheme is also em-

ployed to further facilitate particle transfer moves.23

During the simulation, the number of particles N and the

total potential-energy U of each replica is recorded. The joint

distributions p(N ,U) are accumulated in the form of a his-

togram. Note that for the restricted primitive model, N is the

number of particle pairs ~the chemical potential is defined as

the total chemical potential per ion pair!.

C. Histogram reweighting technique

The histogram reweighting technique12–14 is designed to

extract a maximal amount of information from the results of

a set of molecular simulations. It has been widely used to

determine the near-critical and sub-critical coexistence prop-

erties of fluids. For completeness, in this work we provide a

brief description of its implementation; for additional details,

readers are referred to the original publications. In a grand

canonical simulation, the relevant thermodynamic variables

are the temperature T and the chemical potential m . A simple

grand canonical simulation can be conducted at T5T0 and

m5m0, and a two-dimensional histogram of energy and

number of molecules can be constructed. The entries to such

a histogram H(N ,U) represent the number of times that the

system is observed with N particles and potential-energy U.

If the total number of realizations of the system is denoted by

K, the probability P(N ,U ,T0 ,m0) that the system has N par-

ticles and energy U at T0 and m0 is given by

P~N ,U ,T0 ,m0!5H~N ,U !/K . ~11!

The probability distribution for a grand canonical ensemble

is given by

P~N ,U ,T ,m !5

V~N ,V ,U !exp~2bU1Nbm !

J~m ,V ,T !
, ~12!

where V(N ,V ,U) is the microcanonical partition function

~density of states at N and U), and J is the grand partition

function, given by

J~m ,V ,T !5(
N

(
U

V~N ,V ,U !exp~2bU1Nbm !.

~13!

Combination of Eqs. ~11! and ~12! provides a Monte

Carlo estimate of V(N ,V ,U), given by

V~N ,V ,U !5wH~N ,U !exp~b0U2Nb0m0!, ~14!

where w5J(m ,V ,T)/K is a proportionality constant. Be-

cause V(N ,V ,U) is independent of T and m , the probability

that the system has N particles and energy U at a different

state point T and m can be estimated according to

P~N ,U ,T ,m !

5

H~N ,U !exp@2~b2b0!U1N~bm2b0m0!#

(N(UH~N ,U !exp@2~b2b0!U1N~bm2b0m0!#
.

~15!

The average value of any function of N and U can therefore

be estimated from

^A&5(
N

(
U

A~N ,U !P~N ,U ,T ,m !. ~16!

In practice, the extrapolation scheme provided by Eq. 15 is

only useful if the distance between (T0 ,mp) and (T ,m) is not

too large. The range of energy and number of particles cov-

ered by a single histogram is limited, and extrapolations be-

yond that range are unfounded.

In order to expand the applicability of the histogram re-

weighting technique, several simulations can be carried out

at different state points. Such simulations have traditionally

been conducted independently of each other, i.e., in series. In

this work, such simulations are conducted in parallel accord-

ing to our tempering scheme; each replica corresponds to a

different state point, and the resulting histograms are com-

bined to generate thermodynamic predictions over a wide

range of conditions.

The underlying bridge to combine multiple histograms is

the fact that the microcanonical partition function

V(N ,V ,U) is independent of temperature and chemical po-

tential. Estimates of V(N ,V ,U) by Eq. ~14! from different

simulations should be consistent with each other ~within the

statistical uncertainty of the calculations!. If histograms from

different runs overlap sufficiently, it is possible to find a set

of proportionality constants $w% so that this requirement is

fulfilled. An optimal estimate of V(N ,V ,U) can then be de-

termined as a weighted average of V’s extracted from dif-

ferent runs. Ferrenberg and Swendsen proposed an efficient

method to determine the sought-after proportionality con-

stants and the weighting factors: for R simulation runs, the

optimal ~unnormalized! probability distribution is given by

P~N ,U;m ,b !5

(n51
R Hn~N ,U !exp~2bU1Nbm !

(m51
R Km exp~2bmU1Nbmmm2Cm!

,

~17!

where Km is the total number of realizations in run m. The

constants Cm must be determined self-consistently by the

iterative relationship

exp~Cm!5(
N

(
U

P~N ,U;mm ,bm!. ~18!

In this work, we use a quasi-Newton method to solve the

nonlinear equations @Eqs. ~17! and ~18!#.
At sub-critical temperatures, the grand canonical density

distribution is characterized by a double peaked structure,

provided the chemical potential is close to the coexistence
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value. If the so-called ‘‘two-state’’ approximation is

adopted,19 the criteria for phase equilibrium are equivalent to

requiring that the areas under the two peaks be equal. The

determination of the precise location of a coexistence point

can, therefore, be achieved by simply tuning the chemical

potential at any given temperature, until the areas under the

two peaks become the same; the coexisting densities of the

two coexisting phases then correspond to the mean densities

under these two peaks.

D. Mixed-field finite-size scaling

The periodic boundary conditions generally employed in

molecular simulations suppress long-range fluctuations; near

a critical point, thermodynamic properties calculated by

simulation are, therefore, different from those corresponding

to the thermodynamic limit. However, it is possible to esti-

mate with high accuracy the coordinates of the critical point

by resorting to finite-size scaling techniques.15,16

For the systems studied here, the relevant scaling fields

consist of combinations of the temperature and chemical po-

tential and are given by

t5bc2b1s~m2mc!, ~19!

h5m2mc1r~bc2b !,

where t is the thermal scaling field, h is the ordering scaling

field, and subscript c serves to denote a quantity evaluated at

the critical point. Parameters s and r, which control the de-

gree or extent of field mixing, are system specific.

Conjugate to the two scaling fields are two scaling op-

erators, namely, the ordering operator M and an energy-like

operator E. They consist of linear combinations of the par-

ticle density r and the energy density u5U/V

M5

1

12sr
~r2su !, ~20!

E5

1

12sr
~u2rr !.

For the simple case of models with Ising symmetry ~where

s5r50), M is simply the magnetization and E is just the

energy density.

In the critical region, the probability distributions of M

and E exhibit a scaling behavior of the form

PL~M!5ALb/nPM
* ~ALb/ndM!,

~21!
PL~E!5BL (12a)/nPE

*~BL (12a)/ndE!

where a , b , and n are universal critical point exponents. the

fixed point limiting operator distributions PM
* and PE

* are

also universal for all systems of a given universality class.

The quantities dM and dE measure deviations from critical-

ity; dM5M2Mc , dE5E2Ec ; A and B are system-

specific constants.

For the Ising universality class, the universal distribution

functions mentioned above can be estimated from high-

resolution Monte Carlo simulations.17 To estimate the critical

point of an Ising-class fluid, the temperature, chemical po-

tential and the mixing parameters are tuned so that the re-

sulting distributions PL(M) and PL(E) collapse onto those

of the Ising model. Values corresponding to the thermody-

namic limit can be estimated by extrapolating finite-size val-

ues according to the scaling behavior

Tc~L !2Tc~` !}L2(u11)/n, ~22!

rc~L !2rc~` !}L2(12a)/n, ~23!

where a , u , and n are universal exponents. For the 3D

~three-dimensional! Ising universality class, a'0.11, u
'0.54, b'0.312, and n'0.629.

IV. RESULTS AND DISCUSSION

A. Results for Lennard-Jones fluids

In our calculations for Lennard-Jones fluids, we used 18

replicas, each having a box size L57s . The temperature and

chemical potential of each replica are reported in Table I.

These values were selected to guarantee frequent swaps be-

tween replicas. Configuration swaps were attempted every

10 Monte Carlo steps; a total of 106 Monte Carlo steps were

performed to generate the energy and density histograms re-

quired to construct joint (N ,U) distributions for each replica.

During a simulation, we keep track of ‘‘physical’’ repli-

cas as well as ‘‘logical’’ replicas. A physical replica is an

actual collection of atoms that we follow throughout the

course of the simulation. A logical replica is whatever con-

figuration happens to visit a specific box at some specified

conditions of temperature and chemical potential ~e.g., box i,

at m i and T i). Figure 1 shows the evolution of a logical

replica at T*50.73 and bm525.30, as a function of Monte

Carlo steps; the ordinate axis indicates which physical rep-

lica happens to be visiting the logical replica at T*50.73 at

any given time during the simulation. This serves to illustrate

how configurations are swapped during the course of the

simulation. As can be inferred from Fig. 1, a physical replica

visits each logical replica relatively frequently and uni-

formly. After a successful configuration swap, two logical

replicas adopt a completely new configuration. Further, con-

figurations corresponding to logical replicas at low tempera-

tures and high densities are ‘‘passed’’ over to logical replicas

at higher temperatures and lower densities; such configura-

tions can then relax more expeditiously and then be passed

back to lower temperature replicas. This process greatly ac-

TABLE I. Temperatures and chemical potentials used for the simulation of

the truncated Lennard-Jones fluid, where T*5kBT/« , with kB being Boltz-

mann’s constant.

Replica T* bm Replica T* bm

1 1.20 22.74 10 0.82 24.52

2 1.17 22.83 11 0.79 24.76

3 1.11 23.02 12 0.76 25.02

4 1.07 23.18 13 0.73 25.30

5 1.03 23.35 14 0.70 25.63

6 0.99 23.51 15 0.67 25.99

7 0.94 23.75 16 0.64 26.38

8 0.90 23.98 17 0.62 26.66

9 0.86 24.23 18 0.60 26.97
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celerates the relaxation of the global system and facilitates

sampling of phase space under adverse conditions of tem-

perature and chemical potential.

Figure 2 shows the probability density of the marginal

distribution for the number of particles in the logical replica

at T*50.73 and bm525.30. The chemical potential of that

replica corresponds to a thermodynamic state slightly off the

saturated liquid line. We would like to emphasize the occur-

rence of two distinct peaks in that density distribution. Given

the fact that the temperature is well below the critical tem-

perature, the observed ‘‘tunneling’’ behavior between a con-

densed phase and its vapor indicates that the large free-

energy barrier associated with the vapor–liquid phase

transition can be overcome by the hyper-parallel tempering

method. Such a crossing of high-energy barriers greatly fa-

cilitates the simulation of phase transitions. In contrast to a

multicanonical sampling method, this tunneling is achieved

by simple configuration swaps, rather than by artificial, trial-

and-error flattening of free energy barriers; intermediate

samples in unstable regimes are not necessary in this algo-

rithm.

To demonstrate how accurately the new method can

sample the relative weights of the two peaks, we also show

in the figure the ‘‘real’’ density probability distribution cor-

responding the same thermodynamic conditions; the latter

was calculated from histogram reweighting of data obtained

from all 18 boxes. For clarity, that distribution is shifted by

0.05.

Figure 3 shows the phase diagram calculated from his-

tograms corresponding to all 18 logical replicas. Also shown

are literature data for the same fluid.18 As expected from a

correct algorithm, the agreement between the two sets of data

is satisfactory. The slight discrepancies at high temperatures

are due to different definitions of the equilibrium saturated

density. In this work we regard the mean density correspond-

ing to a peak of the distribution as the equilibrium value;

Wilding defines it as the peak value of the distribution. As

can be seen in Fig. 3, the proposed method is able to gener-

ate phase equilibrium data at temperatures and densities in

the near vicinity of the triple point of the truncated Lennard-

Jones fluid ~e.g., T*50.60 and r*50.86). A simple Gibbs

ensemble method or conventional grand canonical simula-

tions would be difficult and unreasonably demanding under

such conditions.

FIG. 4. Autocorrelation function for the average potential energy per atom

for a Lennard-Jones fluid, corresponding to the lowest temperature replica

(T*50.60, bm526.97). The solid line corresponds to results of hyper-

parallel tempering simulations. The dashed line shows results from a con-

ventional grand canonical Monte Carlo simulation.

FIG. 1. Replica number as a function of Monte Carlo steps, for T*50.73

and bm525.30.

FIG. 2. Probability density of the marginal distribution of number of par-

ticles for T*50.73, bm525.30. The solid line represents the original his-

togram for the system at these conditions. The dashed line depicts the com-

bined histogram that results from a full histogram reweighting analysis of all

results at all conditions studied here ~i.e., it is the ‘‘true’’ histogram!.

FIG. 3. Phase diagram ~vapor–liquid equilibria! for a truncated Lennard-

Jones fluid. The squares correspond the results of this work, and the tri-

angles show results reported by Wilding ~Ref. 18!. Statistical errors are

smaller than the symbol size. The solid line is an Ising form fit to the

simulation data.
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As a measure of the efficiency of the new method, we

show in Fig. 4 the autocorrelation function of the average

potential energy per atom, evaluated at the lowest tempera-

ture replica studied here (T*50.60 and r*50.86). As can

be seen in the figure, for hyper-parallel tempering the energy

autocorrelation function decays to zero after about 2000

Monte Carlo ~MC! steps. For a conventional grand canonical

simulation, it decays to zero after about 20 000 steps. From

an energy autocorrelation point of view, hyper-parallel tem-

pering is about one order of magnitude more efficient than

the conventional method. Note, however, that for simulations

of phase transitions, a more appropriate measure of effi-

ciency is provided by the ‘‘tunneling time,’’ i.e., the time

required to observe a jump from a vapor-like phase to a

liquidlike phase during a simulation. A conventional method

is unable to produce such jumps, at least not in a reasonable

amount of time; hyper-parallel tempering routinely gives rise

to such jumps. In this regard, the new method is considerably

more efficient than existing algorithms for open ensembles:

Difficult simulations that were not possible with previously

available techniques could become feasible with HPTMC.

B. Results for the restricted primitive model

In this work, four different box sizes are used for the

restricted primitive model: L513, 15, 16, and 17s . The

length of the runs is about 1 to 23106 MC steps, depending

on the box size. For the L513s box, 13 replicas are used to

get the coexistence curve. For other box sizes, 3–6 replicas

are used, mainly to explore the behavior of the model near

the critical point. The coexistence curve near the critical

point, of course, can also be obtained by these runs. Again,

the values of temperature and chemical potential of these

replicas are chosen close enough to each other so that con-

figuration swaps can occur frequently. Also, they are chosen

to be in the neighborhood of the coexistence curve. Table II

reports the values for L513s .

We estimated the critical point of the restricted primitive

model by matching the order parameter distribution onto the

Ising universal form.17 Figure 5 shows the result of such

matching. As the runs are not too long ~only 1 to 23106 MC

steps!, the quality of the matching is not perfect, but it is still

satisfactory. We also observed that for the smaller boxes,

there are not enough data points on the low-density side; for

the largest box size, however, the situation is much better.

The box-size dependence of the critical temperature and

critical density is shown in Figs. 6 and 7, respectively. Our

estimates of critical temperature and density for infinite box

FIG. 5. Order parameter distributions for the restricted primitive model and

their matching to the limiting Ising universal form. Circles: L513s;

Squares: L516s; Diamonds: L517s .

FIG. 6. Critical temperature scaling with system size for the restricted

primitive model. The circles show results of this work, and the squares show

data reported by Orkoulas et al. ~1999!; note that error bars were not re-

ported by these authors.

FIG. 7. Critical density scaling with system size for the restricted primitive

model. The circles show results of this work, and the squares show data

reported by Orkoulas et al. ~1999!; note that error bars were not reported by

these authors.

TABLE II. Temperatures and chemical potentials used for the simulation of

the restricted primitive model (L513s), where T*54pDD0skBT/e2,

where D is the dielectric constant, D0 the dielectric permeability of vacuum,

kB Boltzmann’s constant, and e is the charge of the electron.

Replica T* bm Replica T* bm

1 0.052 225.82 8 0.045 229.60

2 0.050 226.79 9 0.044 230.25

3 0.0492 227.19 10 0.043 230.92

4 0.0485 227.55 11 0.042 231.66

5 0.0475 228.10 12 0.041 232.43

6 0.0468 228.50 13 0.040 233.24

7 0.046 228.98
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size, along with those reported by earlier researchers, are

summarized in Table III. Within the uncertainty of the cal-

culations, our results are consistent with those reported by

earlier researchers.23,24 Note, however, that our simulations

and extrapolations to infinite size suggest that the precise

value of rc
* is slightly lower than that reported in previous

studies. In addition, Figs. 6 and 7 also show that the slopes of

the linear relationship between the critical parameters and

system size are quite different from those reported by Ork-

oulas et al.23

The coexistence curve of the restricted primitive model

is shown in Fig. 8. Our results are compared with earlier data

reported by Panagiotopoulos,25 Caillol,26 and Orkoulas and

Panagiotopoulos.22,23 Our results exhibit small but systematic

deviations from the latest data reported by Orkoulas and

Panagiotopoulos.23 On the high-density side, our results are

systematically smaller than the reported data, while on the

low-density side, our results are slightly higher. At this point,

the origin of such disagreement is uncertain. One possible

origin could be that in our simulations, metal ~conducting!
boundary conditions are applied in the calculation of the

Ewald sum, while in Orkoulas and Panagiotopoulos work,

vacuum boundary conditions were employed. As mentioned

earlier, it has been argued in the literature that conducting

boundary conditions should be used for simulations of

charged systems. The source of the discrepancy could also be

that the simulation method employed here is more efficient

than that of Orkoulas and Panagiotopoulos, and it therefore,

permits simulations of larger systems with a smaller degree

of correlation between successive configurations; our results

correspond to systems that are generally much larger than

those employed by Orkoulas and Panagiotopoulos.23

In that regard, we would like to draw special attention to

the computational effort required for our simulations. As

mentioned above, 106 configurations were used to construct

the coexistence curve. Multiplying by the number of boxes, a

total of about 107 configurations were generated. Orkoulas

and Panagiotopoulos report that, to obtain results of compa-

rable accuracy using a grand canonical method, about 109

configurations are necessary. These numbers suggest that the

new hyper-parallel tempering method is about two orders of

magnitude faster than grand canonical ensemble simulations

of comparable systems.

V. CONCLUSIONS

In this work, we have presented a new generalized

hyper-parallel tempering Monte Carlo simulation method.

The method has been shown to be superior to conventional

simulation techniques for the study of phase transitions in

fluids. The method has the added benefit of being remarkably

simple to implement. While some preliminary trial and error

runs is necessary to optimize the performance, we found that

this could be done with relative ease. We demonstrated some

of its advantages by applying it to the simulation of a simple

truncated Lennard-Jones fluid, down to temperatures close to

the triple point, and to the simulation of the restricted primi-

tive model. Our results for the Lennard-Jones fluid are com-

pletely consistent with the literature. Our results for the PRM

exhibit small but systematic deviations from those reported

by previous authors for smaller systems. Our results also

show that the new method is capable of overcoming the large

free energy barrier associated with a vapor–liquid or liquid–

liquid phase transition, and that it is also capable of relaxing

the system much faster than traditional grand canonical en-

semble simulations.

One disadvantage of the method is that a good set of

temperatures and chemical potentials must be chosen in or-

der to maximize the efficiency of the method. This can be

achieved by a few short test runs in small systems. Two

major considerations must be taken into account for selection

of appropriate simulation conditions:

~1! For simulation of coexistence, the state points should be

near the coexistence curve. For lower temperatures, it is

better to be slightly off to the liquid side; since the vapor

density is very small at low temperatures, simulations at

such low densities usually do not provide much informa-

tion.

~2! The state points of neighboring replicas must be close to

each other, so that enough configuration swaps can oc-

cur. As the box size becomes large, state points must be

closer; this is a reflection of the fact that the relevant

distribution functions become narrower as the system

gets larger.

The first consideration is not unique to HPTMC, but it

occurs whenever mVT and histogram reweighting techniques

are employed. Fortunately, the chemical potential can be ma-

nipulated with relative ease, particularly for small systems,

FIG. 8. Coexistence curve for the restricted primitive model. The filled

circles show results of this work, the open circles show results reported by

Orkoulas and Panagiotopoulos ~1999!, the squares are results reported by

Panagiotopoulos ~1992!, the triangles show results reported by Caillol

~1994!, and the diamonds are results reported by Orkoulas and Panagioto-

poulos ~1994!.

TABLE III. Critical point parameters in the limit of infinite system size.

Author Tc
* rc

*

This work 0.049260.0003 0.06260.005

Orkoulas et al. ~1999! 0.049060.0003 0.07060.005

Caillol et al. ~1997! 0.048860.0002 0.08060.005
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to explore the phase behavior approximately. Our experience

suggests that this preliminary search of phase space requires

only a small fraction of the overall computer time require-

ments.

The second consideration also arises whenever multihis-

togram reweighting techniques are employed to analyze data

from a series of simulations. Unless the degree of overlap

between histograms is sufficiently large, multihistogram re-

weighting techniques are not useful for calculating phase

diagrams. By construction, if two histograms overlap suffi-

ciently, the HPTMC method gives rise to a reasonable ac-

ceptance rate for swap trial moves. One could therefore ar-

gue that if a histogram reweighting technique is to be used,

HPTMC does not incur in additional computational require-

ments and it improves efficiency significantly. In this work,

our selection of state points led to an acceptance rate of

;20%–30% for configuration swap attempts. Note, how-

ever, that at these preliminary stages of our work we have

not made any attempts to optimize the swapping rate and

examine its effects on overall efficiency.
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