
Received December 22, 2019, accepted January 14, 2020, date of publication January 22, 2020, date of current version February 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2968362

Hyper-Parameter Optimization of Classifiers,
Using an Artificial Immune Network and Its
Application to Software Bug Prediction

FAIZA KHAN 1, SUMMRINA KANWAL 2, SULTAN ALAMRI 2, AND BUSHRA MUMTAZ 1
1Faculty of Computing, Riphah International University, Islamabad 45211, Pakistan
2Department of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia

Corresponding author: Summrina Kanwal (summrina@gmail.com)

ABSTRACT Software testing is an important task in software development activities, and it requires most of
the resources, namely, time, cost and effort. To minimize this fatigue, software bug prediction (SBP) models
are applied to improve the software quality assurance (SQA) processes by predicting buggy components. The
bug prediction models use machine learning classifiers so that bugs can be predicted in software components
in some software metrics. These classifiers are characterized by some configurable parameters, called hyper-
parameters that need to be optimized to ensure better performance. Many methods have been proposed
by researchers to predict the defective components but these classifiers sometimes not perform well when
default settings are used for machine learning classifiers. In this paper, software bug prediction model
is proposed which uses machine learning classifiers in conjunction with the Artificial Immune Network
(AIN) to improve bug prediction accuracy through its hyper-parameter optimization. For this purpose, seven
machine learning classifiers, such as support vector machine Radial base function (SVM-RBF), K-nearest
neighbor (KNN) (Minkowski metric), KNN (Euclidean metric), Naive Bayes (NB), Decision Tree (DT),
Linear discriminate analysis (LDA), Random forest (RF) and adaptive boosting (AdaBoost), were used. The
experiment was carried out on bug prediction dataset. The results showed that hyper-parameter optimization
of machine learning classifiers, using AIN and its applications for software bug prediction, performed better
than when classifiers with their default hyper-parameters were used.

INDEX TERMS Artificial immune network (AIN), artificial immune system (AIS), hyper-parameter
optimization, optimized artificial immune network (opt-aiNet), software bug prediction (SBP).

I. INTRODUCTION

A software bug is a defect, an error or fault due to which
incorrect or unpredictable results are produced. The presence
of these software bugs directly affects the quality and main-
tenance cost of software systems. Due to limited resources,
software modules that contain bugs must be focused on.
To overcome resource allocation problems SBP models have
been designed to identify bug-prone software modules using
machine learning classification techniques. SBP is an impor-
tant area in software development activities because pre-
dicting bugs in software systems improve their quality and
thus decreases maintenance costs and the efforts required.
SBP makes it possible for SQA teams to detect the bugs in
a buggy code during the software development process in

The associate editor coordinating the review of this manuscript and

approving it for publication was An-An Liu .

order to prevent it from causing more bugs in other parts
of the software modules or components. Moreover, it also
helps in optimizing testing by focusing on the components
that are directly affected by bugs and thereby improving the
overall quality of the software systems. Hyper-parameters are
parameters that are tuned for machine learning classifiers so
to improve their performance or prediction accuracy. Hyper-
parameter optimization is basically the process of tuning the
hyper-parameters of machine learning models or the process
of finding the best hyper-parameters value; it is also known
as model-selection or hyper-parameter tuning. Different clas-
sifiers have different features according to which the hyper-
parameters need to be optimized [2], [3]. Over the past
years, various techniques have been proposed by researchers
to examine the performance of machine learning classifiers
in software bug prediction [2], [12]. It has been evaluated
by Fu et al. [31] that 80% of the most cited software bug

20954 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3031-7506
https://orcid.org/0000-0002-8933-7894
https://orcid.org/0000-0001-8429-6598
https://orcid.org/0000-0002-8867-0513
https://orcid.org/0000-0001-5755-9145

F. khan et al.: Hyper-Parameter Optimization of Classifiers, Using an AIN and Its Application to SBP

TABLE 1. Bug prediction dataset by D ’Ambros et al. [29].

prediction studies rely on the default setting. The default
parameter settings impact the performance of defect predic-
tion models, and as a result, they under-perform.
The prime motivation behind our proposed algorithm for

optimization is fromAydin et al. [13], Tantithamthavorn et al.
[2], [12] and Osman et al. [3]. Aydin et al. [13] applied
clonal selection (AIS based technique) to optimize SVM
hyper-parameters and reported improvement in the accuracy.
Tantithamthavorn et al. [2], [12] investigated automated
parameter optimization on 20 classification algorithms using
grid search, random search, GA, and DE and Caret auto-
mated parameter optimization technique for defect predic-
tion models on 18 datasets and reported improved results.
Osman et al. [3] use hyper-parameter optimization on KNN
and SVM and achieved an increase in Accuracy. Moreover,
it is also stated that when a Genetic algorithm (GA), Random
search (RS), Grid search (GS) and Differential Evolution
(DE) are used for hyper-parameter optimization problems it
increases computational costs and caused over-fitting. Since
GA are non-deterministic methods, the results may differ
every-time you run the algorithm on the same sample set.
We aimed to overcome these problems by experimenting
with Opt-aiNet and for this we have used the bug prediction
dataset, shown in Table 1 below.
The rest of the paper is arranged as follows. Section 2 pro-

vides related work, section 3 provides the background infor-
mation about the techniques used in this paper. The proposed
method is presented in Section 4. The experimental setup
in section 5 and the results of our experimental study in
Section 6 is described. The comparison with previous tech-
niques is described in section 7. Conclusion and suggestions
for future work are given in Section 8.
The contributions made in this paper is to investigate the

impact of hyper-parameter optimization of machine learn-
ing classifiers using opt-aiNet on the performance of SBP
on 2 performance measures. And comparison with other
techniques used by previous researchers for hyper-parameter
optimization in SBP.

II. RELATED WORK

Many studies have proposed using machine learning tech-
niques for SBP. In most studies, the hyper-parameters of
these machine learning classifiers are left to their default
values. But in very few studies the effect of hyper-parameter
optimization on bug prediction accuracy and AUC has been
examined. Tantithamthavorn et al. [2] investigated auto-
mated parameter optimization on 26 classification techniques

using a grid search, a random search, a genetic algo-
rithm, and a differential evolution for defect prediction
models on 18 datasets from National Aeronautics and Space
Administration (NASA), Proprietary, Apache and Eclipse.
Their results showed that automated parameter optimiza-
tion increases the accuracy by up to 40 percentage points.
Osman et al. [3] investigated the optimization of KNN and
SVM using a grid search. The results showed that prediction
accuracy was improved by up to 20% in KNN and by up
to 10% in SVM. Tantithamthavorn et al. [12] explored the
hyperparameter optimization technique, Caret (an automated
parameter optimization technique), on 26 classification tech-
niques as well as using the out-of-sample bootstrap validation
technique on 18 datasets from NASA, Proprietary, Apache
and Eclipse. The results showed that Caret increases the accu-
racy of defect predictionmodels by up to 40 percentage points
and with that Caret-optimized classifiers 9 out of 26 classifi-
cation techniques (35%) are more stable. Aydin et al. [13]
used a multi-objective artificial immune algorithm to opti-
mize the SVM-RBF kernel for fault diagnosis of induction
motors and anomaly detection problems to adjust the param-
eters of SVM. They reported an increase in performance
accuracy by up to 97%. Sarro et al. [14] applied the GA to
search for suitable settings of SVM parameters to be used for
inter-release fault prediction. For this SVMwas used with RS
and GS configuration strategies. They further compared their
proposed algorithm with other machine learning techniques
such as Logistic Regression (LR), DT (C4.5), NB, Multi-
Layer Perceptron’s (MLP), KNN, and RF. They reported
that a genetic algorithm with SVM is effective for inter-
release fault prediction and the accuracy of SVM with an RS
has improved by up to 35%, with Recall up to 80%, with
F-measure up to 48% and with Precision up to 4%. The
accuracy of SVMwith a GS also improved by up to 13%,with
Recall up to 19%, with F-measure up to 14% and with Preci-
sion up to 4%. Fazel [16] used a GA in conjunction with KNN
for software fault prediction on 13 datasets fromNASAMDP.
To get better performance, the following parameters were
changed: the dataset, the number of GA generations, the pop-
ulation and changes in the configuration operator; KNN was
also used for calculating the value of indices. The results
showed that the proposedmethod has more than a 95% higher
detection rate. Pushpavathi et al. [17] using the integrated
approach of a GA based on fuzzy C-means clustering and RF
classifiers for software defect prediction on 5 NASA defect
datasets. The results showed that a fuzzy-c-means-clustering-
based approach provided a better result with more than 90%
accuracy. Ibrahim et al. [19] proposed a bat-search algorithm
(BA) for feature selection (FS) and an RF algorithm for
software defect prediction on a dataset from a promise repos-
itory. The proposed approach was compared with a GA and
an Ant search algorithm, such as FS, and Fuzzy Unordered
Rule Induction Algorithm (FURIA), Multi-layer Perceptron
(MLP), NB, or KStar for prediction. They reported that
the RF algorithm and Bat Search Algorithm have higher
accuracy than other algorithms. Fu and Menzies [26] used

VOLUME 8, 2020 20955

F. Khan et al.: Hyper-Parameter Optimization of Classifiers, Using an AIN and Its Application to SBP

differential Evolution (DE) to tune SVM-RBF on the dataset
of data outcomes. The proposed approach was also compared
with a convolutional neural network (CNN). It indicated that
tuning SVM improved the performance of the method and
the method also ran much faster than it did with CNN.
Rathore and Kumar [27] used genetic programming (GP)
for predicting the number of faults in a software system on
10 software projects from a promise data repository. They
reported that GP was able to predict most of the faults in
the software system and the average recall value was 35%.
D’Ambros et al. [29] used bug prediction approaches such
as Change metrics, previous defects, Source code metrics,
Entropy of changes, Churn, and Entropy, on bug prediction
datasets and also compared bug prediction approaches. They
performed class level bug prediction and for FS use princi-
pal component analysis; a regression model was also built.
They reported that the approach based on churn and entropy
had better predictive and explanative power than the other
approaches applied. Chakraborty et al. [33] used hyperpa-
rameter optimization to make a model a fair without los-
ing its predictive power. For hyper-parameter optimization,
a Fast Sequential Model-Based Method (FLASH) is used
as an optimization technique and the parameters of LR and
CART are optimized using 3 datasets Adult Census Income,
Compas and German Credit Data. They reported that for
the German dataset the three objectives were improved and
indicating that if fairness and performance of multi-objective
optimization are understood, then it is possible to achieve one
without affecting the other one. öztürk et al. [34] investigated
the effect of hyperparameter optimization in cross-project
defect prediction (CPDP) and within-project defect predic-
tion (WPDP). For this they have used RF and SVM using
a grid search for searching and Gradient Boosting machine
for Boosting and 20 datasets from Softlab, NASA MDP, and
open-source are used. They reported that CPDP achieved
more successful results thanWPDP and inWPDP polynomial
kernel of SVM got better results while in CPDP linear kernel
have achieved higher AUC.The AUC values were increased
in all SVM functionswhen hyper-parameter optimizationwas
applied. Son et al. [35] conducted a systematic mapping in
which he selected 98 studies out of 156 regarding defect
prediction. They have reported that the most studied search-
based techniques used in defect prediction are the Artificial
Immune Recognition System (AIRS), Ant Colony Optimiza-
tion (ACO), Genetic Programming (GP), Evolutionary Pro-
gramming (EP), Evolutionary Subgroup Discovery (ESD),
GA, and Gene Expression Programming (GeP) and Particle
Swarm Optimization (PSO). Pandey et al. [36] investigated
the effect of some Bayesian network (BN) and classifier
for bug prediction on NASA and Eclipse datasets. Receiver
operating characteristics (ROC) and AUC performance mea-
sures are used to measure various parameters performance of
the classifiers. They have reported that BN out-performed.
Hammouri et al. [37] used NB, DT and Artificial Neural
Networks (ANN) for SBP on 3 datasets namelyDS1, DS2 and
DS3. They have reported that DT has out-perform and had

better results than NB and ANN. Jayanthi and Florence [38]
used an integrated approach of principal component anal-
ysis (PCA) and neural networks (NN) for SBP on NASA
datasets. In this PCA is used for feature reduction and NN
as a classification technique.The proposed method is com-
pared with k-NN, SVM, NB and LDA. They have reported
that the proposed method obtains 97.20% AUC and pro-
vides better improvement than other methods. Manjula and
Florence [39] used an integrated approach for SBP as GA for
feature selection and deep neural network (DNN) for classi-
fication on a dataset from Promise repository.The proposed
method is compared with k-NN, SVM and DT. They have
reported that the proposed method performs better than the
other techniques and has obtained more than 97% accuracy.
Immaculate et al. [40] used supervised machine learning
algorithms such as LR, NB, DT and RF for SBP on data set
made of fifteen Java and Python projects. They have reported
that 97% accuracy is achieved in RF and RF out-performed
than other machine learning algorithms. Pandey et al. [41]
used a combined approach of ensemble learning (EL) and
deep representation (DR) namely bug prediction using deep
representation and ensemble learning technique (BPDET) for
SBP on 12 NASA datasets. The class imbalance issue in
the dataset is addressed by the SMOTE sampling technique.
Staked denoising auto-encoder (SDA) is a method of feature
learning that is used for DR.They have reported that BPDET
has out-performed on most of the datasets and BPDET is
tested using Wilcoxon rank-sum test and as a result, null
hypothesis is rejected at α = 0.025. Gomes et al. [43]
performed a comprehensive mapping study in which he
had reviewed recent research efforts on automatically bug
report severity prediction and for this he had selected
54 papers. They reported that 27 studies are addressing bug
report severity prediction on Free or Libre Open Source
Software.

Based on the findings from various literature reviews of
SBP problem’s it can be stated that in most of the bug
prediction studies default hyper-parameter values are used
in classifiers as a result of which these classifiers did not
perform well as they had been expected to do. It was also
discovered that 80% of the defect prediction studies rely on
default hyperparameter values. In contrast, our study aims
to introduce a model for software bug prediction using the
AIN and machine learning classifiers. The machine learning
classifiers are used in conjunction with the AIN to improve
prediction accuracy and AUC through hyper-parameter opti-
mization. We also investigated the effect of hyperparameter
optimization on classifiers by comparing the prediction accu-
racy and AUC of these classifiers before and after hyper-
parameter optimization.

III. BACKGROUND

Here we have discussed the techniques, machine learning
classifiers, and hyper-parameters in detail which are used in
this paper.

20956 VOLUME 8, 2020

F. khan et al.: Hyper-Parameter Optimization of Classifiers, Using an AIN and Its Application to SBP

A. MACHINE LEARNING CLASSIFIERS

For this study, we have used seven classifiers such as KNN,
SVM, NB, DT, LDA, RF and AdaBoost.
KNN is the nearest neighbor classifier which is classified

as being an object to the nearest class based on its majority
votes to its neighbors or because it stores all available obser-
vations and classifies each observation based on its similarity.
In this, we have used KNN with two distance metrics namely
Euclidean and Minkowski metric. A distance metric or func-
tion provides the distance between two elements of a class.
And the distance function varies from different distance met-
rics. In the Euclidean metric, the distance between two data
points is calculated in a plane. The function used for the
Euclidean metric is:

d(x, x ′) =

√

√

√

√

k
∑

i=1

(xi − x ′
j)
2

where d is the distance function, n is the number of variables,
xi and x ′

i are the variables of vectors x and x’ respectively,
in the two-dimensional vector space. i.e. x = (x1,x2,x3,. . .)
and x’ = (x’1,x’2,x’3,. . .).
The Minkowski distance is a norm vector space and is a

generalized form of both Euclidean and Manhattan distance
which means that the function given below for Minkowski
metric to calculated the distance between two points can be
manipulated.

d(x, x ′) = (
k

∑

i=1

(|xi − x ′
i |)

e)1/e

In the above function, the value of e can be manipulated and
xi and x ′

i are the variables of vectors x and x’ respectively,
in the two-dimensional vector space.
SVM is a geometrically-inspired classifier that uses a

hyper-plane to separate two classes by choosing the best
separating hyper-plane to classify data linearly. For this the
hyperplane is:

f (x) = wT x + b.

where w is a 2-d vector to the hyper-plane. SVM is trained to
generate a model and then testing is assessed. If the sample
data is not divided linearly then nearly other methods are
used. SVM-RBF is a popular Kernel method used in SVM.
SVM-RBF Kernel is a function whose value is dependent on
the distance from its original point to some other point and
the function for SVM-RBF is given below:

k(x, x ′) = exp(−γ ||x − x ′||2)

In this γ is kernel parameters for each kernel function and
these parameters affect the performance of SVM and distance
used in the original space is calculated by the similarity of x
and x’.
NB is based on the Bayesian theorem and on the fact that it

is a probabilistic model that assumes that predictors are inde-
pendent of each other and that is also used for classification

tasks. The function used for NB is:

p(x ′
i |x) =

1
√

2πα2
x

exp(−
(x ′
i − µx)2

2α2
x

The parameters αx and µxare used to estimate the like-hood
and x is class variable, x ′

iare the dependent features. DT is
a classifier that repetitively divides the plot into sub-parts
by identifying lines and it uses feature values to classify
objects. In DT we have used classification and regression tree
(CART). CART is used for both classification and regression
decision trees. The decision tree built by using the CART
algorithm is a binary tree where each node will have only two
child nodes. The function of CART is as follows:

1 −

y=1
∑

y=0

P2x

where P is the proportion of observations, y is the target
variable and for binary y takes only 0 and 1 value.
LDA is a dimensionality reduction technique that is used

as a processing step in machine learning applications. This
dimensionality reduction determines to reduce the dimen-
sions by removing unnecessary features by changing the
features from higher dimension space to lower dimension
and in doing so it takes labels into considerations. In LDA
prediction is made by estimating the probability that a new set
of inputs belongs to the class. The class which gets the highest
probability is the output class and predictions are made. The
discriminate function is given below:

DA(i) = i ∗
muA

sigma2
−

muA2

2 ∗ sigma2
+ ln(PlA)

DA(i) is the discriminate function for class A given input i,
the muA, sigma2, and PIA. Where PIA is referred to as the
base probability of each class (A) observed in training data,
muA is the mean value of each input (i) for each class (A)
and sigma2 is the variance across all inputs (i). RF generates
a forest with several trees: the more the number of trees in the
forest, the greater the accuracy of the results will be. RF uses
bagging and features randomness when it is building each tree
while creating a forest of trees. classification, RF will use the
Gini index or the formula given below will decide how the
nodes on DT will branch.

= 1 −

c
∑

i

= 1(pi)
2

where pi represents the relative frequency of the class
observed in the dataset and c is the number of classes. The
formula is using the class and probability so as to determine
which DT branches will occur.

Adaboost tries to generate a robust classifier from several
frail classifiers. It is mainly castoff to increase the perfor-
mance of decision trees on dual classification problems. It is
usually referred to as AdaBoost M1. In AdaBoostM1 training

VOLUME 8, 2020 20957

F. Khan et al.: Hyper-Parameter Optimization of Classifiers, Using an AIN and Its Application to SBP

is viewed as stage-wise minimization of the exponential loss.
The function of AdaBoostM1 is given below:

N
∑

n=1

wnexp(−rnf (yn))

where rn is the rule class labels which are equal to -1,+1,
wn are the original observation weights passed to Adaboost
which are normalized to add up to 1 and f (yn) is predicted
classification score.
We have chosen these classifiers for software bug predic-

tion because they operate differently and have many hyper-
parameters. While SVM and KNN have been widely used in
the literature, NB, DT(CART), LDA, RF, and AdaBoost have
not been widely used in the software bug prediction literature.

B. ARTIFICIAL IMMUNE NETWORK (AIN)

AIS is a sub-field of computational intelligence and it is
inspired by the biological immune system. The task of the
natural immune system is to detect or recognize and then
destroy the antigens. The immune system can stop pathogens
and antigens. Pathogens are disease-causing agents such as
bacteria, viruses, parasites, and pollen while antigens are
toxic substances. Artificial Immune systems have three sub-
fields: clonal selection, negative selection, and the immune
network.
The artificial immune network algorithm (aiNet) is an

immune network algorithm first proposed by de Castro and
Timmis [9], [10], [32] from the area of AIS and is inspired
by the immune network theory of immune systems. Immune
networks are also known as idiotypic networks and are also
defined as complex networks of paratopes that identify anti-
gens (Ag). In effect whenever the body is attacked by invaders
(pathogens), it responds to antibodies (Ab) which helps them
in identifying antigens. The interaction between Ab and Ag
is measured by the affinity. This means that the Ab which is
more easily recognized by Ag have a higher Ag affinity [8].
The aiNet contains an optimization version for optimization
problems called the optimization of the artificial immune
network (opt-aiNet) which is a discrete immune network
algorithm [8]. Opt-aiNet can perform as a uni-modal or as
a multi-modal optimization and has its stopping criteria
defined. Opt-aiNet grows a population that consists of a
network of antibodies and the size of the population is dynam-
ically adjustable. Opt-aiNet creates a memory for a set of Ab,
which represents the best solution for the objective function.
Opt-aiNet has to select all cells for the cloning process and
for each iteration it gives all the cells the same number of
clones [9], [10]. We have tried to use opt-aiNet used by the
Brownlee [8] for cost function minimization. The flow chart
of opt-aiNet is shown in Fig. 1.
A summary of opt-aiNet is given below [4]:

1) Initialization: Generates a set of N (populations).
2) Antigen representation: While the stopping criterion is

not met do

FIGURE 1. Flow diagram of opt-aiNet.

a) (a) Cloning: NC (number of clones) for each cell
are created and are proportional to the cell affinity

b) (b) Mutation: Each clone, which is inversely pro-
portional to its fitness, is mutated

c) (c) Affinity Measurement: Determines the dis-
tance from the solution.

d) (d) Suppression: Concludes the highest affinity
network and performs suppression.

3) End of process

C. HYPER-PARAMETER OPTIMIZATION

Hyper-parameters are parameters that have tuned for machine
learning classifiers to boost their performance or accuracy.
These parameters usually affect the learning, construc-
tion, and evaluation of machine learning classifiers. Hyper-
parameter optimization is the process of finding the best
hyper-parameters of machine learning classifiers and is also
known as model selection and hyperparameter tuning. The
hyper-parameters of the studied classification techniques
which are tuned and the parameters of opt-aiNet are given
in table 2 and 3 below. To optimize the hyper-parameters
of these classifiers, opt-aiNet was used. Details of the

20958 VOLUME 8, 2020

F. khan et al.: Hyper-Parameter Optimization of Classifiers, Using an AIN and Its Application to SBP

TABLE 2. Hyper-parameters of the classifiers that are tuned.

TABLE 3. Parameters of opt-aiNet.

parameters tuned for these classifiers using opt-aiNet are
shown in Table 2 and those of the parameters tuned for opt-
aiNet are given in Table 3.
We have chosen hyper-parameters for seven machine

learning classifiers mentioned above in section 3(a). The
hyper-parameters for SVM are (σ) and C. The parameter C
is the cost of misclassification on training data and it controls
the distance between the errors and margin. The parameter σ

is to handle non-linear classification. As the value of C and
σ increases the model gets over-fitted and high value for C
gives poor accuracy and high value for σ givesmore accuracy.
The hyper-parameters for KNN are K and E. K is the number
of nearest neighbors and on the basis of K, it is decided that
how many nearest neighbors will be there of that particular
class should be included in that class and E is Minkowski
distance exponent is a comma-separated pair and it should be
positive scalar value. The hyper-parameter for NB is distri-
bution type or name which is how data should be distributed
normal or kernel density estimation. The hyper-parameter
for DT (CART) is the maximum number of decision splits
(MaxNumSplits) which is basically the branch nodes in
which the tree should be split and the minimum number of
leaf node observations (MinLeafSize) which are that how
much nodes a leaf have the minimum. The hyper-parameter
for LDA is Delta (D) which is a linear coefficient threshold
and setting a higher value for delta so that more predictors
are eliminated. The hyper-parameter for RF is the number
of the ensemble learning cycle (NumLearningCycles) is all
predictors combination. If a positive integer is specified then
at every cycle the software trains one weak learner for every
tree in RF. The hyper-parameter for AdaBoost is the number
of the ensemble learning cycle (NumLearningCycles) and if
a positive integer is specified then at every cycle the software
trains one weak learner for every learner. The software in RF
and AdaBoost means all trained learners.

IV. PROPOSED OPT-AINET FOR PARAMETER

OPTIMIZATION OF CLASSIFIERS

We have proposed an opt-aiNet algorithm to optimize the
parameters of classifiers, such as SVM, KNN, NB, DT, LDA,
RF, and AdaBoost. This optimization aims to improve the
performance and prediction accuracy of these classifiers. This
method takes the accuracy and AUC of the classifiers as the
fitness values for optimization. The process of opt-aiNet for
parameter optimization of classifiers is shown in Figure 2.

Our proposed approach explains that the data preprocess-
ing was first carried out utilizing which the data was nor-
malized in the form of 0 and 1 because it would also help
to increase the classifier accuracy. The formula for data pre-
processing normalization is shown as below:

x ′ =
x − xmin

xmax − xmin

where x ′ is normalized value for variable x, x is current
value for variable x, xmin is a minimum data point in the
dataset and xmax is a maximum data point in the dataset.
After normalization, training data was used, to train the clas-
sifier and testing data was used to calculate the classification
accuracy. Once the classifier was trained with training data
using 10-fold cross-validation, testing was carried out on the
testing data and the results were evaluated using classification
accuracy and AUC. When the classification accuracy and the
AUC were obtained, then the fitness function was evaluated
by the classifier’s classification accuracy, namely, AUC and
hyper-parameters. The function for evaluating the fitness is
given below:

f = a AUC(D) =

∑N
i =1 access(Di)

N

where access(Di) = 1 classifiedL(Di) then correct clas-
sified & access(Di) = 0 classifiedL(Di) then incorrect
classified, f is the fitness function to be evaluated, a is
classification accuracy, D (d1, d2, d3, . . . dn) is dataset which
consists of N features with class labels L and classified L(Di)
is correct if the instance is classified correctly like if labels
from the dataset is same as the output. While evaluating this
fitness function antibodies (Ab) that are between the range
of hyper-parameters were produced. Each antibody consisted
of accuracy, AUC and hyper-parameters. For each antibody,

VOLUME 8, 2020 20959

F. Khan et al.: Hyper-Parameter Optimization of Classifiers, Using an AIN and Its Application to SBP

FIGURE 2. Our proposed framework.

the initial population was generated randomly and the size of
the population was 50 selected. After the initial population
was created, the value of the antigen and the antibody was
calculated and also the affinity between the antibody and the
antigen (Ag) was noted. The function used for affinity and
antigen calculation is given below:

Affinity(Abx ,Aby) =
1

d(Abx ,Aby)′

where Affinity(Abx ,Aby) is the similarity between two anti-
bodies and d is the Euclidean distance between two antibodies
Abx and Aby and function for d is as follows:

d = (Abx ,Aby) =

√

√

√

√

n
∑

k=1

(Abxk,Abyk)2

The performance attained by the classifier was calculated
for each one in the population and the algorithm was iter-
ated until the given number of generations was satisfactory.
After this cloning, selection, mutation, and crossover had
been performed the system searched for one with a higher
affinity or a better solution was searched by the system. The
affinity mutation was performed according to the following
function.

C ′ = c+ α.N (0, 1)

α = (1/β)e. − f ∗)

TABLE 4. Bug prediction dataset source code metrics [3].

where C’ is a mutated cell, C is a cell, N(0,1) is a Gaussian
random number of zero mean and standard deviation σ = 1,
β is a control parameter which adjusts the mutation range
and controls the decay of the inverse exponential function and
value for β = 100 but it is also an user-specified value in the
algorithm of opt-aiNet and α is the affinity proportional and f
is the fitness of parent cell and f ∗ is the fitness of an individual
Ag or Ab in the population normalized in the interval [0,1].
A mutation is only accepted if the c’ lies in the range of its

20960 VOLUME 8, 2020

F. khan et al.: Hyper-Parameter Optimization of Classifiers, Using an AIN and Its Application to SBP

TABLE 5. Results of classifiers in accuracy before hyper-parameter optimization.

TABLE 6. Results of classifiers in accuracy after hyper-parameter optimization using opt-aiNet.

TABLE 7. Results of classifiers in AUC before hyper-parameter optimization.

domain. In the end, the new best antibodies that had been
found were replaced with the old ones, which were then
shown to be the worst [42]. When the stopping criteria had
been satisfied the fitness function process was ended and the
hyper-parameters were optimized and the average accuracy
achieved was obtained.

V. EXPERIMENTAL SETUP
The experiment was conducted using the Matlab (R2018a)
software tool on the Intel(R) Core (TM) processor with 8GB
RAM installed on it.

A. BUG PREDICTION DATASET
D’Ambros et al. [29] provided a bug prediction dataset for
bug predictors to identify bugs. A bug prediction dataset is
a collection of software system models, metrics and their
histories. This dataset is widely used by many researchers in
their bug/defect prediction studies and open source available
for researchers to investigate more SBP models. This bug
prediction dataset has both source code metrics, and change
metrics. But we have used a single version approach and this

approach does not need a history of the system but instead
investigates its current state using a wide range of source
code metrics, such as Chidamber and Kemerer (CK) and
object-oriented (OO) metrics and line of code (LOC). The
single version approach is selected because to investigate the
current state of the system in details using a wide range of
metrics. The bug prediction dataset has source code metrics,
given in Table 4 for the classes in five open-source Java
systems, given in Table 1. The column namely ‘‘#classes’’
in Table 1 indicates the range of instances in the projects. The
number of the instances ranges from 0 to 1900 and as hyper-
parameter optimization is a time-consuming tasks so that’s
why this dataset is taken. The reliability of the experimental
results mainly depends on the size of the dataset. Thus,
the data sets having large sizes may highly affect the accuracy
of the optimization.

VI. RESULTS
This section provides the results of the hyper-parameter
optimization of classifiers using opt-aiNet for software
bug prediction to boost its prediction accuracy and AUC.

VOLUME 8, 2020 20961

F. Khan et al.: Hyper-Parameter Optimization of Classifiers, Using an AIN and Its Application to SBP

TABLE 8. Results of classifiers in AUC after hyper-parameter optimization using opt-aiNet.

TABLE 9. A comparison of our proposed work results with those using the previous techniques.

We conducted our experiment with a software bug predic-
tion dataset to classify the data as buggy or not-buggy.
The result was evaluated using classification accuracy.
Table 5 and Table 6 describe the accuracy while Table 7 and
Table 8 describe the AUC performance of the software bug
prediction, created using machine learning classifiers such as
SVM-RBF, KNN (Minkowski metric), KNN (Euclidean met-
ric), NB, DT (Cart), Discriminate Analysis (linear Discrim-
inate analysis), Random forest (RF) and adaptive boosting
(AdaBoost) in conjunction with the optimized Artificial
Immune network (opt-aiNet). The methods continued to
assess according to their relationship to accuracy. As antic-
ipated, the approach proposed by us produced satisfactory
results for all five datasets. The opt-aiNet converged at gen-
eration 50 according to the proposed stopping criteria.
In Tables 5 and 6, it can be seen that for hyper-parameters

the optimization prediction accuracy of machine learn-
ing classifiers is significantly improved for almost all the
projects. To compute the difference in the accuracy of each
classifier, we compared the accuracy of the classifier using

default values for the hyper-parameters and optimized hyper-
parameters shown in Table 5 and Table 6. From the results
mentioned in this table it can be stated that in SVM-RBF and
LDT the 4-6% accuracy is improved on the EclipseJDTCore
dataset (SVM), the EclipsePDEUI (SVM), the Lucene (LDA)
and the Mylyn (LDA) which had the highest achieved accu-
racy, while on the rest of the classifiers KNN (Minkowski
metric), KNN (Euclidean metric), DT, NB, Random forest
(RF) and adaptive boosting (AdaBoost) tuning the hyper-
parameters did not improve prediction accuracy so much but
in fact only 0.34 - 3% for all projects. In LDA the accuracy is
consistent on the Equinox dataset.

From Tables 7 and 8, it can be seen that for hyper-
parameters optimization of machine learning classifiers using
opt-aiNet the AUC performance is significantly improved for
all projects. To estimate the impact of each classifier hyper-
parameter, we compared the AUC performance of each clas-
sifier using default hyper-parameter values and the optimized
hyper-parameter values given in Table 7 and Table 8. From
the results given in the above tables, it can be seen that

20962 VOLUME 8, 2020

F. khan et al.: Hyper-Parameter Optimization of Classifiers, Using an AIN and Its Application to SBP

with SVM-RBF the AUC performance is improved by up to
41% on EclipseJDTCore while in other classifiers the AUC
performance is also improved from 1-31% but it remains less
than 41%.
Overall, accuracy and AUC performance is improved by

hyper-parameter optimization of machine learning classifiers
using opt-aiNet rather than using default parameter values.

VII. COMPARISON WITH PREVIOUS TECHNIQUES

In this section, we compare our results with the previous
studies according to the optimization methods, classifiers
and hyper-parameters used for optimization and what the
results were and are thus able to discover if our study is an
improvement on the existing ones or not. As in papers [2]
and [12], the 30 classification algorithm parameters were
tuned, in paper [3] and [34] only 2 classification algorithms
parameters were tuned and in paper [13] SVM-RBF param-
eters were optimized using AIS (clonal selection) and so its
results are also comparable with our results due to classifiers
and optimization methods used. Hence the results gratify-
ingly showed that our technique was indeed an improvement
on the existing ones. The parameters tuned in papers [2, 12]
are a little bit similar to ours; otherwise, the majority of our
hyper-parameters were different from those previously used.
The details of the comparison are listed in Table 9.

VIII. CONCLUSION AND SUGGESTION

FOR FUTURE WORK

Machine learning classifiers that can identify buggy soft-
ware modules in software Bug Prediction have configurable
parameters that control their features but most of the time
these classifiers sometimes not perform well when default
settings are used. Very few researchers have studied the effect
of hyper-parameter optimization on software bug prediction.
The aim of this paper was therefore to examine the con-
sequences of the hyper-parameter optimization of machine
learning classifiers using opt-aiNet for software bug predic-
tion to boost the prediction accuracy. The accuracy achieved
by Machine learning classifiers will be compared before
and after hyper-parameter optimization on five open-source
datasets. For this purpose, some machine learning classi-
fiers such as SVM- RBF, KNN (Minkowski metric), KNN
(Euclidean metric), NB, DT (Cart), Discriminate Analysis
(linear Discriminate analysis), Bagging (random forest) and
adaptive boosting (AdaBoost) were used in conjunction with
opt-aiNet. In this case, the results showed that for SVM-RBF
and LDT optimizing the hyper-parameters increases the pre-
diction accuracy by up to 5% for all projects. However, when
KNN (Minkowski metric), KNN (Euclideanmetric), DT, NB,
Random forest (RF) and adaptive boosting (AdaBoost) were
used, tuning hyper-parameters did not improve the prediction
accuracy that much, in fact only 0.34 - 3% for all projects.
In LDA the accuracy is consistent on the Equinox dataset.
It must also be mentioned that in SVM-RBF the AUC perfor-
mancewas improved by up to 41 percentage points on Eclipse
JDT Core while with other classifiers the AUC performance

was also improved from 1-31%. The comparison results show
that the hyper-parameter optimization of machine learning
classifiers using opt-aiNet for software bug prediction has
improved not only software bug prediction accuracy but also
AUC performance. From the results, it can be concluded that
hyper-parameter optimization has dissimilar effects on other
machine learning models having the same datasets and that
hyper-parameter optimization should be conducted so that
prediction accuracy can be improved.

In a forthcoming study, we plan to widen this study with
further machine learning classifiers, such as partial least
square, neural networks and the rule-based classifier and also
with more hyper-parameter optimization techniques, such as
genetic algorithm (GA), Grid search, Differential evolution
(DE) and Evolution strategy so that we can then have an
even clearer picture of howmuchmachine learning classifiers
are sensitive to hyper-parameter optimization in software
bug prediction. Hyper-parameter optimization of machine
learning classifiers for software bug prediction should be
addressed through deep learning. Class imbalance is nowa-
days the most common classification problem in machine
learning. It is important to solve or at-least adjust this class
imbalance problem and in future resampling techniques will
be used.

REFERENCES

[1] R. S. Wahono, ‘‘A systematic literature review of software defect predic-
tion: Research trends, datasets, methods and frameworks,’’ J. Softw. Eng.,
vol. 1, no. 1, pp. 1–16, 2018.

[2] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
‘‘The impact of automated parameter optimization on defect prediction
models,’’ IEEE Trans. Softw. Eng., vol. 45, no. 7, pp. 683–771, Jul. 2019.

[3] H. Osman, M. Ghafari, and O. Nierstrasz, ‘‘Hyperparameter optimization
to improve bug prediction accuracy,’’ in Proc. IEEE Workshop Mach.

Learn. Techn. Softw. Qual. Eval. (MaLTeSQuE), Feb. 2017, pp. 33–38.
[4] H. N. Agiza, A. E. Hassan, and A. M. Salah, ‘‘An improved version of opt-

AiNet algorithm (I-opt-AiNet) for function optimization,’’ Int. J. Comput.
Sci. Netw. Secur., vol. 11, no. 3, pp. 80–85, 2011.

[5] J. Nam, ‘‘Survey on software defect prediction,’’ Dept. Comput. Sci. Eng.,
Hong Kong Univ. Sci. Technol., Hong Kong, Tech. Rep., 2014.

[6] M. Praveena and V. Jaiganesh, ‘‘A literature review on supervised machine
learning algorithms and boosting process,’’ Int. J. Comput. Appl., vol. 169,
no. 8, pp. 32–35, 2017.

[7] I. K. M. Aydin and E. Akin, ‘‘A multi-objective artificial immune algo-
rithm for parameter optimization in support vector machine,’’ Appl. Soft
Comput., vol. 11, no. 1, pp. 120–129, 2011.

[8] J. Brownlee. (2011). Clever Algorithms: Nature-Inspired Programming
Recipes. [Online]. Available: https://Lulu.com

[9] L. N. De Castro and F. J. Von Zuben, ‘‘Artificial immune systems:
Part I—Basic theory and applications,’’ Univ. Estadual Campinas,
Campinas, Brazil, Tech. Rep., Dec. 1999, vol. 210, no. 1.

[10] L. N. De Casto and F. J. Von Zuben, ‘‘An evolutionary immune network
for data clustering,’’ in Proc. 6th Brazilian Symp. Neural Netw., vol. 1,
Nov. 2000, pp. 84–89.

[11] M. D’Ambros, M. Lanza, and R. Robbes, ‘‘An extensive comparison of
bug prediction approaches,’’ in Proc. 7th IEEE Work. Conf. Mining Softw.
Repositories (MSR), vol. 1, May 2010, pp. 31–41.

[12] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
‘‘Automated parameter optimization of classification techniques for defect
predictionmodels,’’ inProc. IEEE/ACM38th Int. Conf. Softw. Eng. (ICSE),
May 2016, pp. 321–332.

[13] I. K. M. Aydin and E. Akin, ‘‘A multi-objective artificial immune algo-
rithm for parameter optimization in support vector machine,’’ Appl. Soft
Comput., vol. 11, no. 1, pp. 120–129, 2011.

VOLUME 8, 2020 20963

F. Khan et al.: Hyper-Parameter Optimization of Classifiers, Using an AIN and Its Application to SBP

[14] F. Sarro, M. S. Di, F. Ferrucci, and C. Gravino, ‘‘A further analysis on the
use of genetic algorithm to configure support vector machines for inter-
release fault prediction,’’ in Proc. 27th Annu. ACM Symp. Appl. Comput.,
Mar. 2012, pp. 1215–1220.

[15] I. Ilievski, T. Akhtar, J. Feng, and C. A. Shoemaker, ‘‘Efficient hyperpa-
rameter optimization for deep learning algorithms using deterministic RBF
surrogates,’’ in Proc. 31st AAAI Conf. Artif. Intell., Feb. 2017, pp. 822–829.

[16] F. S. Fazel, ‘‘A new method to predict the software fault using improved
genetic algorithm,’’ Bull. la Société Royale des Sci. Liège, vol. 85,
pp. 187–202, 2016.

[17] T. P. Pushpavathi, V. Suma, and V. Ramaswamy, ‘‘Defect prediction in
software projects-using genetic algorithm based fuzzy C-means cluster-
ing and random forest classifier,’’ Int. J. Sci. Eng. Res., vol. 5, no. 9,
pp. 888–898 2014.

[18] R. S. Wahono, ‘‘A systematic literature review of software defect predic-
tion: Research trends, datasets, methods and frameworks,’’ J. Softw. Eng.,
vol. 1, no. 1, pp. 1–16, 2015.

[19] D. R. Ibrahim, R. Ghnemat, and A. Hudaib, ‘‘Software defect prediction
using feature selection and random forest algorithm,’’ in Proc. Int. Conf.
New Trends Comput. Sci. (ICTCS), Oct. 2017, pp. 252–257.

[20] C. Tantithamthavorn, ‘‘Towards a better understanding of the impact
of experimental components on defect prediction modelling,’’ in Proc.

IEEE/ACM 38th Int. Conf. Softw. Eng. Companion (ICSE-C), May 2016,
pp. 867–870.

[21] S. R. Young, D. C. Rose, T. P. Karnowski, S. H. Lim, and
R. M. Patton, ‘‘Optimizing deep learning hyper-parameters through
an evolutionary algorithm,’’ in Proc. Workshop Mach. Learn. High-

Perform. Comput. Environ., Nov. 2015, p. 4.
[22] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, ‘‘Deep learning for just-in-

time defect prediction,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur.,
Aug. 2015, pp. 17–26.

[23] J. Murillo-Morera, C. Castro-Herrera, J. Arroyo, and
R. Fuentes-Fernández, ‘‘An automated defect prediction framework
using genetic algorithms: A validation of empirical studies,’’ Inteligencia
Artif., vol. 19, no. 57, pp. 114–137, 2016.

[24] S. Wang, T. Liu, and L. Tan, ‘‘Automatically learning semantic features for
defect prediction,’’ in Proc. IEEE/ACM 38th Int. Conf. Softw. Eng. (ICSE),
May 2016, pp. 297–308.

[25] Y. Tang, ‘‘Deep learning using linear support vector machines,’’ 2013,
arXiv:1306.0239. [Online]. Available: https://arxiv.org/abs/1306.0239

[26] W. Fu and T. Menzies, ‘‘Easy over hard: A case study on deep learning,’’
in Proc. 11th Joint Meeting Found. Softw. Eng., Aug. 2017, pp. 49–60.

[27] S. S. Rathore and S. Kumar, ‘‘Predicting number of faults in software
system using genetic programming,’’ Procedia Comput. Sci., vol. 62,
pp. 303–311, Jan. 2015.

[28] T. Domhan, J. T. Springenberg, and F. Hutter, ‘‘Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation of
learning curves,’’ in Proc. 24th Int. Joint Conf. Artif. Intell., Jun. 2015,
pp. 3460–3468.

[29] M. D’Ambros, M. Lanza, and R. Robbes, ‘‘An extensive comparison of
bug prediction approaches,’’ in Proc. 7th IEEE Work. Conf. Mining Softw.
Repositories (MSR), May 2010, pp. 31–41.

[30] M. Shepperd, D. Bowes, and T. Hall, ‘‘Researcher bias: The use of machine
learning in software defect prediction,’’ IEEE Trans. Softw. Eng., vol. 40,
no. 6, pp. 603–616, Jun. 2014.

[31] W. Fu, T. Menzies, and X. Shen, ‘‘Tuning for software analytics: Is it really
necessary?’’ Inf. Softw. Technol., vol. 76, pp. 135–146, Aug. 2016.

[32] L. N. De Castro and J. Timmis, ‘‘An artificial immune network for mul-
timodal function optimization,’’ in Proc. Congr. Evol. Comput. (CEC),
vol. 1, May 2002, pp. 699–704.

[33] J. Chakraborty, T. Xia, F. M. Fahid, and T. Menzies, ‘‘Software engineer-
ing for fairness: A case study with hyperparameter optimization,’’ 2019,
arXiv:1905.05786. [Online]. Available: https://arxiv.org/abs/1905.05786

[34] M. M. Öztürk, ‘‘Comparing hyperparameter optimization in cross-and
within-project defect prediction: A case study,’’ Arabian J. Sci. Eng.,
vol. 44, no. 4, pp. 3515–3530, Apr. 2019.

[35] L. H. Son, N. Pritam, M. Khari, R. Kumar, P. T. M. Phuong, and
P. H. Thong, ‘‘Empirical study of software defect prediction: A systematic
mapping,’’ Symmetry, vol. 11, no. 2, p. 212, 2019.

[36] S. K. Pandey, R. B. Mishra, and A. K. Triphathi, ‘‘Software bug prediction
prototype using Bayesian network classifier: A comprehensive model,’’
Procedia Comput. Sci., vol. 132, pp. 1412–1421, 2018.

[37] A. Hammouri, M. Hammad, M. Alnabhan, and F. Alsarayrah, ‘‘Software
bug prediction using machine learning approach,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 9, no. 2, pp. 78–83, 2018.

[38] R. Jayanthi and L. Florence, ‘‘Software defect prediction techniques using
metrics based on neural network classifier,’’ Cluster Comput., vol. 22,
no. 1, pp. 77–88, 2019.

[39] C. Manjula and L. Florence, ‘‘Deep neural network based hybrid approach
for software defect prediction using software metrics,’’ Cluster Comput.,
vol. 22, no. 4, pp. 9847–9863, 2019.

[40] S. D. Immaculate, M. F. Begam, and M. Floramary, ‘‘Software bug pre-
diction using supervised machine learning algorithms,’’ in Proc. Int. Conf.
Data Sci. Commun. (IconDSC), Mar. 2019, pp. 1–7.

[41] S. K. Pandey, R. B.Mishra, and A. K. Tripathi, ‘‘BPDET: An effective soft-
ware bug prediction model using deep representation and ensemble learn-
ing techniques,’’ Expert Syst. Appl., vol. 144, Apr. 2020, Art. no. 113085.

[42] R. Zhang, T. Li, X. Xiao, and Y. Shi, ‘‘A danger-theory-based immune
network optimization algorithm,’’ Sci. World J., vol. 2013, pp. 1–13,
Dec. 2012, Art. no. 810320.

[43] L. A. F. Gomes, S. T. R. da Silva Torres, and M. L. Côrtes, ‘‘Bug report
severity level prediction in open source software: A survey and research
opportunities,’’ Inf. Softw. Technol., vol. 115, pp. 58–78, Nov. 2019.

FAIZA KHAN received the master’s degree
in software engineering from Riphah Interna-
tional University, Islamabad, in September 2019.
Her research interests include machine learning,
evolutionary computation, and deep learning.

SUMMRINA KANWAL received the Ph.D.
degree from the University of Stirling. She is cur-
rently working as a Visiting Postdoctoral Fellow
with the Cognitive Big Data and Cybersecurity
Lab (CogBID) Lab, Napier University. She is also
working as an Assistant Professor with the School
of Computing and Informatics, Saudi Electronic
University, Saudi Arabia.

SULTAN ALAMRI received the master’s degree
in information technology from the School of
Engineering and Mathematical Science, La Trobe
University, Australia, in 2010, and the Ph.D.
degree from the Clayton School of Informa-
tion Technology, Monash University, Australia,
in 2014. He is currently an Associate Professor
with the School of Computing and Informatics,
Saudi Electronic University, Saudi Arabia.

BUSHRA MUMTAZ received the master’s degree
in software engineering from Riphah International
University, Islamabad, in September 2019. Her
research interest includes artificial intelligence.

20964 VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	BACKGROUND
	MACHINE LEARNING CLASSIFIERS
	ARTIFICIAL IMMUNE NETWORK (AIN)
	HYPER-PARAMETER OPTIMIZATION

	PROPOSED OPT-AINET FOR PARAMETER OPTIMIZATION OF CLASSIFIERS
	EXPERIMENTAL SETUP
	BUG PREDICTION DATASET

	RESULTS
	COMPARISON WITH PREVIOUS TECHNIQUES
	CONCLUSION AND SUGGESTION FOR FUTURE WORK
	REFERENCES
	Biographies
	FAIZA KHAN
	SUMMRINA KANWAL
	SULTAN ALAMRI
	BUSHRA MUMTAZ

