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Abstract. After the works of Lahiri and Banerjee [6] on the idea
of relative order (p, q) of entire functions, we introduce in this pa-
per hyper relative order (p, q) of entire functions where p, q are
positive integers with p > q and prove sum theorem, product the-
orem and theorem on derivative.
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1 Introduction and Definitions

Let f and g be non-constant entire functions and Mf (r) = max{|f(z)| : |z| =
r}, Mg(r) = max{|g(z)| : |z| = r}. Then Mf (r) is strictly increasing and
continuous function of r and its inverse M−1

f : (|f(0)|,∞) → (0,∞) exists

and lim
R→∞

M−1
f (R) =∞.

In 1988, Bernal [2] introduced the definition of relative order of f with
respect to g as

ρg(f) = inf{µ > 0 : Mf (r) < Mg(r
µ)

for all r > r0(µ) > 0}.
When g(z) = exp(z), ρg(f) coincides with the classical definition of order

([15],p-248).
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Following Sato [14], we write log[0] x = x, exp[0] x = x and for positive
integer m ≥ 1, log[m] x = log(log[m−1] x), exp[m] x = exp(exp[m−1] x).

If p, q are positive integers, p ≥ q then Juneja et.al., [7] defined (p, q)th
order of f by

ρ(p,q)(f) = lim sup
r→∞

log[p]Mf (r)

log[q]r
.

During the past decades, several authors (see for example [1], [7], [8], [9],
[10], [11]) made close investigations on (p, q) order of entire functions. After
this in 2005, Lahiri and Banerjee [6] introduced the concept of relative order
(p, q) of entire functions as follows.

Definition 1.1. [6] Let p and q be positive integers with p > q. The relative
order (p, q) of f with respect to g is defined by

ρ(p,q)g (f) = inf{µ > 0 : Mf (r) < Mg(exp
[p−1](µlog[q]r)) for all r > r0(µ) > 0}

= lim sup
r→∞

log[p−1]M−1
g Mf (r)

log[q]r
= lim sup

r→∞

log[p−1]M−1
g (r)

log[q]M−1
f (r)

.

If g(z) = exp(z) then ρ
(p,q)
g (f) = ρ(p,q)(f).

In the present paper we introduce the concept of hyper relative (p, q)
order as follows.

Definition 1.2. Let f and g be entire functions and p, q are positive integers
with p > q. The hyper relative (p, q) order of f with respect to g is defined by

−
ρ
(p,q)

g (f) = inf{µ > 0 : Mf (r) < Mg(exp
[p](µlog[q]r)) for all r > r0(µ) > 0}.

Clearly
−
ρ
(p,q)

g (f) = lim sup
r→∞

log[p]M−1
g Mf (r)

log[q]r
.

When p = 2, q = 1 and g(z) = exp(z), then the definition coincides with
the classical definition of hyper order of entire functions which have been
investigated closely by several authors (see for example [4], [13] etc.).

The following definition of Bernal [2] will be needed.

Definition 1.3. [2] A non-constant entire function g is said to have the
property (A) if for any σ > 1 and for all large r, [Mg(r)]

2 ≤Mg(r
σ) holds.

Examples of functions with or without the property (A) are avilable in [2].
Throughout the paper we shall assume f, g, h etc., are non-constant entire
functions and Mf (r),Mg(r),Mh(r) etc., denote respectively their maximum
modulus on |z| = r.
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2 Lemmas

The following lemmas will be needed in the sequel.

Lemma 2.1. [2] Let g be an entire function which satisfies the property (A),
and let σ > 1. Then for any positive integer n and for all large r,

[Mg(r)]
n ≤Mg(r

σ)

holds.

Lemma 2.2. [2] Suppose f is an entire function, α > 1, 0 < β < α, s >
1, 0 < µ < λ and n is a positive integer. Then

(a) Mf (αr) > βMf (r).

(b) There exists K = K(s, f) > 0 such that [Mf (r)]
s ≤ KMf (r

s) for r > 0.

(c) lim
r→∞

Mf (r
s)

Mf (r)
=∞ = lim

r→∞
Mf (r

λ)

Mf (rµ)
.

(d) If f is transcendental, then

lim
r→∞

Mf (r
s)

rnMf (r)
=∞ = lim

r→∞

Mf (r
λ)

rnMf (rµ)
.

Lemma 2.3. ([12], p-21) Let f(z) be holomorphic in the circle |z| = 2eR(R >
0) with f(0) = 1 and η be an arbitrary positive number not exceeding 3e

2
. Then

inside the circle |z| = R, but outside of a family of excluded circles the sum
of whose radii is not greater than 4ηR, we have

log |f(z)| > −T (η)logMf (2eR)

for T (η) = 2 + log 3e
2η
.

Lemma 2.4. [5] Every entire function g satisfying the property (A) is tran-
scendental.

Lemma 2.5. [3] Let f(z) and g(z) be entire functions with g(0) = 0. Let α

satisfy 0 < α < 1 and let C(α) = (1−α)2
4α

. Then for r > 0
Mf◦g(r) ≥Mf ( C(α)Mg(αr)).
Further if g(z) is any entire function, then with α = 1

2
, for sufficiently

large values of r
Mf◦g(r) ≥Mf (

1
8
Mg(

r
2
)− |g(0)|).
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Clearly

Mf◦g(r) ≥Mf (
1

16
Mg(

r

2
)). (1)

On the other hand the opposite inequality

Mf◦g(r) ≤Mf (Mg(r)) (2)

is an immediate consequence of the definition.

Lemma 2.6. If f is a polynomial of degree n and g is transcendental, then
−
ρ
(p,q)

g (f) = 0.

Proof. For all large r, Mf (r) ≤ Nrn whereN (> 0) is a constant andMg(r) >
Krm where K (> 0) is a constant and m(> 0) is arbitrary.

Then

M−1
g Mf (r) <

(
Nrn

K

) 1
m

= λr
n
m ,

where λ =
(
N
K

) 1
m .

Now

−
ρ
(p,q)

g (f) = lim sup
r→∞

log[p]M−1
g Mf (r)

log[q] r

≤ lim sup
r→∞

log[p]
(
λr

n
m

)
log[q] r

= 0.

3 Sum Theorem

Theorem 3.1. If f1, f2, g and h are entire functions with 0 < λh ≤ ρh <∞,
then for p > 2

−
ρ
(p,q)

g (f1 ± f2) ≤ max{ρ(p,q)g◦h (f1), ρ
(p,q)
g◦h (f2)},

the equality holding when ρ
(p,q)
g◦h (f1) 6= ρ

(p,q)
g◦h (f2).
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Proof. We consider the theorem for f1 +f2. Let f = f1 +f2 and suppose that

ρ
(p,q)
g◦h (f1) ≤ ρ

(p,q)
g◦h (f2).

Let ε > 0 be arbitrary. For all large r, we have

Mf1(r) < Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f1) + ε) log[q] r}

]
≤Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

]
and Mf2(r) < Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

]
.

Now,
Mf (r) ≤Mf1(r) +Mf2(r)

< 2Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

]
< Mg◦h

[
3 exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

]
using Lemma 2.2(a) it follows by (2)

Mg

[
Mh{3 exp[p−1]((ρ

(p,q)
g◦h (f2) + ε) log[q] r)}

]
.

So,

M−1
g Mf (r) < Mh

[
3 exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

]
i.e.

logM−1
g Mf (r) < logMh

[
3 exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

]

<
[
3 exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

](ρh+ε)
i.e.

log logM−1
g Mf (r) < (ρh + ε)

[
log 3 + exp[p−2]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

]
i.e.

log[p]M−1
g Mf (r) < (ρ

(p,q)
g◦h (f2) + ε) log[q] r +O(1)

i.e.
−
ρ
(p,q)

g (f) ≤ (ρ
(p,q)
g◦h (f2) + ε).

Since ε > 0 be arbitrary,



70 D.Banerjee and S.Batabyal An. U.V.T.

−
ρ
(p,q)

g (f1 + f2) ≤ ρ
(p,q)
g◦h (f2) = max{ρ(p,q)g◦h (f1), ρ

(p,q)
g◦h (f2)}. (3)

Next let, ρ
(p,q)
g◦h (f1) < ρ

(p,q)
g◦h (f2). Then for all large r

Mf1(r) < Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f1) + ε) log[q] r}

]
(4)

and there exists a sequence {rn}, rn →∞ such that

Mf2(rn) > Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2)− ε) log[q] rn}

]
for n = 1, 2, 3, . . . . (5)

From Lemma 2.2(c), we obtain

lim
r→∞

Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2)− ε) log[q] r}

]
Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f1) + ε) log[q] r}

] =∞.

Then for all large r,

Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2)− ε) log[q] r}

]
> 2Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f1) + ε) log[q] r}

]
.

So,

Mf2(rn) > Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2)− ε) log[q] rn}

]
> 2 Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f1) + ε) log[q] rn}

]
.

Now for a sequence of values of {rn}, rn →∞ we get by using (4)

Mf2(rn) > 2Mf1(rn) for n = 1, 2, 3, . . . .

So,

Mf (rn) ≥Mf2(rn)−Mf1(rn) > Mf2(rn)− 1

2
Mf2(rn) =

1

2
Mf2(rn)

>
1

2
Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2)− ε) log[q] rn}

]
,

using (5)
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> Mg◦h

[
1

3
exp[p−1]{(ρ(p,q)g◦h (f2)− ε) log[q] rn}

]
using Lemma 2.2(a)

≥Mg

[
1

16
Mh

(
exp[p−1]{(ρ(p,q)g◦h (f2)− ε) log[q] rn}

6

)]
,

using (1)
i.e.,

M−1
g Mf (rn) >

1

16
Mh

[
exp[p−1]{(ρ(p,q)g◦h (f2)− ε) log[q] rn}

6

]

i.e.,

logM−1
g Mf (rn) ≥ logMh

[
exp[p−1]{(ρ(p,q)g◦h (f2)− ε) log[q] rn}

6

]
+O(1)

>

[
exp[p−1]{(ρ(p,q)g◦h (f2)− ε) log[q] rn}

6

](λh−ε)
+O(1)

i.e.

log logM−1
g Mf (rn) > (λh − ε)

[
exp[p−2]{(ρ(p,q)g◦h (f2)− ε) log[q] rn}

]
+O(1).

So,

log[p]M−1
g Mf (rn) > (ρ

(p,q)
g◦h (f2)− ε) log[q] rn +O(1)

i.e.,
−
ρ
(p,q)

g (f) ≥ (ρ
(p,q)
g◦h (f2)− ε).

Since ε > 0 is arbitrary,

−
ρ
(p,q)

g (f1 + f2) ≥ ρ
(p,q)
g◦h (f2) = max{ρ(p,q)g◦h (f1), ρ

(p,q)
g◦h (f2)}. (6)

From (3) and (6) we have

−
ρ
(p,q)

g (f1 + f2) = max{ρ(p,q)g◦h (f1), ρ
(p,q)
g◦h (f2)}.

This proves the theorem.
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4 Product Theorems

Theorem 4.1. Let P be a polynomial and f, g, h are entire functions with
0 < λh ≤ ρh <∞, where f is transcendental. Then for p > 2

−
ρ
(p,q)

g (Pf) = ρ
(p,q)
g◦h (f).

Proof. Let the degree of P(z) be m. Then there exists α, 0 < α < 1 and a
positive integer n (> m) such that 2α < |P (z)| < rn holds on |z| = r, for all
large r. Now by Lemma 2.2(a)

Mf

(
1

α
αr

)
>

1

2α
Mf (αr)

i.e.,Mf (αr) < 2αMf (r) .
Let k(z) = P (z)f(z). Then for all large r and s > 1
Mf (αr) < 2αMf (r) ≤Mk (r) ≤ rnMf (r) < Mf (rs) , by Lemma 2.2(d).

Let ε > 0 be arbitrary. Now for all large r,

Mk (r) < Mf (rs)

< Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q] rs}

]
< Mg

[
Mh{exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q] rs}}

]
by (2) .

So, M−1
g Mk (r) < Mh

[
exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q] rs}

]
i.e., logM−1

g Mk (r) < logMh

[
exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q] rs}

]
<
[
exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q] rs}

](ρh+ε)
i.e., log logM−1

g Mk (r) < (ρh + ε) exp[p−2]{(ρ(p,q)g◦h (f) + ε) log[q] rs}
i.e., log[p]M−1

g Mk (r) < (ρ
(p,q)
g◦h (f) + ε) log[q] rs +O(1).

So,
−
ρ
(p,q)

g (k) ≤ (ρ
(p,q)
g◦h (f) + ε).

Since ε > 0 be arbitrary,

−
ρ
(p,q)

g (k) ≤ ρ
(p,q)
g◦h (f). (7)

On the other hand for a sequence of values of {rn}, rn →∞
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Mk(rn) > Mf (αrn) > Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q](αrn)}

]

> Mg

[
1

16
Mh{

exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q](αrn)}
2

}

]
by (1).

So, M−1
g Mk(rn) > 1

16
Mh

[
exp[p−1]{(ρ(p,q)g◦h (f)−ε) log[q](αrn)}

2

]
i.e,

log M−1
g Mk(rn) > logMh

[
exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q](αrn)}

2

]
+O(1)

>

[
exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q](αrn)}

2

](λh−ε)
+O(1)

i.e, log log M−1
g Mk(rn) > (λh− ε)

[
exp[p−2]{(ρ(p,q)g◦h (f)− ε) log[q](αrn)}

]
+

O(1)

i.e, log[p] M−1
g Mk(rn) > (ρ

(p,q)
g◦h (f)− ε) log[q](αrn) +O(1)

i.e.,
−
ρ
(p,q)

g (k) ≥ (ρ
(p,q)
g◦h (f)− ε).

Since ε > 0 is arbitrary,

−
ρ
(p,q)

g (k) ≥ ρ
(p,q)
g◦h (f). (8)

From (7) and (8) we have

−
ρ
(p,q)

g (k) = ρ
(p,q)
g◦h (f)

i.e.,
−
ρ
(p,q)

g (Pf) = ρ
(p,q)
g◦h (f).

Theorem 4.2. If n > 1 be a positive integer and f, g and h are entire
functions with 0 < λh ≤ ρh <∞, then for p > 2

−
ρ
(p,q)

g (fn) = ρ
(p,q)
g◦h (f).
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Proof. From Lemmas 2.2(a) and 2.2(b), we obtain

[Mf (r)]n ≤ KMf (rn)

< Mf [(K + 1)rn] < Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q]((K + 1)rn)}

]

< Mg

[
Mh{exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q]((K + 1)rn)}}

]
, by(2)

where K = K(n, f) > 0, n > 1, r > 1.
So,

M−1
g [Mf (r)]n < Mh

[
exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q]((K + 1)rn)}

]
i.e.,

logM−1
g [Mf (r)]n < logMh

[
exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q]((K + 1)rn)}

]

<
[
exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q]((K + 1)rn)}

](ρh+ε)
i.e., log logM−1

g [Mf (r)]n < (ρh+ε)
[
exp[p−2]{(ρ(p,q)g◦h (f) + ε) log[q]((K + 1)rn)}

]
i.e., log[p]M−1

g [Mf (r)]n < (ρ
(p,q)
g◦h (f) + ε) log[q]((K + 1)rn) +O(1)

i.e, lim sup
r→∞

log[p]M−1
g [Mf (r)]n

log[q] r

≤ lim sup
r→∞

(ρ
(p,q)
g◦h (f)+ε) log[q]((K+1)rn)

log[q]((K+1)rn)
lim sup
r→∞

log[q]((K+1)rn)

log[q] rn

So,
−
ρ
(p,q)

g (fn) ≤ (ρ
(p,q)
g◦h (f) + ε).

Since ε > 0 be arbitrary

−
ρ
(p,q)

g (fn) ≤ ρ
(p,q)
g◦h (f). (9)

On the other hand for a sequence of values of r = rn

[Mf (rn)]n > Mf (rn)

> Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q](rn)}

]
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> Mg

[
1

16
Mh{

exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q](rn)}
2

}

]
, by(1)

i.e., M−1
g [Mf (rn)]n >

1

16
Mh

[
exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q](rn)}

2

]
i.e.,

logM−1
g [Mf (rn)]n > logMh

[
exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q](rn)}

2

]
+O(1)

>

[
exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q](rn)}

2

](λh−ε)
+O(1)

i.e., log logM−1
g [Mf (rn)]n > (λh−ε)

[
exp[p−2]{(ρ(p,q)g◦h (f)− ε) log[q](rn)}

]
+

O(1)

i.e., log[p]M−1
g [Mf (rn)]n > (ρ

(p,q)
g◦h (f)− ε) log[q](rn) +O(1).

So,
−
ρ
(p,q)

g (fn) ≥ (ρ
(p,q)
g◦h (f)− ε).

Since ε > 0 be arbitrary,

−
ρ
(p,q)

g (fn) ≥ ρ
(p,q)
g◦h (f). (10)

From (9) and (10) we have,

−
ρ
(p,q)

g (fn) = ρ
(p,q)
g◦h (f).

Theorem 4.3. If f1,f2, g and h are entire functions with 0 < λh ≤ ρh <∞,
where g is transcendental and g ◦ h has the property (A) then for p > 2

(i)
−
ρ
(p,q)

g (f1f2) ≤ max{ρ(p,q)g◦h (f1), ρ
(p,q)
g◦h (f2)}.

(ii) Equality holds if ρ
(p,q)
g◦h (f1) 6= ρ

(p,q)
g◦h (f2).

Proof. By Lemma 2.4, g ◦ h is transcendental. We consider the following
three cases.

Case(a). f1 and f2 both are polynomials. Then by Lemma 2.6

−
ρ
(p,q)

g (f1f2) ≤ max{ρ(p,q)g◦h (f1), ρ
(p,q)
g◦h (f2)}.
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Case(b). f1 is polynomial and f2 is transcendental. Then by Theorem
4.1

−
ρ
(p,q)

g (f1f2) ≤ max{ρ(p,q)g◦h (f1), ρ
(p,q)
g◦h (f2)}.

Case(c). f1 and f2 both are transcendental. Let ρ
(p,q)
g◦h (f1) ≤ ρ

(p,q)
g◦h (f2)

and k = f1f2. Let ε > 0 be arbitrary. For all large r, we have

Mf1(r) < Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f1) +

ε

2
) log[q] r}

]
≤Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2) +

ε

2
) log[q] r}

]
and Mf2(r) < Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2) + ε

2
) log[q] r}

]
.

Now,

exp[p−2]{(ρ(p,q)g◦h (f2) + ε) log[q] r}
exp[p−2]{(ρ(p,q)g◦h (f2) + ε

2
) log[q] r}

→ ∞

as r→∞.
So for all large r, say r ≥ r1 > r0 the above expression is greater than

exp[p−2]{(ρ(p,q)g◦h (f2) + ε) log[q] r0}
exp[p−2]{(ρ(p,q)g◦h (f2) + ε

2
) log[q] r0}

= σ

(say).
Then σ > 1. For all large r, we have,

Mk(r) ≤Mf1(r)Mf2(r) <
(
Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2) +

ε

2
) log[q] r}

])2
<
(
Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2) +

ε

2
) log[q] r}

]σ)
since g ◦ h has the property (A) and σ > 1

< Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

]
for r ≥ r1 > r0

≤Mg

[
Mh{exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}}

]
by (2).

So,

M−1
g Mk(r) ≤Mh

[
exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

]
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i.e.,

logM−1
g Mk(r) ≤ logMh

[
exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

]

<
[
exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

](ρh+ε)
i.e.,

log logM−1
g Mk(r) < (ρh + ε) log

[
exp[p−1]{(ρ(p,q)g◦h (f2) + ε) log[q] r}

]
i.e.,

log[p]M−1
g Mk(r) < (ρ

(p,q)
g◦h (f2) + ε) log[q] r +O(1).

So, lim sup
r→∞

log[p]M−1
g Mk(r)

log[q] r
≤ ρ

(p,q)
g◦h (f2) + ε.

Since ε > 0 be arbitrary,

−
ρ
(p,q)

g (k) ≤ ρ
(p,q)
g◦h (f2) = max{ρ(p,q)g◦h (f1), ρ

(p,q)
g◦h (f2)}. (11)

(ii) Suppose ρ
(p,q)
g◦h (f1) < ρ

(p,q)
g◦h (f2). Without loss of generality we may

assume f1(0) = 1.

We choose µ, λ so that ρ
(p,q)
g◦h (f1) < µ < λ < ρ

(p,q)
g◦h (f2). There exists a

sequence Rn →∞ such that

Mf2(Rn) > Mg◦h[exp
[p−1](λlog[q]Rn)], for n = 1, 2, 3 . . . .

Also for all large r,

Mf1(r) < Mg◦h[exp
[p−1](µlog[q]r)].

In Lemma 2.3, we take f1(z) for f(z), η = 1
16
, R = 2Rn and obtain

log|f1(z)| > −T (η)logMf1(2e.2Rn),

where

T (η) = 2 + log(
3e

2. 1
16

) = 2 + log(24e).

So,
log|f1(z)| > −(2 + log(24e))logMf1(4eRn)

holds within and on |z| = 2Rn but outside a family of excluded circles the
sum of whose radii is not greater than 4. 1

16
.2Rn i.e., Rn

2
.

If rn ∈ (Rn, 2Rn) then on |z| = rn, log|f1(z)| > −7logMf1(4eRn).
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Now,

Mf2(rn) > Mf2(Rn) > Mg◦h

[
exp[p−1](λ log[q]Rn)

]
> Mg◦h

[
exp[p−1](λ log[q] rn

2
)
]
.

Let zr be a point on |z| = rn such that Mf2(rn) = |f2(zr)|.
Then

Mk(rn) = max{|k(z)| : |z| = rn}

= max{|f1(z)||f2(z)| : |z| = rn}

> [Mf1(4eRn)]−7Mg◦h[exp
[p−1](λlog[q]

rn
2

)]

>
[
Mg◦h{exp[p−1](µlog[q](4eRn))}

]−7
Mg◦h[exp

[p−1](λlog[q]
rn
2

)]

≥
[
Mg◦h{exp[p−1](µlog[q](4ern))}

]−7
Mg◦h[exp

[p−1](λlog[q]
rn
2

)],

since rn > Rn.
Now for all large n, we have log[q]4ern

log[q] rn
2

< λ
γ

where γ ∈ (µ, λ). So,

Mk(rn) >
[
Mg◦h{exp[p−1](µlog[q](4ern))}

]−7
Mg◦h[exp

[p−1](γlog[q]4ern)].
(12)

The expression

exp[p−2](γlog[q](4ern))

exp[p−2](µlog[q](4ern))

tends to infinity as n→∞.
So for all large n, rn ≥ r1 > r0 we may write

exp[p−2](γlog[q](4ern))

exp[p−2](µlog[q](4ern))
>
exp[p−2](γlog[q](4er0))

exp[p−2](µlog[q](4er0))
= α

(say), then α > 1.
From Lemma 2.1 and for all large r, we have[

Mg◦h{exp[p−1](µlog[q](4ern))}α
]
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>
[
Mg◦h{exp[p−1](µlog[q](4ern))}

]8
. (13)

Also for the above value of α, one can easily verify that[
Mg◦h{exp[p−1](γlog[q](4ern))}

]
>
[
Mg◦h{exp[p−1](µlog[q](4ern))}α

]
. (14)

Therefore for all large n, we have from (12), (13) and (14)

Mk(rn) > Mg◦h
[
exp[p−1](µlog[q](4ern))

]
> Mg◦h

[
exp[p−1](µlog[q]rn)

]
≥Mg

[
1

16
Mh{

exp[p−1](µlog[q]rn)

2
}
]

by (1).

So,

M−1
g Mk(rn) >

1

16
Mh

[
exp[p−1](µlog[q]rn)

2

]
i.e.,

logM−1
g Mk(rn) > logMh

[
exp[p−1](µlog[q]rn)

2

]
+O(1)

>

[
exp[p−1](µlog[q]rn)

2

](λh−ε)
+O(1)

i.e.,

log logM−1
g Mk(rn) > (λh − ε)

[
exp[p−2](µlog[q]rn)

]
+O(1)

i.e., log[p]M−1
g Mk(rn) > µ log[q] rn +O(1).

So,
−
ρ
(p,q)

g (f1f2) ≥ µ.

Now since µ < ρ
(p,q)
g◦h (f2) is arbitrary, we have

−
ρ
(p,q)

g (f1f2) ≥ ρ
(p,q)
g◦h (f2) = max{ρ(p,q)g◦h (f1), ρ

(p,q)
g◦h (f2)}. (15)

From (11) and (15), we have

−
ρ
(p,q)

g (f1f2) = max{ρ(p,q)g◦h (f1), ρ
(p,q)
g◦h (f2)}.

This proves the theorem.
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5 Hyper Relative order (p,q) of the derivative

Theorem 5.1. Let f, g and h be entire transcendental with 0 < λh ≤ ρh <
∞. Then for p > 2

−
ρ
(p,q)

g (f ′) = ρ
(p,q)
g◦h (f).

Proof. We write Mf ′ (r) = max{|f ′(z)| : |z| = r},Mg′ (r) = max{|g′(z)| :
|z| = r} and Mh′ (r) = max{|h′(z)| : |z| = r}.

Without loss of generality we may assume that f(0) = 0. Otherwise we
set f1(z) = zf(z). Then f1(0) = 0 and by Theorem 4.1

−
ρ
(p,q)

g (f1) = ρ
(p,q)
g◦h (f).

We may write f(z) =
∫ z
0
f ′(t)dt, where the line of integration is the segment

from z = 0 to z = reiθ0 , r > 0. Let z1 = reiθ1 be such that |f(z1)| =
max{|f(z)| : |z| = r}. Then

Mf (r) = |f(z1)| = |
∫ z1

0

f ′(t)dt| ≤ rMf ′ (r). (16)

Let C denote the circle |t− z0| = r, where z0, |z0| = r is defined so that

|f ′(z0)| = max{|f ′(z)| : |z| = r}.

So,

Mf ′ (r) = max{|f ′(z)| : |z| = r} =

|f ′(z0)| = |
1

2πi

∮
C

f(t)

(t− z0)2
dt| ≤ 1

2π

Mf (2r)

r2
2πr =

Mf (2r)

r
. (17)

From (16) and (17) we obtain

Mf (r)

r
≤Mf ′ (r) ≤

Mf (2r)

r
, for r > 0. (18)

Let σ ∈ (0, 1). From Lemma 2.2(d), lim
r→∞

Mf (r
s)

rnMf (r)
=∞, where s > 1 and n

is a positive integer and so Mf (r
s) > rnMf (r) for all large r. If we replace

r by rσ and s = 1
σ

then from above Mf (r
sσ) > rnσMf (r

σ) ≥ rMf (r
σ),where

the positive integer n is such that nσ ≥ 1.
So Mf (r) > rMf (r

σ) for all large r.
From (18) and above, we have
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Mf (r
σ) <

Mf (r)

r
≤Mf ′ (r) ≤

Mf (2r)

r
< Mf (2r) for all large r > 1. (19)

So, Mf ′ (r) < Mf (2r)

< Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q] 2r}

]
≤Mg

[
Mh{exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q] 2r}}

]
, by (2)

i.e.,

M−1
g Mf ′ (r) < Mh

[
exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q] 2r}

]
i.e.,

logM−1
g Mf ′ (r) < logMh

[
exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q] 2r}

]

<
[
exp[p−1]{(ρ(p,q)g◦h (f) + ε) log[q] 2r}

](ρh+ε)
i.e.,

log logM−1
g Mf ′ (r) < (ρh + ε)

[
exp[p−2]{(ρ(p,q)g◦h (f) + ε) log[q] 2r}

]
i.e.,

log[p]M−1
g Mf ′ (r) < (ρ

(p,q)
g◦h (f) + ε) log[q] 2r +O(1).

So,

lim sup
r→∞

log[p]M−1
g Mf ′ (r)

log[q] r
≤ lim

r→∞

(ρ
(p,q)
g◦h (f) + ε) log[q] 2r

log[q] 2r
. lim
r→∞

log[q] 2r

log[q] r

i.e.,
−
ρ
(p,q)

g (f ′) ≤ ρ
(p,q)
g◦h (f) + ε.

Since ε > 0 be arbitrary,

−
ρ
(p,q)

g (f ′) ≤ ρ
(p,q)
g◦h (f). (20)

Now for a sequence of values of r = rn, we have from (19)

Mf ′ (rn) > Mf (r
σ
n) > Mg◦h

[
exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q] rσn}

]
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> Mg

[
1

16
Mh{

exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q] rσn}
2

}

]
, by (1)

i.e.,

M−1
g Mf ′ (rn) >

1

16
Mh

[
exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q] rσn}

2

]
i.e.,

logM−1
g Mf ′ (rn) > logMh

[
exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q] rσn}

2

]
+O(1) >

[
exp[p−1]{(ρ(p,q)g◦h (f)− ε) log[q] rσn}

2

](λh−ε)
+O(1)

i.e.,

log logM−1
g Mf ′ (rn) > (λh − ε)

[
exp[p−2]{(ρ(p,q)g◦h (f)− ε) log[q] rσn}

]
+O(1)

i.e.,
log[p]M−1

g Mf ′ (rn) > (ρ
(p,q)
g◦h (f)− ε) log[q] rσn +O(1).

So,
−
ρ
(p,q)

g (f ′) ≥ ρ
(p,q)
g◦h (f)− ε.

Since ε > 0 be arbitrary,

−
ρ
(p,q)

g (f ′) ≥ ρ
(p,q)
g◦h (f). (21)

From (20) and (21), we have

−
ρ
(p,q)

g (f ′) = ρ
(p,q)
g◦h (f).

This proves the theorem.

6 Conclusion

Our main goal through this paper is to enquire the basic relation between
hyper relative (p,q) orders of entire function with respect to a single entire
function and also of composition of entire functions which have not studied
previously. But still there remains some problems to be investigated for
future researchers in this field.
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