
Hyper Tableaux with Equality

Peter Baumgartner1, Ulrich Furbach2, and Björn Pelzer2

1 NICTA, Canberra, Australia
Peter.Baumgartner@nicta.com.au

2 Universität Koblenz-Landau, Koblenz, Germany
{uli,bpelzer}@uni-koblenz.de

Abstract. In most theorem proving applications, a proper treatment of
equational theories or equality is mandatory. In this paper we show how
to integrate a modern treatment of equality in the hyper tableau calcu-
lus. It is based on splitting of positive clauses and an adapted version of
the superposition inference rule, where equations used for paramodula-
tion are drawn (only) from a set of positive unit clauses, the candidate
model. The calculus also features a generic, semantically justified sim-
plification rule which covers many redundancy elimination techniques
known from superposition theorem proving. Our main results are sound-
ness and completeness, but we briefly describe the implementation, too.

1 Introduction
Tableau calculi play an important role in theorem proving, knowledge represen-
tation and in logic programming. Yet, for automated first-order theorem proving
the influence of tableau calculi decreased in the last decade. The CASC competi-
tion [SS06] is dominated by saturation-based provers, and a tableau system like
SETHEO, which was several times among CASC winners, is not even entering
the competition any more. Among the reasons are the problems tableau calculi
have with efficient handling of equality. Of course there are numerous papers on
equality handling in tableau calculi. Various approaches have been discussed, for
instance, in [Bec97]. It is not clear, however, whether they can be a basis for high
performance theorem proving. This has to do with the usage of free variables in
most semantic tableau calculi. The nature of these free variables, their rigidness,
seems to be a major source for difficulties to define efficient proof procedures,
even without equality. For instance, proof procedures often suffer from excessive
backtracking and enumerate whole tableaux in an iterative-deepening fashion,
typically based on the number of γ-rule applications in a tableau.

To avoid the problems of rigid variables for equality reasoning, in [DV96] the
authors combine a superposition based equality reasoning system with a top
down semantic tableau reasoner. Yet, certain substitutions still have to be ap-
plied globally to all variables in the tableau, which thus are still treated rigidly.
As with most free-variable tableau calculi, the important property of proof con-
fluence does not hold or is not known to hold.

Other free-variable tableau methods are based on solving (simultaneous) rigid
E-unifiability problems [DV98] but still face the same problem of not exploiting
proof confluence.

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 492–507, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Hyper Tableaux with Equality 493

A more recent stream of equality handling in free-variable tableaux has been
initiated by Martin Giese. It is (also) motivated by addressing the excessive back-
tracking of the methods mentioned above. In [Gie02] the author gives a calculus
for free variable tableaux with superposition-type inference and proves complete-
ness by adapting the model generation technique for superposition [BG98,NR01].
One improvement, compared with [DV96] and other free-variable methods is that
unification constraints leading to a closed tableau are now held locally together
with tableau literals. This allows one to avoid backtracking over the tableaux
generated in a derivation, but instead amounts to combining local substitutions
in a compatible way for the purpose to witness a closed tableau (see [Gie01] for
details). A drawback of this approach is its potentially high memory consump-
tion, as, in essence, it does not admit a one-branch-at-a-time proof procedure.

In [Gie03], simplification rules and reasoning with universal variables1 are
added to the framework of [Gie02], but without equality. Equality aside, the most
relevant contribution in [Gie03] from the viewpoint of this paper is the instantia-
tion of the calculus there to a variant of the hyper tableau calculus [BFN96].2 An
important difference to [BFN96] is that [Gie03] uses rigid variables for variables
that are shared between positive literals in clauses. For instance, a clause like
∀x, y (p(x, y)∨q(x)) then is treated by β-expansion with the formulas ∀y p(X, y)
and q(X), where X is a rigid variable shared between branches. In contrast, the
hyper tableaux of [BFN96] would branch out on the formulas ∀y p(t, y) and q(t),
where t is some “guessed” ground term of the input signature.3

In this paper we stick with the hyper tableau calculus and its “obviously in-
efficient” approach of guessing ground terms for shared variables, as opposed
to using free variables. More precisely, we show how to incorporate efficient
ordering-based equality inference rules and redundancy elimination techniques
from the superposition calculus [BG98, NR01] into a tableau calculus. We be-
lieve the hyper tableau calculus [BFN96] is a good basis for doing that, for the
following reasons.
– All variables in a hyper tableau are universally quantified in the branch literal

they occur. This facilitates the adaption of the superposition framework and
enables powerful redundancy criteria.

– As far as we know, none of the free-variable calculi mentioned above can be
used as a non-trivial decision procedure for function-free clause logic. The
same holds true for any known resolution refinement.
On the other hand, our calculus is a non-trivial decision procedure for this
fragment (with equality), which captures the complexity class NEXPTIME.

1 Variables that are local to a clause or literal and that are universally quantified.
2 Hyper tableaux is a tableau model generation method, which is applied to clauses

and needs only one inference rule, which can be seen as a tableaux β-rule. It is
applied in a “hyper-way”, such that all negative literals are “resolved away” by
positive literals in the branch. The remaining literals are positive and are split after
that. This basic idea stems from SATCHMO [MB88], which is extended in hyper
tableaux by making better use of universally quantified variables.

3 Notice that Resolution- or Superposition calculi, also those with Splitting [Wei01],
do not split ∀x, y (p(x, y) ∨ q(x)).

494 P. Baumgartner, U. Furbach, and B. Pelzer

Many practically relevant problems are NEXPTIME-complete, e.g. first-
order model expansion (relevant for constraint solving).

– Advanced techniques are available to restrict the domain of the guessed
ground terms (like t above). For instance, the preprocessing technique in
[BS06] can readily be used in conjunction with our calculus without any
change.4

– Specific to the theory of equality and in presence of simplification inference
rules, that domain can even be further reduced. This occasionally shows
unexpected (positive) effects, leading to termination of our system, where
e.g. superposition based systems do not terminate. See Section 5 for details.

– The hyper tableau calculus is the basis of the KRHyper prover, which is used
in various applications [FO06,?,BFGHS04, e.g.] from which we learned that
an efficient handling of equality would increase its usability even more.

The closest approximation of the superposition calculus to E-hyper tableaux
is obtained by using a selection function that selects all negative literals and
using a prover that supports splitting, like SPASS [Wei01]. Even then, there
remain differences. We discuss these issues in Section 5.

In [BT05], the model evolution calculus is extended by equality. Model evo-
lution is a lifting of propositional DPLL to the first order case. The model con-
struction method behind admits semantically justified redundancy elimination
criteria. This calculus, as well as other instance-based methods (with equality,
like [LS02]) are conceptually rather different to resolution- or tableau calculi as
considered here.

This paper is organised as follows: we start with preliminaries in the following
section. In Section 3 we present superposition inference rules for clauses together
with a static completeness result. In Section 4 we introduce E-hyper tableaux and
soundness and completeness properties. In Section 5 we consider improvements
for splitting and discuss the relation with splitting in the SPASS prover. Section 6
describes the implementation of the E-KRHyper system. Detailed proofs of all
results can be found in the long version of this paper.

2 Preliminaries

Most of the notions and notation we use in this paper are the standard ones in
the field. We report here only notable differences and additions.

We will use an infinite set of variables X , and x and y denote elements of X .
We fix a signature Σ throughout the paper. Unless otherwise specified, when we
say term we will mean Σ-term. If t is a term we denote by Var(t) the set of t’s
variables. A term t is ground iff Var(t) = ∅.

The notation s[t]p denotes the replacement of a subterm of s at position p
with a term t, as usual. We leave away the subscript p if clear from the context.
All of the above is extended from terms to literals in the obvious way.
4 For example, the calculus described here does not admit a finite (fair) derivation

from the clause set {∀x p(x)∨ q(x), r(f(c))}, but in conjunction with the techniques
in [BS06] it does.

Hyper Tableaux with Equality 495

In this paper we restrict ourselves to equational clause logic. Therefore, and
essentially without loss of generality, we assume that the only predicate symbol
in Σ is $. Any atom A that is originally not an equation can be represented
as the equation A $ t, where t is some distinguished constant not appearing
elsewhere. (But we continue to write, say, P (a) instead of the official P (a) $ t.)
This move is harmless, in particular from an operational point of view.5 An
atom then is always an equation, and a literal then is always an equation or
the negation of an equation. Literals of the latter kind, i.e., literals of the form
(s $ t) are also called negative equations and generally written s %$ t instead.
We call a literal trivial if it is of the form t $ t or t %$ t.

We denote atoms by the letters A and B, literals by the letters K and L and
by L the complement of a literal L.

A clause is a finite multiset of literals, written as a disjunction A1 ∨ · · ·∨Am ∨
¬B1 ∨ · · · ∨ ¬Bn or an implication A1, . . . , Am ← B1, . . . , Bn, where m, n ≥ 0.
Each atom Ai, for i = 1, . . . , m, is called a head atom, and each atom Bj , for
j = 1, . . . , n, is called a body atom. We write A, A ← B, B to denote a clause with
head atoms {A} ∪ A and body atoms {B} ∪ B, where A and B are multisets
of atoms. As usual, clauses are implicitly universally quantified.

We suppose as given a reduction ordering) that is total on ground Σ-terms.6
The non-strict ordering induced by) is denoted by *, and ≺ and , denote the
converse of) and *. The reduction ordering) has to be extended to rewrite
rules, equations and clauses. Following usual techniques [BG98,NR01, e.g.], to
a given ground clause A ← B we associate to each head atom s $ t in A
the multiset {s, t} and to each body atom u $ v in B the multiset {u, u, v, v}.
Two atoms then (head or body) are compared by using the multiset extension
of), which is also denoted by). This will have the effect of a lexicographic
ordering, where, first, the bigger terms of two equations are compared, then the
sign (body atoms are bigger) and at last the smaller sides of the equations. To
compare clauses the two-fold multiset extension of) is used, likewise denoted
by). When comparing ground rewrite rules they are treated as unit clauses.

A central notion for hyper tableaux is that of a pure clause [BFN96]: a clause
A1, . . . , Am ← B1, . . . , Bn is called pure iff Var(Ai) ∩ Var(Aj) = ∅, for all
1 ≤ i, j ≤ m with i %= j. That is, in a pure clause variables are not shared among
head literals. (In the rest of this paper we will need this concept for positive
clauses only.) Any substitution that turns a clause C into a pure instance Cπ is
called a purifying substitution (for C).

A (Herbrand) interpretation I is a set of ground Σ-equations—those that are
true in the interpretation. Satisfiability/validity of ground Σ-literals, Σ-clauses,

5 Strictly speaking, one has to move to a two-sorted signature with different signatures
for function symbols and predicate symbols, and all variables are of the sort of
terms. We ignore this aspect throughout the paper because it does not cause any
complications.

6 A reduction ordering is a strict partial ordering that is well-founded and is closed
unter context i.e., s # s′ implies t[s] # t[s′] for all terms t, and liftable, i.e., s # t
implies sδ # tδ for every term s and t and substitution δ.

496 P. Baumgartner, U. Furbach, and B. Pelzer

and clause sets in a Herbrand interpretation is defined as usual. We write I |= F
to denote that I satisfies F , where F is a ground Σ-literal or a Σ-clause (set).

Since every interpretation defines in effect a binary relation on ground Σ-
terms, and every binary relation on such terms defines an interpretation, we will
identify the two notions in the sequel.

An E-interpretation is an interpretation that is also a congruence relation on
the Σ-terms. If I is an interpretation, we denote by IE the smallest congruence
relation on the Σ-terms that includes I. We say that I E-satisfies F iff IE |= F .
Instead of IE |= F we generally write I |=E F . We say that F E-entails F ′,
written F |=E F ′, iff every E-interpretation that satisfies F also satisfies F ′. We
say that F and F ′ are E-equivalent iff F |=E F ′ and F ′ |=E F .

Redundant Clauses. Intuitively, a clause is redundant iff it follows from a set of
smaller clauses. We will formalize this now, following [BG98]. There is a related
notion of “redundant inference” which will be introduced in Section 3.1 below.

If D is a ground clause and C is a set of ground clauses then let CD = {C ∈
C | D) C}. When C is a set of non-ground clauses and when writing CD we
identify C with the set of all ground instances of all its clauses.

Now, a ground clause D is redundant wrt. a set of clauses C iff CD |=E D.
That is, D is redundant wrt. C iff D follows from smaller clauses taken from
C.7 When D is a non-ground clause we say that D is redundant wrt. C iff every
ground instance of D is redundant wrt. C. For instance, using any simplification
ordering, P (f(a)) ← is redundant wrt. {P (a) ← , f(x) $ x ← }, because
{P (a) ← , f(a) $ a ← } |=E P (f(a)) ← and each clause in the premise is
smaller than P (f(a)) ← .

3 Inference Rules on Clauses

The following three inference rules are taken from the superposition calcu-
lus [BG98] and adapted to our needs. We need in addition a splitting rule that
will be defined afterwards. All rules will later be embedded into the hyper tableau
derivation rules.

An equation l $ r always also denotes its symmetric version r $ l.
The sup-left rule (superposition left8) applies a superposition step to a body

literal:

sup-left(σ)
A ← s[l′] $ t, B l $ r ←

(A ← s[r] $ t, B)σ
if

l′ is not a variable,
σ is a mgu of l and l′,
lσ $% rσ, and
sσ $% tσ

7 By compactness, even from a finite set of clauses.
8 With our notation for clauses, the name superposition left is actually counterintu-

itive, but we keep it for compatibility with corresponding rules in the superposition
calculus.

Hyper Tableaux with Equality 497

The last condition can be dropped, and the resulting inference rule is then called
ordered paramodulation left.

The unit-sup-right rule (unit superposition right) applies a superposition step
to a positive unit clause:

unit-sup-right(σ)
s[l′] $ t ← l $ r ←

(s[r] $ t ←)σ
if

l′ is not a variable,
σ is a mgu of l and l′,
(s & t)σ $% (l & r)σ,
lσ $% rσ, and
sσ $% tσ

The last condition can be dropped, and the resulting inference rule is then called
ordered unit paramodulation right.

The general superposition right inference rule of [BG98] between non-unit
clauses is not needed, essentially due to the presence of the splitting rule below.

The ref rule (reflexivity) eliminates a body literal on the grounds of being
trivially true (after applying a substitution).

ref(σ)
A ← s $ t, B
(A ← B)σ

if σ is a mgu of s and t

Finally, the announced splitting rule. It takes a disjunctive fact, applies a puri-
fying substitution π to it and returns the instantiated head atoms, one conclusion
per head atom.

split(π)
A1, . . . , Am←

A1π← · · · Amπ←
if

{
m ≥ 2, and
π is a purifying substitution for A1, . . . , Am←

3.1 Redundant Inferences and Saturation

We write C, D ⇒sup-left(σ) E to denote a sup-left inference, i.e., an instance of
the sup-left inference rule with left premise C, right premise D, conclusion E
and substitution σ that satisfies the rule’s side condition. We use analogous
notation for an application of the sup-right inference rule, and for an application
of ref we write, similarly, C ⇒ref(σ) E. Likewise, C ⇒split(π) A1 ← , . . . , Am ←
denotes a split inference with premise C, purifying substitution π and conclusions
A1 ← , . . . , Am ← .

An R-inference, with R ∈ {sup-left, unit-sup-right, ref} is ground iff its con-
stituent clauses C, D and E are ground. The substitution σ in a ground inference
is irrelevant and may be assumed, without loss of generality, to be the empty
substitution ε.

If C, D ⇒R(σ) E is an R-inference (with D absent in the case of ref) and γ
is a substitution such that Cσγ, Dσγ ⇒R(ε) Eγ is a ground inference, then the
latter inference is called a ground instance of the inference C, D ⇒R(σ) E.

For instance, by taking γ = {x 1→ a} one sees that the ground inference

(P (f(a)) ←), (f(a) $ a ←) ⇒sup-right(ε) P (a) ←

is a ground instance of the inference

498 P. Baumgartner, U. Furbach, and B. Pelzer

(P (f(x)) ←), (f(y) $ y ←) ⇒sup-right({y #→x}) P (x) ← .

In contrast,

(P (f(f(a))) ←), (f(a) $ a ←) ⇒sup-right(ε) P (f(a)) ←

is not a ground instance of the inference above, for any substitution γ. Intu-
itively, only such ground inferences can be ground instances of inferences where
paramodulation takes place at positions that exist also at the non-ground level.
This excludes ground inferences that are not liftable because they would require
paramodulation into or below variables. We can define these notions for the
split rule analogously: a split inference is ground if the premise is ground (and
hence all its conclusions are ground). Similarly as above for the other rules, the
purifying substitution π can always be assumed to be the empty substitution
then.

If C ⇒split(π) A1 ← , . . . , Am ← is a split inference and γ is a substitution
such that Cπγ ⇒split(ε) A1γ ← , . . . , Amγ ← is a ground split inference, then
the latter inference is called a ground instance of the former inference.

Let D be a set of (possibly non-ground) clauses. A ground inference
C, D ⇒sup-left(ε) E or C, D ⇒sup-right(ε) E is redundant wrt. D iff E is redun-
dant wrt. DC ∪ {D}. A ground inference C ⇒ref(ε) E is redundant wrt. D iff E
is redundant wrt. DC . And a ground inference C ⇒split(ε) A1 ← , . . . , Am ← is
redundant wrt. D iff there is an i with 1 ≤ i ≤ m such that Ai ← is redundant
wrt. DC .

For all inference rules sup-left, unit-sup-right, ref and split, a (possibly non-
ground) inference is redundant wrt. D iff each of its ground instances is redundant
wrt. D.

Intuitively a ground inference is redundant wrt. D iff its conclusion follows
from a set of smaller clauses than the left premise, while fixing the right premise.
Because all (ground) inferences work in a strictly order-decreasing way, adding
the conclusion of an inference to the clause set the premises are taken from
renders the inference redundant wrt. that set.9 For instance, adding P (a) ← to
the set {(P (f(a)) ←), (f(a) $ a ←)} renders the obvious sup-right inference
redundant wrt. the resulting set.

It is not only redundant inferences that can be neglected. Also inferences where
one or both parent clauses are redundant can be neglected. This is captured by
the following definition.

Definition 3.1 (Saturation up to redundancy). A clause set C is saturated
up to redundancy iff for all clauses C ∈ C such that C is not redundant wrt. C
all of the following hold:

1. Every inference C ⇒split(π) A1 ← , . . . , Am ← such that Cπ is not redundant
wrt. C, is redundant wrt. C.

2. Every inference C, D ⇒R(σ) E, where R ∈ {sup-left, unit-sup-right} and D
is a fresh variant of a positive unit clause from C, such that neither Cσ nor
Dσ is redundant wrt. C, is redundant wrt. C.

9 This property makes it obvious that fair derivations, as defined later, exist.

Hyper Tableaux with Equality 499

3. Every inference C ⇒ref(σ) E such that Cσ is not redundant wrt. C, is redun-
dant wrt. C.

For instance, the (satisfiable) propositional clause set C = {(A, B ←), (← A)}
is not saturated up to redundancy. By an application of the split rule to A, B ←
one can infer A ← and B ← , and adding, say, B ← to C renders the clause
A, B ← redundant.

As an example for a non-ground split inference consider a clause P (x), Q(x) ←
from some clause set. One may want to avoid applying all purifying substitutions
to it. Fortunately, Definition 3.1-1 does not prescribe that at all. For instance,
when the clause set includes an equation a $ b ← (where a) b), then purifying
P (x), Q(x) ← by π = {x/b}, yielding P (b), Q(b) ← , and adding P (b) ← to the
clause set is sufficient to render the split inference with purifying substitution
{x/a} redundant, as the clause P (a) ← follows from P (b) ← and a $ b ← ,
both of which are smaller than P (a), Q(a) ← .

Theorem 3.2 (Static Completeness). Let C be a clause set saturated up to
redundancy. If ! /∈ C then C is E-satisfiable.

The proof employs the model-construction technique originally developed for
the superposition calculus, but adapted to our needs. The difference come from
the facts that in our case all side premises are unit clauses, and so there is no
equality factoring (or merging paramodulation) inference rule, and that we need
a splitting rule.

Notice that Theorem 3.2 applies to a statically given clause set C. The con-
nection to the dynamic derivation process of the E-hyper tableau calculus will
be given later, and Theorem 3.2 will be essential in proving the completeness of
the E-hyper tableau calculus.

4 E-Hyper Tableaux

In [BFN96], based on [LMG94], hyper tableau have been introduced as labeled
trees over literals (which are universally quantified, and hence can be seen as
unit clauses). For our purposes, however, a generalization towards trees over
clauses is better suited. This is, because new clauses can now be derived as the
derivation proceeds, and these clauses are context dependant (branch local), and
tableaux are an obvious data structure to deal with this context dependency.

A labeled tree over a set M is a pair (T ,λ) consisting of a finite, ordered tree
T and a labeling function λ that maps each node of T to some element from M .
A (clausal) tableau over a signature Σ is a labeled tree over the set of Σ-clauses.

We use the letter T to denote tableaux.
Let B be a branch of a tableau T of length n, i.e., a sequence of nodes

(N1, . . . ,Nn), for some n ≥ 0, where N1 is the root and Nn is the leaf of B.
Each of the clauses λ(Ni), for i = 1, . . . , n, is called a (tableau) clause of B.

Occasionally it is convenient to read a branch B as the multiset of its tableau
clauses λ(B) := {D | D is a tableau clause of B}. This allows us to write, for

500 P. Baumgartner, U. Furbach, and B. Pelzer

instance, C ∈ B instead of C ∈ λ(B). Furthermore, if B is a branch of a tableau
T we write B · C and mean the tableau obtained from T by adding an edge
from the leaf of B to a fresh node labeled with C. Furthermore, we write B · B′

to denote the branch obtained by concatenating the branch B and the node
sequence B′.

4.1 Extension Rules

We define two derivation rules for extending branches in a given tableau.
The Split rule branches out on an instance of a positive clause; its conclusions

are labeled as “decision clauses”, as indicated by the annotation d. The role of
this labeling will become clear below in Section 4.2.

Split
B

B · A1 ←d · · · B · Am ←d if

there is a clause C ∈ B and
a substitution π such that

C ⇒split(π) A1 ← , . . . , Am ← and
B contains no variant of Ai ← ,
for each i = 1, . . . , m

The clause C is called the selected clause (of a Split inference).
The Equality rule applies an inference rule for equality reasoning from Section 3

to a body literal.

Equality
B

B · E
if

there is a clause C ∈ B,
a fresh variant D of a positive unit clause in B, and
a substitution σ such that

C, D ⇒R(σ) E with R ∈ {sup-left, unit-sup-right} or
C ⇒ref(σ) E, and

B contains no variant of E

In both rules, the test for the conclusion(s) being not contained in B is needed
in interplay with deletion of clauses based on non-proper subsumption (see the
Del below).

For later use, we say that an application of a Split, Sup-left, Unit-sup-right or
Ref derivation rule to a branch B is redundant iff its conclusion (at least one of
its conclusions, in the case of Split) is redundant wrt. B.

4.2 Deletion and Simplification Rules

From a practical point of view, deletion of redundant clauses and simplification
operations on clauses are crucial. We will introduce these now. Adding such rules
is a major addition to the hyper tableau calculus and involves a more sophisticted
technical treatment than that in [BFN96]. This is, because hyper tableau as
defined in [BFN96] are non-destructive, in the sense that extending a branch
goes along with increasing the set of its corresponding labels (unit clauses). This
is no longer the case in presence of, for instance, the Del rule (deletion) below,

Hyper Tableaux with Equality 501

which removes a clause that is redundant in a branch or subsumed by another
clause in the branch.

Also, to preserve the calculus’ soundness, arbitrary deletion of redundant
clauses is not possible. A clause can be deleted only on the condition that none
of the clauses which make the clause redundant is a clause which has been in-
troduced at a later “decision level” (i.e. one that occurs further down in the tree
below a more leafwards decision clause). This is formalized next.

Del
B · C(d) · B1 · B2

B · t $ t ←(d) · B1 · B2
if

(1) C is redundant wrt. B · B1, or some
clause in B · B1 non-properly subsumes C, and
(2) B1 does not contain a decision clause

The notation (d) is meant to say that if there is a label d, it is preserved when
replacing C by t $ t ← .

Observe that our redundancy notion does not cover non-proper subsump-
tion.10 For instance, the clause P (a) ← is not redundant wrt. {P (x) ← } (and
neither is the clause P (y) ←). Therefore, deletion of non-properly subsumed
clauses has been taken care of explicitly.

The next rule, Simp (simplification), replaces a clause by another one that is
smaller in the ordering:

Simp
B · C(d) · B1 · B2

B · D(d) · B1 · B2
if

(1) B · C · B1 |=E D,
(2) C is redundant wrt. B · D · B1, and
(3) B1 does not contain a decision clause

The Simp rule covers, for instance, standard rewriting by unit clauses.
The condition (2) in Del is needed for completeness reasons, and the condition

(3) in Simp is needed for both completeness and soundness reasons. They make
sure that no deletion or simplification step is justified by a clause from a decision
level further down in the tableau. Such a step would in general be justified only
in the branch containing the used clauses, but not in the other branches. For
illustration consider the following clause set.

P (a) ← (1) ← P (b) (2) a $ b, Q ← (3)

After a Split with clause (3) a branch containing the decision clause a $ b ←
comes up. If condition (3) in Simp were dropped (and a) b), then clause (1)
could be simplified to P (b) ← , leading to a refutation. This would be unsound
because the simplification is not justified in the branch containing Q ← although
it would contain the simplified literal. But with the restrictions in place we arrive
at the following lemma.

Lemma 4.1. For each of the derivation rules Split, Equality, Del and Simp, if
the premise of the rule is E-satisfiable, then one of its conclusions is E-satisfiable
as well.
10 A clause C non-properly subsumes a clause D iff Cσ = D for some substitution σ.

502 P. Baumgartner, U. Furbach, and B. Pelzer

For similar reasons as for Simp, the Del rule cannot just delete the clause Cd

mentioned in the premise, as the deletion would remove the separation of B
and B1 by a decision clause (while the replacement by t $ t ← d preserves the
separation).

A different approach to deletion and simplification is implemented in the
SPASS prover [Wei01]. The corresponding rules in SPASS are even more gen-
eral than ours as they allow to ignore the decision levels. But then, in general,
a deleted or simplified clause must be reinserted on backtracking to an earlier
decision level. This is never necessary in our case, essentially because of disallow-
ing “backward” deletion and simplification steps across decision levels, as just
discussed in the previous example.

4.3 Derivations

We say that a branch of a tableau is closed iff it contains the empty clause !.11
A branch that is not closed is also called open. A tableau is closed iff each of
its branches is closed, and it is open iff it is not closed (i.e., if it has an open
branch).

An (E-hyper tableau) derivation from a set {C1, . . . , Cn} of Σ-clauses is a
possibly infinite sequence of tableaux D = (Ti)0≤i<κ such that

1. T0 is the clausal tableau over Σ that consists of a single branch of length n
with tableau clauses C1, . . . , Cn.12, and

2. for all i > 0, Ti is obtained from Ti−1 by a single application of one of the
derivation rules in Sections 4.1 and 4.2 to some open branch of Ti−1, called
the selected branch.

Recall that a tableau T is of the form (T ,λ), where T is a tree, i.e., a pair
(N , E) where N is the set of the nodes of T and E is the set of the edges of T .

A derivation D = ((Ni, Ei),λi)i<κ determines a limit tree ((
⋃

i<κ Ni,
⋃

i<κ Ei).
It is easy to show that a limit tree of a derivation D is indeed a (possibly infinite)
tree.

Now let T be the limit tree of some derivation, let B = (Ni)i<κ be a (possibly
infinite) branch in T with κ nodes, and let Bi = (N1, . . . ,Ni) be the initial
segment of B with i nodes, for all i < κ. Define B∞ =

⋃
i<κ

⋂
i≤j<κ λj(Bj), the

set of persistent clauses (of B).

Definition 4.2 (Exhausted Branch). Let T be a limit tree, and let B =
(Ni)i<κ be a branch in T with κ nodes. The branch B is exhausted iff it does
not contain the empty clause, and for every clause C ∈ B∞ and every fresh
variant D of every positive unit clause in B∞ such that neither C nor D is
redundant wrt. B∞ all of the following hold, for all i < κ such that C ∈ Bi and
D is a variant of a clause in Bi:
11 We write ! instead of “ ← ”.
12 The order does not matter, as the collection of tableau clauses of a branch will be

seen as sets. For technical reasons we assume that no clause Ci is a variant of a
clause Cj , for all 1 ≤ i < j ≤ n, but this is obviously not an essential restriction.

Hyper Tableaux with Equality 503

1. if Split is applicable to Bi with underlying inference
C ⇒split(π) A1 ← , . . . , Am ← and Cπ is not redundant wrt. Bi, then there
is a j < κ such that the inference C ⇒split(π) A1 ← , . . . , Am ← is redundant
wrt. Bj.

2. if Equality is applicable to Bi with underlying inference C, D ⇒R(σ) E, for
some R ∈ {sup-left, unit-sup-right}, and neither Cσ nor Dσ is redundant wrt.
Bi, then there is a j < κ such that the inference C, D ⇒R(σ) E is redundant
wrt. Bj.

3. if Equality is applicable to Bi with underlying inference C ⇒ref(σ) E and
Cσ is not redundant wrt. Bi, then there is a j < κ such that the inference
C ⇒ref(σ) E is redundant wrt. Bj.

A refutation of a clause set C is a finite derivation of C that ends in a closed
tableau.

A derivation is fair iff it is a refutation or its limit tree has an exhausted
branch.

In the preceeding definition, actually carrying out a Split inference with a
clause C and (irreducible) purifying substitution π, when applicable, will achieve
the conclusion, i.e. make Cπ redundant wrt. Bj . The analogous holds for the
Equality inferences in items 2 and 3. This observation indicates that proof pro-
cedures implementing fair derivations indeed can be given.

Theorem 4.3 (Soundness of E-Hyper Tableaux). Let C be a clause set that
has a refutation. Then C is E-unsatisfiable.

For the completeness direction we need the following result:

Proposition 4.4 (Exhausted branches are saturated up to redundancy).
If B is an exhausted branch of a limit tree of some fair derivation then B∞ is
saturated up to redundancy.

Proposition 4.4 and Theorem 3.2 entails our main result:

Theorem 4.5 (Completeness of E-Hyper Tableaux). Let C be a clause set
and T be the limit tree of a fair derivation D of C. If D is not a refutation then
C is satisfiable.

Because the proof of this theorem refers to the proof of Theorem 3.2, the model
constructed in the proof of Theorem 3.2 provides a strengthening of Theorem 4.5
by being more specific.

Corollary 4.6 (Bernays-Schönfinkel Class with Equality). The E-hyper
tableau calculus can be used as a decision procedure for the Bernays-Schönfinkel
class with equality, i.e., for function free formulae with the quantifier prefix ∃∗∀∗.

The proof of Corollary 4.6 follows from the soundness and completeness results,
and the facts that the calculus cannot derive clauses that grow in length, or
that grow in term depth (using the assumption that no non-nullary function
symbols are present) or that are variants of clauses already contained in the

504 P. Baumgartner, U. Furbach, and B. Pelzer

branch. Therefore any (exhausted) branch derivable must be finite.13 Because of
the finite branching of hyper tableaux and by Koenig’s Lemma it follows that
any (limit) derivation must be finite.

5 Restricting Split and the Relation to Splitting in SPASS

For performance reasons it is mandatory to restrict the search space induced
by having to apply purifying substitutions in Split rule applications. The fair-
ness criteria in Definition 4.2 already support that. For instance, one can take
advantage of avoiding purifying substitutions that are reducible, as they lead to
redundant inferences.

Definition 5.1 (Reducible substitution). Let C be a clause set and σ a sub-
stitution. We say that σ is reducible wrt. C iff there is a term t ∈ Ran(σ)14, a
unit clause l $ r ← ∈ C and a (matching) substitution µ such that lµ occurs in
t and lµ) rµ.

We say that σ is irreducible wrt. C if σ is not reducible wrt. C.
Obviously, for each (positive) clause C = A1, . . . , Am ← in a branch B and

each purifying substitution π0 for C there is a maximal chain Cπ0) Cπ1) · · ·)
Cπn, for some n ≥ 0, where πi is obtained from πi−1 by one-step rewriting a term
of its range with a positive unit clause from B and such that πn is irreducible
wrt. B. It is not difficult to see that, by equality, applying Split with Cπn renders
the Split inferences with Cπ0, . . . , Cπn−1 redundant (wrt. all branches obtained
by splitting Cπn). No reducible purifying substitution need therefore ever be
considered in Split inferences to obtain an exhausted branch.

An example of such a situation is C = P (x), Q(x) ← , a $ b ← ∈ B, a) b,
π0 = {x/a} and π1 = {x/b}. Split with P (b), Q(b) ← alone to extend B is
sufficient.

A significantly different split rule is implemented in the SPASS prover [Wei01].
It does not apply a purifying substitution to force partitioning a clause into
variable disjoint parts. Instead, it can split on clauses only that are already
partitioned.

We do not claim that our approach is always preferrable in practice. Yet,
there are situations where indeed it is. By way of example, consider the following
clauses

f(a) $ a ← (1)
g(a) $ a ← (2)

f(g(x)) $ g(f(x)) ← (3)
p(f(x)), p(g(x)) ← (4)

Suppose a precedence f) g) a (or g) f) a, as the problem is symmetric
in f and g), lifted to any simplification ordering. All superposition inferences
among the clauses 1-3 are redundant, and a prover like SPASS will detect that.

13 The situation is slightly more complicated due to the Simp and Del rules.
14 As usual, the range of a substitution σ is Ran(σ) = {xσ | xσ $= x}.

Hyper Tableaux with Equality 505

Among others, there is a superposition inference between clause 4 and 3, which
yields the clause

p(g(f(x))), p(g(g(x))) ← . (5)

In fact this inference is redundant, too. To see this, consider any ground sub-
stitution γ. It must map x to some term comprised of a combination of fs, gs
and (one) a, e.g. γ = {x/f(f(g(f(a))))}. Now, any ground instance obtained
from clause 5 in this way can be reduced by the unit clauses 1-3 in one or more
steps to the clause p(f(a)), p(g(a)) ← (they can be reduced even further), which
is a ground instance of clause 4 and which is smaller in the ordering than the
ground instance of clause 5 we started with. By this argument the superposition
inference leading to clause 5 is redundant (and need not be carried out).

Notice that this argumentation takes the clause set’s signature into account.
However, the commonly implemented redundancy criteria do not do that. In
particular, for instance, SPASS does not find a finite saturation of the clause set
above. In contrast, E-hyper tableaux are aware of the input signature and the
redundancy criteria based on irreducible purifying substitutions, as mentioned
above, are strong enough to achieve termination.15 To see this, it is enough
to observe that every purifying substitution, like π = {x/f(f(g(f(a))))}, is re-
ducible (to π = {x/a}) wrt. every branch containing clauses 1 and 2. Thus, the
only instance of clause 4 to be considered for splitting (in presence of 1-3) is
p(f(a)), p(g(a)) ← (which can be simplified further). Moreover, this can easily
be achieved by adding the following “logic program”

ran(a) ← (6) ran(f(x)) ← ran(x) (7) ran(g(x)) ← ran(x) (8)

which, in combination with rewriting by unit clauses will enumerate in its
ran predicate the ground terms of the input signature that are irreducible wrt.
the orientable current positive unit clauses. In presence of clauses 1 and 2 this
is the singleton {a}. The general form of the “logic program” has, of course,
already been used within SATCHMO [MB88] and some descendants. To our
knowledge, though, it was never observed before that equational reasoning can
help to confine the ran-predicate.

6 Implementation

We have implemented the E-hyper tableau calculus by extending our existing
KRHyper system. KRHyper is a hyper tableaux theorem prover, and as such
it lacked equality handling in the original version. The modified system, called
E-KRHyper, adapts the methods of its precursor to accommodate the new in-
ferences, while at the same time retaining the original functionality.

The derivation proceeds in a bottom-up manner. Internally, clauses are di-
vided into three sets, one containing the positive non-equational units (facts),
15 More precisely, there is a finite derivation in the E-hyper tableau calculus, and any

reasonable implementation, like our E-KRHyper system, will find it.

506 P. Baumgartner, U. Furbach, and B. Pelzer

the other consisting of the positive non-unit clauses (disjunctions), and the third
including both the unit equations and the clauses with negative literals (rules).
The hyper extension inference of KRHyper is equivalent to a series of Sup-left,
Ref and Split applications, and therefore it is kept in place in E-KRHyper as
a shortcut inference for the resolution of non-equational atoms. The E-hyper
tableau is generated depth first, with the current state of the three clause sets
always representing a single branch. The Split on a disjunction is only executed
when the other inference possibilities have been exhausted. An iterative deepen-
ing strategy with a limit on the maximum term weight of generated clauses is
employed. This ensures the refutational completeness and a fair search control,
as it prevents splitting from being delayed indefinitely by other inferences.

Clauses are derived by a loop iterating over the rules, with each rule in turn
accessing indexes in the search for inference partners. The inferred clauses are
added to their respective sets after having passed the weight and subsumption
tests. The dynamic nature of the rule set represents a major change compared
to the previous system version. As the hyper tableaux calculus has no inferences
that generate new rule clauses, this set remained fixed throughout the deriva-
tion of KRHyper, and many optimizations on the input could be delegated to
preprocessing. Operations like the clause subsumption test are necessary for the
new calculus, and they are now employed to optimize the input clauses as well.

The superposition inferences utilize a discrimination-tree based index [McC92]
over the subterms of clauses, and terms are ordered according to the recursive
path ordering (RPO). As an option, the backtracking mechanism allows the
removal of redundant clauses from the entire current branch, beyond the limits
set in Section 4.2. More details about the system can be found in [PW07]; it
is available under the GNU Public License from the E-KRHyper website at
http://www.uni-koblenz.de/~bpelzer/ekrhyper.

7 Conclusion

We have presented a tableau calculus with equality, by integrating superposition
based inference rules into the hyper tableau calculus rules. Our main result is its
soundness and completeness, the latter in combination with redundancy criteria.
The calculus is implemented in the E-KRHyper system, an extension of our
existing KRHyper prover.

Acknowledgements. We thank the anonymous reviewers for their useful com-
ments on improving the paper’s presentation.

References

[Bec97] Beckert, B.: Semantic Tableaux With Equality. Journal of Logic and
Computation 7(1), 39–58 (1997)

[BFGHS04] Baumgartner, P., Furbach, U., Gross-Hardt, M., Sinner, A.: Living Book
– Deduction, Slicing, and Interaction. J. of Aut. Reasoning 32(3) (2004)

Hyper Tableaux with Equality 507

[BFN96] Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: Or"lowska,
E., Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126,
Springer, Heidelberg (1996)

[BG98] Bachmair, L., Ganzinger, H.: Chapter 11: Equational Reasoning in
Saturation-Based Theorem Proving. In: Bibel, W., Schmitt, P.H. (eds.)
Automated Deduction. A Basis for Applications, vol. 1, Kluwer, Dor-
drecht (1998)

[BS06] Baumgartner, P., Schmidt, R.: Blocking and Other Enhancements for
Bottom-up Model Generation Methods. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)

[BT05] Baumgartner, P., Tinelli, C.: The Model Evolution Calculus with Equal-
ity. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS
(LNAI), vol. 3632, Springer, Heidelberg (2005)

[DV96] Degtyarev, A., Voronkov, A.: Equality Elimination for the Tableau
Method. In: Limongelli, C., Calmet, J. (eds.) DISCO 1996. LNCS,
vol. 1128, Springer, Heidelberg (1996)

[DV98] Degtyarev, A., Voronkov, A.: What you Always Wanted to Know About
Rigid E-Unification. Journal of Automated Reasoning 20(1), 47–80 (1998)

[FO06] Furbach, U., Obermaier, C.: Applications of Automated Reasoning. In:
Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI),
vol. 4314, Springer, Heidelberg (2007)

[Gie01] Giese, M.: Incremental Closure of Free Variable Tableaux. In: Goré, R.P.,
Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083,
Springer, Heidelberg (2001)

[Gie02] Giese, M.: A Model Generation Style Completeness Proof For Con-
straint Tableaux With Superposition. In: Egly, U., Fermüller, C. (eds.)
TABLEAUX 2002. LNCS (LNAI), vol. 2381, Springer, Heidelberg (2002)

[Gie03] Giese, M.: Simplification Rules for Constrained Formula Tableaux. In:
Mayer, M.C., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796,
Springer, Heidelberg (2003)

[LMG94] Letz, R., Mayr, K., Goller, C.: Controlled Integrations of the Cut Rule
into Connection Tableau Calculi. J. of Aut. Reasoning 13 (1994)

[LS02] Letz, R., Stenz, G.: Integration of Equality Reasoning into the Discon-
nection Calculus. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002.
LNCS (LNAI), vol. 2381, Springer, Heidelberg (2002)

[MB88] Manthey, R., Bry, F.: SATCHMO: a Theorem Prover Implemented in
Prolog. In: Lusk, E.R., Overbeek, R. (eds.) 9th International Conference
on Automated Deduction. LNCS, vol. 310, Springer, Heidelberg (1988)

[McC92] McCune, W.: Experiments with Discrimination-Tree Indexing and Path
Indexing for Term Retrieval. J. of Aut. Reasoning 9(2), 147–167 (1992)

[NR01] Nieuwenhuis, R., Rubio, A.: Paramodulation-based Theorem Proving. In:
Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning,
Elsevier and MIT Press (2001)

[PW07] Pelzer, B., Wernhard, C.: System Description: E-KRHyper. In: Pfenning,
F. (ed.) CADE-21. LNCS, Springer, Heidelberg (2007)

[SS06] Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1),
35–48 (2006)

[Wei01] Weidenbach, C.: Combining Superposition, Sorts and Splitting. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning.
North Holland (2001)

