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Abstract 

Myeloperoxidase (MPO) plays essential roles in neutrophil-mediated immunity via the 

generation of reactive oxidation products. Complex carbohydrates decorate MPO at discrete 

sites, but their functional relevance remain elusive. To this end, we have characterised the 

structure-biosynthesis-activity relationship of neutrophil MPO (nMPO). Mass spectrometry 

demonstrated that nMPO carries both characteristic under-processed and hyper-truncated 

glycans. Occlusion of the Asn355/Asn391-glycosylation sites and the Asn323-/Asn483-

glycans, located in the MPO dimerisation zone, was found to affect the local glycan 

processing, thereby providing a molecular basis of the site-specific nMPO glycosylation. 

Native mass spectrometry, mass photometry, and glycopeptide profiling revealed significant 

molecular complexity of diprotomeric nMPO arising from heterogeneous glycosylation, 

oxidation, chlorination and polypeptide truncation variants, and a previously unreported low-

abundance monomer. Longitudinal profiling of maturing, mature, granule-separated, and 

pathogen-stimulated neutrophils demonstrated that nMPO is dynamically expressed during 

granulopoiesis, unevenly distributed across granules and degranulated upon activation. We 

also show that proMPO-to-MPO maturation occurs during early/mid-stage granulopoiesis. 

While similar global MPO glycosylation was observed across conditions, the conserved 

Asn355-/Asn391-sites displayed elevated glycan hyper-truncation, which correlated with 

higher enzyme activities of MPO in distinct granule populations. Enzymatic trimming of the 

Asn355-/Asn391-glycans recapitulated the activity gain and showed that nMPO carrying 

hyper-truncated glycans at these positions exhibits increased thermal stability, polypeptide 

accessibility, and ceruloplasmin-mediated inhibition potential relative to native nMPO. 

Finally, structural modelling revealed that hyper-truncated Asn355-glycans positioned in the 

MPO-ceruloplasmin interface are critical for uninterrupted inhibition. Here, through an 

innovative and comprehensive approach, we report novel functional roles of MPO glycans, 

providing new insight into neutrophil-mediated immunity. 
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Significance 

Myeloperoxidase (MPO) is an important microbicidal glycoprotein critical for fighting 

pathogens. We report, for the first time, the intriguingly complex relationship between 

glycobiology and MPO immune function by demonstrating that uncommon and strategically 

positioned hyper-truncated glycans both elevate the activity and the inhibition potential of 

this pathogen-combating enzyme. We have used a multifaceted approach employing 

integrated biomolecular analytics to generate new insights into the sugar code of MPO. The 

findings described in this study improve our understanding of key innate immune processes 

and may guide future glycoengineering efforts aiming to generate therapeutically relevant 

recombinant MPO products with tuneable activity and inhibition potential tailored to 

biomedical applications involving persisting and severe pathogen infections. 
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Introduction 

The myeloid lineage-specific myeloperoxidase (MPO) is an essential component of the innate 

immune system associated with many pathologies including cardiovascular diseases (Cheng 

et al., 2019; Kim et al., 2018), rheumatoid arthritis (Stamp et al., 2012), and multiple sclerosis 

(Gray et al., 2008). Mutations in human MPO and genetic ablation in mice have repeatedly 

been linked to enhanced pathogen infection (Aratani et al., 2006; Lehrer and Cline, 1969; 

Nauseef et al., 1998; Takeuchi et al., 2012). 

While our knowledge of MPO has improved considerably over the past decades (Agner, 1958; 

Harrison and Schultz, 1976; Klebanoff, 1968), new fascinating facets of MPO biology continue 

to emerge (Delporte et al., 2018; Nauseef, 2018; Vanhamme et al., 2018). Facilitated by its 

peroxidase activity, MPO is known to catalyse the formation of reactive oxidation products 

including hypochlorous acid (HOCl) from chloride ions (Cl-) and hydrogen peroxide (H2O2), 

substrates found in the maturing phagosomes (Davies et al., 2008; Klebanoff, 2005). From the 

principal residence within the azurophilic (Az) granules, and to a lesser extent within the 

specific (Sp) and gelatinase (Ge) granules and in secretory vesicles and the plasma membrane 

(Se/Pl) of neutrophils (Borregaard and Cowland, 1997; Rørvig et al., 2013), MPO is emptied 

into phagosomes or secreted through degranulation upon neutrophil activation (Bjornsdottir 

et al., 2016; Borregaard et al., 2007). Within the phagosome, MPO generates highly reactive 

hypohalous acids and nitrogen dioxide, which readily react to form diverse reactive oxygen 

species, key microbicidal and immune-regulatory products of the neutrophil MPO-halide 

system. 

The complex biogenesis and maturation of MPO have been intensely studied (Grishkovskaya 

et al., 2017; Nauseef, 2018). Briefly, human MPO is translated as a single 80 kDa signal 

peptide-containing polypeptide chain. This preproMPO form undergoes extensive proteolytic 

processing initiated by the removal of the signal peptide to form apoproMPO. The 

enzymatically active proMPO form is rapidly generated via heme acquisition in the 

endoplasmic reticulum (ER) (Nauseef et al., 1992). Protease-driven polypeptide processing 

then removes the propeptide and an internal hexapeptide, which separates the light (α, 12.5 

kDa) and heavy (β, 60–65 kDa) chains that remain covalently linked via the catalytic heme. 

His261 and Arg405 (UniProtKB numbering) are key catalytic residues of the active site that is 

formed around the heme moiety positioned between the α- and β-chains. By mechanisms 
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that remain unclear, but presumably occurring within the Golgi, the α- and β-chains are 

further processed and extensively post-translationally modified before and/or after the 

formation of the mature MPO diprotomer (ααββ, ~150 kDa) that is connected by a Cys319-

Cys319 bridge (Nauseef, 2018). 

The high-resolution crystal structures of neutrophil-derived MPO (nMPO) with and without 

cognate and artificial ligands have improved our knowledge of the structure of MPO, the 

position of the heme and other hetero-atoms essential for enzymatic activity (e.g. Ca2+), and 

the interactions to the endogenous inhibitor ceruloplasmin (Blair-Johnson et al., 2001; 

Carpena et al., 2009; Chapman et al., 2013; Fiedler et al., 2000; Grishkovskaya et al., 2017; 

Samygina et al., 2013). Thirty years ago Nauseef and colleagues reported on the existence of 

five sequons for asparagine-linked (N-linked) glycosylation (Asn323, Asn355, Asn391, Asn483, 

Asn729) all located within the mature MPO β-chain (Nauseef, 1986, 1987). Most MPO crystal 

structures harbour remnants of N-glycan moieties, but our structural knowledge of the MPO 

glycosylation remains immature since complex carbohydrates are usually incompletely 

resolved with X-ray crystallography. 

Three studies have reported on nMPO glycosylation (Ravnsborg et al., 2010; Reiding et al., 

2019; Van Antwerpen et al., 2010). In those studies, mass spectrometry-based glycopeptide 

analyses detailed the site-specific monosaccharide compositions decorating nMPO. 

Compositions corresponding to uncommon chitobiose core- and paucimannosidic-type N-

glycans as well as more conventional oligomannosidic- and complex-type N-glycans were 

reported, but neither the glycan fine structures and occupancy at each site, nor the 

biosynthesis and functional relevance of the N-glycans carried by nMPO distributed across 

the neutrophil granules, were addressed. In fact, the molecular-level knowledge of the roles 

of nMPO glycosylation is critically missing despite recent reports suggesting that MPO glycans 

regulate E-selectin binding (Silvescu and Sackstein, 2014), antigenicity (Wang et al., 2018; Yu 

et al., 2017), and enzyme activity (Van Antwerpen et al., 2010). 

Here, we address this fundamental knowledge gap by characterising the structure-

biosynthesis-activity relationship of nMPO and by profiling the dynamic expression, protein 

processing and site-specific glycosylation of MPO from maturing, mature, granule-separated 

and activated neutrophils. Integration of mass spectrometry, computational and biochemical 

assays were used to provide new insight, from atomic to macromolecular detail, into the 
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intriguingly complex MPO sugar code and its related fundamental neutrophil glycobiology and 

MPO-mediated immune processes. 

 

Materials and Methods 

Donors, Neutrophil Handling, Granule Fractionation, and Neutrophil-Derived MPO 

Buffy coats of healthy individuals (Donor a–i) were collected at The Blood Center, Sahlgrenska 

University Hospital, Gothenburg, Sweden, see Supplementary Table S1 for sample overview. 

Resting neutrophils (>99%/95% viability/purity) were isolated (Clemmensen et al., 2014; 

Nauseef, 2014a; Rørvig et al., 2013). See Extended Methods (SI) for details of all experiments. 

Neutrophil granules were separated following nitrogen cavitation as described (Clemmensen 

et al., 2014). Briefly, three-layered Percoll separated the Az, Sp, and Ge granules and the Se/Pl 

fraction (Donor c–f) while two-layered Percoll separated Az from Sp/Ge granules and Se/Pl 

fractions (Donor a–b) as validated using granule markers (Feuk-Lagerstedt et al., 2007). 

Granules were lysed and protein extracts collected. 

Resting neutrophils (Donor g–i) were inoculated with Staphylococcus aureus (LS1, multiplicity-

of-infection (MOI) 1:5, bacteria:neutrophils), 37°C, 0–120 min. Resting neutrophils without S. 

aureus inoculation and with cytochalasin B/ionomycin (CytB/I) and Triton-X 100 stimulation 

served as activation and a cell death control, respectively. Degranulated MPO (Dg-MPO) and 

cell death were monitored longitudinally in supernatants using ELISA (ICL LAB) and lactate 

dehydrogenase (LDH) release using the Cytotoxicity Detection KitPLUS (Sigma). 

Protein and transcript profile data of maturing neutrophils including promyelocytes (PMs), 

metamyelocytes (MMs), band neutrophils (BNs), neutrophils with segmented nuclei (SNs), 

and circulating polymorphonuclear cells (PMNs, resting neutrophils, included as a control) 

were obtained by data re-interrogation (Hoogendijk et al., 2019). 

Human neutrophil-derived MPO (nMPO, UniProtKB, P05164, >95% purity) was from pooled 

donor blood (Lee BioSolutions). The purity, concentration, structural integrity and enzyme 

activity of nMPO was confirmed prior to analysis (see below). 

 

Glycan Profiling 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.07.24.219956doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.219956


8 

 

N-glycans were released from nMPO using Elizabethkingia miricola peptide-N-glycosidase F 

(Promega) (Jensen et al., 2012). Reduced N-glycans were profiled in technical triplicates using 

porous graphitised carbon liquid chromatography-tandem mass spectrometry (LC-MS/MS) in 

negative ion polarity on an LTQ Velos Pro ion trap mass spectrometer (Thermo Scientific) 

(Hinneburg et al., 2019). Glycan fine structures were manually elucidated (Ashwood et al., 

2018). RawMeat v2.1 (Vast Scientific) and GlycoMod (Expasy) aided the process. N-glycans 

were quantified from area-under-the-curve (AUC) measurements of extracted ion 

chromatograms (EICs) using Skyline v20.1.0.76 (Ashwood et al., 2018). 

 

Glycopeptide Profiling 

Glycopeptides and peptides were profiled from i) nMPO, ii) mono- (αβ) and diprotomeric 

(ααββ)-separated nMPO, iii) endoglycosidase H- (Endo H-) treated and untreated nMPO, iv) 

granule-separated MPO, and v) Dg-MPO released from pathogen-activated neutrophils. For 

i) Reduced and carbamidomethylated nMPO was digested in technical triplicates using 

sequencing-grade porcine trypsin (Promega), ii) Mono- and diprotomeric nMPO were 

separated using cooled non-reductive SDS-PAGE. Protein bands were in-gel trypsin digested, 

iii) Endo H-treated and untreated nMPO (see below) were applied separately to SDS-PAGE. 

The β-chains (53–58 kDa) were in-gel trypsin digested, iv) Isolated granule fractions were 

briefly introduced into SDS-PAGE gels. Bands containing all granule proteins were in-gel 

trypsin digested, and v) Released proteins were acetone precipitated, reduced, alkylated, and 

in-solution trypsin digested. All peptide mixtures were desalted before LC-MS/MS. 

Peptides were separated using C18 chromatography and detected using a Q-Exactive HF-X 

Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Scientific) in positive ion polarity. 

LC-MS/MS data were searched against the canonical human MPO (P05164) and/or the human 

proteome (reviewed UniProtKB entries) using Byonic v3.6.0 (Protein Metrics) and MaxQuant 

v1.6, see Supplementary Table S2 for overview. Variable modifications including Met and Trp 

mono-/di-oxidation, Tyr mono-/di-chlorination and N-glycan libraries were included in the 

searches. Glycopeptides with Byonic PEP-2D scores < 0.001 were considered and manually 

validated (Kawahara et al., 2018). Non-glycan modified peptides were filtered to peptide-to-

spectral matches and protein false discovery rates < 0.01–0.03 (MaxQuant) or PEP-2D scores 

< 0.001 (Byonic). Glycopeptides were profiled based on AUCs of monoisotopic EICs of 
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glycopeptide precursors using Skyline v20.1.0.76 or Xcalibur v2.2 (Thermo Scientific). Non-

glycosylated peptides and proteins were quantified based on precursor intensities using 

MaxQuant (Cox and Mann, 2008). 

 

Intact nMPO Analysis using Native MS and Mass Photometry 

Top down/native MS was performed of i) the intact α-chain of nMPO and ii) intact nMPO. For 

i) nMPO was reduced, desalted and injected on a C4 LC column connected to an Agilent 6538 

quadrupole-time-of-flight mass spectrometer operating in high-resolution positive polarity 

mode. Mass spectra were deconvoluted using MassHunter vB.06 (Agilent Technologies). 

Assignments were guided by the LC-MS/MS peptide data, see Supplementary Table S3A, and 

ii) Intact nMPO was infused into a modified Q-Exactive (Thermo Scientific) operating in 

positive ion polarity via nano-ESI using custom-made gold-coated capillaries (Gault et al., 

2016). Data were processed with Xcalibur v2.2 (Thermo Scientific), spectra deconvoluted with 

UniDec (Marty et al., 2015), and annotated using in-house software. 

Intact nMPO was analysed using single-molecule mass photometry as described (Soltermann 

et al., 2020). Coverslips were assembled for sample delivery using silicone CultureWell gaskets 

(Grace Bio-Labs). Data were acquired, processed and analysed using in-house software 

(Young et al., 2018). 

 

Visualisation, Modelling, Molecular Dynamics, Solvent Accessibility, and Sequence Alignments 

Human diprotomeric MPO (PDBID, 1D2V) was used for visualisation and modelling. Signature 

N-glycans were added in silico using the Carbohydrate and Glycoprotein builders within 

GLYCAM-Web (http://glycam.org) to mimic nMPO (WT), Endo H-treated nMPO (P1), the 

hyper-truncated Asn355-/Asn391-glycophenotype elevated in Se/Pl-MPO (P2) and an MPO 

glycoform with semi-truncated glycans at Asn355 and Asn391 (P3), see Supplementary Table 

S4. The per-residue solvent accessibilities, root mean squared deviation/fluctuation 

(RMSD/RMSF) and secondary structures were calculated using Cpptraj (AmberTools 18), 

plotted with Gnuplot 5.2 and visualised using VMD 1.9.3. Snapshots from the molecular 

dynamics (MD) simulations of WT- and P1-MPO were structurally aligned to the 

ceruloplasmin-MPO complex (4EJX) via the MPO protein backbone. 
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Five crystal structures of MPO (PDBID, 1D2V, 1CXP, 1DNU, 1DNW, 5FIW) were used to assess 

the relative solvent accessibilities to the Asn residue of all sequons of monomeric MPO and 

to the β1,2-GlcNAc of FA1-glycans at Asn323, Asn483 and Asn729 of mono- and diprotomeric 

MPO using NACCESS (5 Å radii probe) (Hubber and Thornton, 1993). 

Sequence alignments of human MPO (P05164) to i) the human peroxidase family including 

eosinophil peroxidase (P11678), lactoperoxidase (P22079) and thyroid peroxidase (P07202), 

and ii) MPO from key mammalian species including mouse MPO (P11247), macaque MPO 

(F7BAA9), porcine MPO (K7GRV6) and bovine MPO (A6QPT4, all downloaded July 2020) were 

performed using T-Coffee (http://tcoffee.crg.cat/apps/tcoffee) and Boxshade 

(http://www.ch.embnet.org/software/BOX_form). 

 

Endoglycosidase H-Treatment of nMPO 

Intact nMPO was incubated with or without Streptomyces plicatus endoglycosidase H (Endo 

H, Promega) under native conditions, 37°C, 16 h. All samples including controls containing 

only Endo H were used immediately for activity and inhibition profiling and structural 

characterisation. 

 

Chlorination and Oxidation Activity and Ceruloplasmin-Mediated Inhibition of MPO 

Chlorination activities of various MPO glycoforms and controls were determined by the 

formation of HOCl captured via taurine per time using HOCl standard curves (activity assay 1) 

(Dypbukt et al., 2005). Reactions were initiated by sequential addition of taurine and H2O2 

(Sigma), stopped by catalase (Sigma) and measured at 650 nm after addition of 3,3′,5,5′-

tetramethylbenzidine (TMB, Sigma). Relative oxidation activities of various MPO glycoforms 

and controls were determined using a TMB assay (activity assay 2) and an o-

phenylenediamine assay (activity assay 3). Reactions were initiated by the addition of TMB or 

o-phenylenediamine (Sigma), quenched after incubation with sulphuric acid (Sigma) and the 

colour intensity measured at 450 nm or 492 nm, respectively. Readings were adjusted based 

on water and Endo H controls, Supplementary Table S5. 

Ceruloplasmin-mediated inhibition of the MPO enzyme activity was determined using activity 

assay 1–3. Endo H-treated and untreated nMPO and controls were incubated with and 
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without human serum-derived ceruloplasmin (P00450, Lee BioSolutions) in technical 

triplicates prior to activity measurements. Readings were adjusted based on water, Endo H 

and ceruloplasmin controls. 

 

Circular Dichroism Profiling and Temperature Stability 

Circular dichroism (CD) data of nMPO, Endo H-treated nMPO and controls were collected in 

technical duplicates using 1 mm-pathlength cuvettes (Starna Scientific) in a Jasco J-1500 

spectropolarimeter. CD spectra were recorded using 260–190 nm scans at pre-melting 

temperatures (20–50°C). Thermal stability was determined by monitoring the 208 nm signal 

over a temperature range. Readings were baseline corrected based on water and Endo H 

controls. 

 

Data Representation and Statistics 

Significance was tested using one-/two-tailed paired/unpaired Student’s t-tests. Confidence 

was designated by *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001, *****p < 0.0005. ns, 

non-significant test (p ≥ 0.05). Biological and technical replicates have been stated. Data were 

plotted as the mean, while error bars represent their standard deviation (SD). 
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Results and Discussion 

Comprehensive Characterisation of Neutrophil-Derived Myeloperoxidase 

We first sought to unravel the molecular complexity of the heme-containing MPO (ααββ), 

which adopts a complex diprotomeric structure comprising two identical αβ protomers, 

Figure 1A. Each β-chain harbours five sequons (Asn323, Asn355, Asn391, Asn483, Asn729) 

enabling extensive N-glycosylation of the protein surface. We applied our established 

glycomics platforms to fully define the molecular structure of all N-glycans present on nMPO, 

including identification of isomeric glycans, Figure 1B. Documentation for all reported 

structures have been provided, Supplementary Figure S1, Supplementary Table S6 and 

Supplementary Data S1. Uncommon monoantennary complex-type (FA1G1S1a), under-

processed oligomannosidic (M5–M6), and hyper-truncated paucimannosidic (M2Fa-M3F) 

and chitobiose core-type (GlcNAc1–GlcNAc1F) structures were found to be characteristic N-

glycans of nMPO. These N-glycans are congruent with structures residing in the neutrophil 

granules (Venkatakrishnan et al., 2020) and those carried by other granule-resident 

glycoproteins including neutrophil cathepsin G and elastase (Loke et al., 2017; Loke et al., 

2015; Thaysen-Andersen et al., 2015). No O-glycans were detected in the glycomics datasets. 

Many non-glycan nMPO modifications including a total of 18 Met and nine Trp mono-/di-

oxidations, two sites for Tyr mono-chlorination and several polypeptide truncation variants 

of both the α- and β-chains were identified using sensitive peptide profiling facilitating a near-

complete sequence coverage of nMPO (α-/β-chain, 100.0%/99.8%), Figure 1C, 

Supplementary Figure S2 and Supplementary Data S2A-B. The observed polypeptide hyper-

oxidation, which is known to be mediated by the reactive oxidising agents produced by MPO 

(Ravnsborg et al., 2010), plays recognised roles in neutrophil function (Winterbourn et al., 

2016).  

Further, site-specific glycoprofiling revealed an extensive micro- and macro-heterogeneity of 

all five N-glycosylation sites of nMPO, Figure 1D, Supplementary Figure S3, Supplementary 

Table S7 and Supplementary Data S3A-E. In agreement with studies reporting on the site-

specific monosaccharide compositions of nMPO (Ravnsborg et al., 2010; Reiding et al., 2019; 

Van Antwerpen et al., 2010), we found that Asn323 and Asn483 predominantly carry 

paucimannosidic-type N-glycans (M2F–M3F), Asn355 and Asn391 carry oligomannosidic-type 
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N-glycans (M5–M6) while Asn729 is largely unoccupied or carries chitobiose core-type 

(GlcNAc1–GlcNAc1F) N-glycans. We identified low levels of mannose-6-phoshorylation on 

nMPO relative to a recent study (Reiding et al., 2019). Such discrepancies may arise from 

differences in the purification and/or analysis of the glycoprotein. Notably, we observed very 

similar glycosylation of all five sites of nMPO arising from different sources including from 

unperturbed neutrophil extracts (see detailed comparisons below) and acquired using 

different techniques supporting an unbiased isolation and characterisation of nMPO. 

Intact mass analysis revealed limited α-chain heterogeneity (12,350–12,550 Da) arising from 

relatively few polypeptide truncation and oxidation variants, presumably Met251 and 

Met253, as supported by peptide data, Figure 1E and Supplementary Table S3A. The variable 

protein modifications identified at the glycopeptide and peptide level were however reflected 

in our native MS analysis as demonstrated by significant molecular complexity of 

diprotomeric nMPO (ααββ, 141.5–148.0 kDa, apex 143,958 Da), which matched a published 

lower-resolution profile of intact nMPO (apex 144,180 Da) (Reiding et al., 2019) as well as a 

theoretical profile generated from ~300,000 proteoforms predicted based on quantitative 

peptide data (140.5–147.0 kDa), Figure 1F and Supplementary Table S3B. Native MS also 

indicated the existence of an nMPO monomer with a slightly lower-than-expected molecular 

mass (αβ, 70–73 kDa, data not shown). Cooled non-reductive SDS-PAGE followed by peptide 

profiling supported the presence of a maturely processed low-abundance nMPO monomer, 

Supplementary Figure S4. Single-molecule mass photometry, a method capable of 

quantifying the assembly, binding affinities and kinetics of protein complexes (Haussermann 

et al., 2019; Soltermann et al., 2020; Young et al., 2018) confirmed that nMPO exists as a low-

abundance monoprotomer (αβ, 7%) and high-abundance diprotomer (ααββ, 93%) with an 

apparent mono-/diprotomer (αβ/ααββ) Kd of ~50 pM, Figure 1G. The biological role(s) of the 

maturely processed monoprotomeric MPO, which differs from the secreted monoprotomeric 

proMPO reportedly elevated in blood in cardiovascular disease (Gorudko et al., 2018; 

Khalilova et al., 2018), remains unknown. 

 

Tertiary and Quaternary Structural Features Explain the Site-Specific N-Glycosylation of MPO 

The presence of vastly different glycan structures across glycosylation sites on a given protein 

is interesting because the protein experience the same ensemble of glycan-processing 
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enzymes as it traffics the ER-Golgi pathways. We aimed to identify the biochemical basis for 

this heterogeneity by first investigating the early-stage glycoprotein processing where MPO 

enters the cis-Golgi as a fully folded monomer (Nauseef, 2018). As we have observed for other 

mammalian glycoproteins (Thaysen-Andersen and Packer, 2012), strong associations 

between the Asn accessibility on the MPO surface and the degree of N-glycan type processing 

and core fucosylation were identified, Figure 2A, Supplementary Table S7 and 

Supplementary Table S8A. The relatively occluded Asn355- and Asn391-glycosylation sites 

carried under-processed oligomannosidic-type and afucosylated N-glycans as opposed to the 

surface exposed sites (Asn323, Asn483, Asn729) (p = 3.5 x 10-13 and 5.7 x 10-13, respectively) 

carrying significantly more processed N-glycans (p = 4.7 x 10-4 and 7.6 x 10-8) and core 

fucosylation (both p = 1.3 x 10-7). 

Exploration of the late-stage MPO processing within the N-glycan truncation pathway, a 

glycan-processing pathway highly active in neutrophils (Loke et al., 2015; Tjondro et al., 2019; 

Ugonotti et al., 2020), demonstrated that the Asn483-glycans (and partly Asn323-glycans) 

undergo less truncation relative to Asn729-glycans, Figure 2Bi. The lower removal efficiency 

of the outer β1,2-GlcNAc and α1,3-Man residues of Asn483-glycans relative to Asn729-glycans 

(p = 3.5 x 10-5 and 1.1 x 10-8, respectively) correlated with a reduced solvent accessibility of 

the β1,2-GlcNAc of Asn483-FA1 glycans upon MPO dimerisation (p = 7.6 x 10-5), Figure 2Bii-iv 

and Supplementary Table S8B. The dimerisation-dependent occlusion of the Asn483-glycans 

could be observed by the contact between (and masking of) the Asn483-FA1 glycan and the 

surface of the other αβ-protomer, Figure 2Bv. Intuitively, occlusion of the Asn483-glycans 

restricts the N-acetyl-β-hexosaminidase (P06865/P07686) and lysosomal α-mannosidase 

(O00754), key glycoside hydrolases of the truncation pathway (Tjondro et al., 2019; Ugonotti 

et al., 2020), to access their glycan substrates and, in turn, less efficiently catalyse β1,2-GlcNAc 

and α1,3-Man removal of Asn483-FA1 glycans. The Asn323-glycan positioned near the dimer 

interface was partially affected by MPO dimerisation as indicated by a modestly impaired 

α1,3-Man removal of Asn323-glycans (p = 0.014, Asn323 vs Asn729). The dimerisation-

dependent protection of the Asn323- and Asn483-glycans from hydrolase-mediated 

truncation was supported by glycopeptide profiling of gel-separated mono- and diprotomeric 

nMPO, Supplementary Figure S4A. This analysis confirmed that the outer β1,2-GlcNAc of the 

Asn323- and Asn483-glycans was more efficiently removed of mono- rather than 
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diprotomeric nMPO (p = 0.013 and 0.032, respectively), Supplementary Table S9A-B. Similar 

protective effects could be observed for the Asn323-glycans of diprotomeric MPO exhibiting 

a lower α1,3-Man removal efficiency relative to monoprotomeric MPO (p = 0.008). 

Importantly, similar processing of the Asn729-glycans, distal to the dimerisation interface, 

were observed on mono- and diprotomeric nMPO (p ≥ 0.05). Collectively, and in line with 

current literature (Nauseef, 2018), our data show that dimerisation takes place immediately 

before or quickly after MPO arrives in the neutrophil granules, a maturation step that affects 

the processing of the Asn323- and Asn483-glycans positioned at the MPO dimer interface. 

 

Dynamics, Distribution, Processing and Glycosylation of MPO Across Neutrophil Life Stages 

We next investigated the possible spatiotemporal expression of nMPO and compartment-

specific glycosylation during neutrophil formation and activation. Dynamic expression of MPO 

mRNA and protein during granulopoiesis was demonstrated by re-interrogation of 

proteomics data obtained from maturing neutrophils (Hoogendijk et al., 2019), Figure 3A. 

Consistent with a previous protein profiling study of neutrophil granules (Rørvig et al., 2013) 

and with the targeting-by-timing model that describes the timely packaging of proteins in 

granules during granulopoiesis (Cowland and Borregaard, 2016), we show MPO 

predominantly resides in azurophilic (Az, 82.9%) granules while the specific (Sp) and 

gelatinase (Ge) granules and the secretory vesicles/plasma membrane (Se/Pl) contain less 

MPO, Figure 3B. Neutrophils are known to release their proteinaceous granule content via 

degranulation upon stimulation (Bjornsdottir et al., 2016). To expand on these findings, we 

monitored the release and glycosylation patterns of degranulated MPO (Dg-MPO) 

longitudinally upon neutrophil activation mediated by low-level short-term infection by S. 

aureus, an opportunistic pathogen present in neutrophil-rich tissues undergoing 

inflammation including, for example, the upper respiratory tract of individuals living with 

cystic fibrosis, Figure 3C. 

Site-specific glycoprofiling of MPO from maturing, mature (resting), granule-separated, and 

pathogen-activated neutrophils showed that MPO carries relatively similar glycosylation 

across the neutrophil life-stages and under the conditions that were analysed, Figure 3D. 

Similar MPO glycosylation patterns of all five sites were observed across all granule types 
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(correlation coefficients, r > 0.95), which, as expected, matched the glycosylation of 

unfractionated nMPO from resting neutrophils (PMN-nMPO, r > 0.95, see Supplementary 

Figure S5 and Supplementary Table S10 for all data). Given our recent glycomics-based report 

of granule-specific N-glycosylation of resting neutrophils (Venkatakrishnan et al., 2020) and 

the observation of uniform N-glycosylation of neutrophil elastase across granules (Loke et al., 

2017), the observation of relatively similar N-glycosylation of MPO distributed across granules 

indicates that both the different granule protein populations and differential glycan 

processing of the proteins trafficking to the individual granules contribute to the 

compartment-specific glycosylation of neutrophils. 

MPO glycoprofiling of maturing neutrophils, facilitated by data re-interrogation (Hoogendijk 

et al., 2019), indicated that PM-MPO and MPO from all subsequent neutrophil development 

steps surprisingly carry fully processed N-glycosylation signatures at all sites (r > 0.93). 

Supporting the MPO maturation in early-stage granulopoiesis, longitudinal profiling of the 

proMPO-to-MPO conversion within maturing, mature, and granule-separated neutrophils 

showed a near-complete pro- and hexapeptide removal from metamyelocyte-derived MPO 

(MM-MPO, ~1% proMPO) and from MPO of more advanced cellular maturation stages, Figure 

3E. Our data could not discriminate between the apoproMPO and proMPO forms (without 

and with heme, respectively), but the unprocessed form observed in this study is likely 

proMPO since heme acquisition reportedly occurs rapidly in the ER (Nauseef et al., 1992). 

Taken together, our data indicate that the heavily processed MPO undergoes rapid glycan and 

polypeptide maturation upon expression at the PM-stage during granulopoiesis. 

In addition to the characterisation during neutrophil maturation, we also glycoprofiled MPO 

during pathogenic infection. S. aureus-mediated activation of neutrophils performed at sub-

stoichiometric levels to simulate the relatively weak chronic infection levels experienced by 

individuals with cystic fibrosis and to prevent cell lysis (MOI 1:5) demonstrated a rapid (30–

120 min) time-dependent and cell death-independent degranulation of Dg-MPO, Figure 3F. 

The Dg-MPO carried similar glycosylation to PMN-nMPO (r > 0.91) indicating a glycoform-

independent degranulation process of the protein. It remains unknown if the weakly altered 

glycans observed at selected sites (e.g. Asn355, r = 0.81) functionally impact the pathogen-

killing ability of MPO or result from technical variation of the analytically challenging site-

specific profiling of MPO directly from biological mixtures (Thaysen-Andersen et al., 2016). 
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Sequence alignments showed that Asn355 and Asn391 are conserved sequons within the 

family of human peroxidases and within MPO expressed across mammalian species, Figure 

3G and Supplementary Figure S6. The sequon conservation of Asn355 and Asn391, which 

recently was strengthened by the observation of similar glycosylation patterns of these two 

sites on human and mouse MPO (Caval et al., 2020), imply a functional relevance of the 

Asn355- and Asn391-glycans. Interestingly, absence of glycosylation and hyper-truncated 

GlcNAcβAsn were found to be elevated features of Se/Pl-MPO at Asn355 (p = 9.2 x 10-5 and 

0.04, respectively, Se/Pl- vs Az-MPO) and Asn391 (p = 0.022 for GlcNAcβAsn) relative to MPO 

from other granules, Figure 3H. It may be speculated that these minimal Asn355- and Asn391-

glycosylation features of Se/Pl-MPO arise from the action of endoglycosidase H- (Endo H-) 

and peptide:N-glycosidase F-like hydrolases e.g. di-N-acetylchitobiase (Q01459) and N(4)-

(beta-N-acetylglucosaminyl)-L-asparaginase (P20933) and/or other glycoside hydrolases of 

the truncation pathway that may be co-expressed and co-sorted with MPO trafficking to these 

compartments (Damme et al., 2010; Tjondro et al., 2019). Regardless of the underlying 

biosynthesis, the position-specific enrichment of uncommon glycan signatures in specific 

compartments of the neutrophil is intriguing and without precedence in the literature. 

 

Hyper-Truncated Asn355- and Asn391-GlcNAc Residues Allosterically Augment MPO Activity 

Next, we explored the function of MPO glycans, which are unlikely to interfere directly with 

the substrate-product exchange to the heme-containing catalytic site as these are located 

distal to the active site, Figure 4Ai. Hyper-oxidation of Met251, Met253 and Trp255 lining the 

catalytic site was observed indicating extensive auto-oxidation that may impact the MPO 

activity by possibly reconfiguring the active site, Figure 4Aii. Activity assays performed on 

granules of Donor a–b neutrophils fractionated on two-layered gradients demonstrated that 

Se/Pl-MPO exhibits a higher chlorination activity (3.7–9.0-fold) and oxidation activity (5.0–

51.5-fold, Se/Pl- vs Az-MPO) than MPO from other granules, Figure 4Aiii and Supplementary 

Table S11. In support, peptide analysis of granules from Donor c–f neutrophils fractionated 

on three-layered gradients confirmed that Se/Pl-MPO exhibits a higher chlorination activity 

than MPO from other granules based on a higher Tyr chlorination level of the granule proteins 

(p = 4.7 x 10-3, Se/Pl- vs Az-MPO), Figure 4Aiv and Supplementary Table S12. 
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Endo H-treatment of nMPO under native conditions produced an Asn355- and Asn391-

GlcNAc-rich glycophenotype mimicking the enriched glycoforms of Se/Pl-MPO, Figure 4Bi. 

Biochemical characterisation validated that the oligomannose-rich Asn355- and Asn391-

glycans were fully converted to GlcNAcβAsn while the processed N-glycans in other positions 

were Endo H-insensitive, Supplementary Figure S7. The Endo H-treated nMPO exhibited 

higher chlorination and oxidation activity than untreated nMPO as established using three 

different activity assays (3.4–5.8x, all p < 0.005), Figure 4Bii and Supplementary Table S5A-C. 

The molecular basis of the intriguing glycoform-dependent MPO activity was investigated 

using CD and MD simulations of relevant MPO glycoforms (WT and P1–P3), Supplementary 

Table S4A-B. Endo H-treated nMPO (P1) and untreated nMPO (WT) displayed 

indistinguishable secondary structure profiles rich in helical content as reported (Banerjee et 

al., 2011; Paumann-Page et al., 2013) based on CD data and predictions based on MD data, 

Figure 4C and Supplementary Table S13A-B. Notably, however, the Endo H-treated nMPO 

showed a higher initial melting temperature (72°C) than untreated nMPO (60°C) as 

determined by CD208 nm, Figure 4Di and Supplementary Table S13C. Both glycoforms 

completed their transition by 88°C, though about half the helical structure remained at this 

temperature. Thus, our data suggest that Endo H-treated nMPO displays an enhanced 

thermal stability relative to native nMPO. MD indicated that the relatively higher thermal 

stability of Endo H-treated nMPO was accompanied by a significantly higher global 

polypeptide accessibility relative to nMPO, Figure 4Dii and Supplementary Figure S8-S9. 

Similar accessibility gains distributed throughout the polypeptide chains, but with particular 

“hot-spots” of dramatically enhanced accessibility of residues C-terminal to Asn355 and 

Asn391 (labelled b–c) and distal to the heme and active site residues (i–ii, His261/Arg405), 

were observed for P2 (mimicking the Se/Pl-MPO-enriched glycoforms). The P3 control 

glycoform carrying semi-truncated N-glycans at Asn355 and Asn391 (M2–M3) did not show 

elevated accessibility relative to nMPO suggesting that minimal glycosylation at Asn355 and 

Asn391 is required to allosterically impact the global MPO structure and augment activity. In 

support, prolonged contacts were consistently observed between the β1,4-GlcNAc and β1,4-

Man of the trimannosylchitobiose core (Manβ1,4GlcNAcβ1,4GlcNAcβAsn) and the 

polypeptide region immediately C-terminal to Asn355 and Asn391 during the MD simulation 

of glycans elongated beyond the GlcNAcβAsn at these positions (data not shown). Such 
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glycan-protein contacts, which may modulate protein stability and structure, are particularly 

interesting given that Asn355 and Asn391 are positioned on flexible loops proximal to the 

active site. The MD data including RMSD-based mobility measurements, however, were 

insufficiently sensitive to unravel the molecular basis of the observed structure-activity 

relationships of glycosylated MPO in greater details, which, consequently, await future 

exploration, Supplementary Figure S8D. 

 

Hyper-Truncated Asn355-Glycosylation Enhances Ceruloplasmin-Mediated MPO Inhibition 

The impact of glycosylation on MPO inhibition by ceruloplasmin, an endogenous inhibitor of 

MPO (Chapman et al., 2013), was explored by comparing the relative activity of Endo H-

treated and untreated nMPO in the absence and presence of serum-derived ceruloplasmin, 

Figure 5A. The Endo H-treatment completely converted the oligomannose-rich Asn355 and 

Asn391 to GlcNAcβAsn-containing sites while sites containing processed glycans (e.g. Asn323) 

were Endo H-insensitive, Figure 5B and Supplementary Figure S7. The chlorination and 

relative oxidation rates of Endo H-treated and untreated nMPO were determined with and 

without equimolar ceruloplasmin using three activity assays, Figure 5C and Supplementary 

Table S5D-F. Activity assays 1 and 3 showed significant ceruloplasmin-mediated inhibition of 

Endo H-treated nMPO (p = 3.8 x 10-4 and 8.5 x 10-5) while untreated nMPO exhibited weak to 

no ceruloplasmin-mediated inhibition. For activity assay 2, an activity gain was experienced 

by untreated nMPO upon the addition of ceruloplasmin; this unexplained activity gain was 

quenched for the Endo H-treated nMPO. The molecular mechanisms underpinning the 

glycoform-dependent MPO inhibition by ceruloplasmin were explored using MD data of 

relevant Asn323-, Asn355- and Asn391-glycans modelled on a structure of the ceruloplasmin-

MPO complex (PDBID, 4EJX), Figure 5D. Modelling demonstrated that only Asn355 is 

positioned directly in the MPO:ceruloplasmin interface, and, importantly, that Asn355-M6 

and not Asn355-GlcNAc sterically clashes with ceruloplasmin thereby providing a molecular 

basis for the glycoform-dependent inhibition of MPO by ceruloplasmin. 

 

Conclusions 

We have characterised the structure-biosynthesis-activity relationship of neutrophil granule 

MPO, and longitudinally profiled the spatiotemporal expression, protein processing, site-
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specific glycosylation and degranulation of MPO from maturing, mature, granule-separated 

and pathogen-activated neutrophils from healthy donors. Powered by multi-omics tools, our 

quantitative and longitudinal data add important molecular-level knowledge to our growing 

understanding of the complex MPO biology governing many innate immune processes central 

to human health and disease (Nauseef, 2014b; Winterbourn et al., 2016). 

Complementary mass spectrometry and novel mass photometry approaches helped unravel 

the molecular complexity displayed by the heavily glycosylated and post-translationally 

modified nMPO. Critically, nMPO is site-specifically modified by unique glycans that are rarely 

reported in human glycobiology, but indeed are common to neutrophils including the hyper-

truncated paucimannosidic- and chitobiose core-type N-glycans (Tjondro et al., 2019; 

Ugonotti et al., 2020), as well as elaborate oxidation, chlorination and polypeptide truncation 

variants. The structural glycan data presented herein align with and significantly expand on 

the existing knowledge base (Ravnsborg et al., 2010; Reiding et al., 2019; Van Antwerpen et 

al., 2010) by providing not only details of the glycan isomers but also the molecular 

mechanisms contributing to the distinctive site-specific MPO glycosylation. Several protein 

factors including the spatial environment and dimerisation status were found to affect the 

local N-glycan processing producing a position-specific glycan-code, which, intriguingly, was 

found to impact both the MPO structure and the activity and inhibition potential of the 

enzyme. The rarely reported GlcNAcβAsn-type glycans were elevated at strategic sites that 

are important for the activity and ceruloplasmin-mediated inhibition of MPO within mobile 

compartments of neutrophils. Taken together, our data suggest that neutrophils dynamically 

produce, process, package, store, and - upon activation, release a repertoire of related MPO 

glycoforms displaying a continuum of different activity and inhibition profiles. The 

strategically positioned Asn355 glycosylation site carrying both hyper-truncated and 

elongated N-glycans were found to be particularly important for MPO function, a finding that 

may guide future glycoengineering efforts aiming to generate therapeutically relevant 

recombinant MPO products with tuneable activity and inhibition potential tailored to specific 

biomedical applications involving persistent and severe pathogen infections. 

In conclusion, this study has provided new molecular-level insights into the intriguingly 

complex sugar code of MPO of importance to fundamental neutrophil glycobiology and 

MPO-mediated immune processes central to human health and disease.  
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Supporting information 

This study contains supporting information. Three supporting files have been provided: 1) 

Supplementary Information containing Extended Methods and Supplementary Figure S1–S9 

(PDF), 2) Supplementary Tables containing Supplementary Table S1–S13 (Microsoft Excel), 

and 3) Supplementary Data containing Supplementary Data S1–S3 (PDF). 

The LC-MS/MS raw data files are available via ProteomeXchange with identifier PXD021131. 

Username: reviewer83828@ebi.ac.uk, Password: nOuGDU6Q. 
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AUC, area-under-the-curve; Az granule, azurophilic granule; Az-MPO, azurophilic granule-

resident MPO; BN, band neutrophil; CD, circular dichroism; CytB/I, cytochalasin B and 

ionomycin; Dg-MPO, degranulated MPO; EIC, extracted ion chromatogram; Endo H, 

endoglycosidase H; ER, endoplasmic reticulum; Fuc (F), α-L-fucose; Ge granule, gelatinase 

granule; Ge-MPO, gelatinase granule-resident MPO; GlcNAc, N-acetyl-β-D-glucosamine; H2O2, 

hydrogen peroxide; HOCl, hypochlorous acid; LC-MS/MS, liquid chromatography tandem 

mass spectrometry; LDH, lactate dehydrogenase; Man, α/β-D-mannose; MD, molecular 

dynamics; MM, metamyelocyte; MOI, multiplicity-of-infection; MPO, myeloperoxidase; 

nMPO, neutrophil-derived myeloperoxidase (unfractionated); PDB, Protein Data Bank; PM, 

promyelocyte; PMN, polymorphonuclear cell (neutrophil); PMN-nMPO, myeloperoxidase 

from derived from resting (circulating) neutrophils; RMSD, root mean squared deviation; 

RMSF, root mean squared fluctuation; SD, standard deviation; Se/Pl, secretory vesicle and 

plasma membrane fraction; Se/Pl-MPO, secretory vesicle/plasma membrane-resident MPO; 

SN, maturing neutrophil with segmented nuclei; Sp granule, specific granule; Sp-MPO, specific 

granule-resident MPO; TMB, 3,3’,5,5’-tetramethylbenzidine.  
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Figure 1 

 

Figure 1. Comprehensive characterisation of neutrophil-derived myeloperoxidase (nMPO). A) 

Protein architecture of the heme-containing diprotomeric MPO (ααββ) (left). Each β-chain harbours 

five N-glycan sequons (orange) mapped on diprotomeric MPO (PDBID, 1D2V). Asn729 was left 
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unoccupied while characteristic glycans were added in silico to other sites (see D). B) Fine structures 

and short-hand nomenclature of the nMPO N-glycans (Supplementary Figure S1, Supplementary 

Table S6 and Supplementary Data S1). *Several hyper-truncated and/or trace N-glycans were only 

observed at the peptide level. ‡Multiple glycan isomers (designated a, b..) were identified. See key for 

glycan symbol nomenclature and linkage representation (Varki et al., 2015). C) Non-glycan 

modifications of nMPO including Met (black) and Trp (green) mono- and di-oxidation, Tyr (blue) mono-

chlorination and polypeptide truncation variants (Supplementary Figure S2 and Supplementary Data 

S2A-B). D) Site-specific N-glycoprofile of nMPO (Supplementary Figure S3, Supplementary Table S7 

and Supplementary Data S3A-E). Prominent N-glycans at each site are in red. Data plotted as mean ± 

SD, n = 3, technical replicates. E) Intact mass analysis revealed limited α-chain heterogeneity arising 

from polypeptide truncation and Met251 and Met253 oxidation variants as supported by peptide data 

(Supplementary Table S3A). F) i–ii) Native MS revealed significant complexity of diprotomeric nMPO 

(ααββ) complexes that matched the expected profile generated from approximately 300,000 

predicted proteoforms (Supplementary Table S3B). G) Mass photometry revealed the existence of a 

previously unreported low-abundance monoprotomer (7%) and a high-abundance diprotomer (93%) 

of nMPO. 
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Figure 2 

 

Figure 2. Molecular basis for the site-specific N-glycosylation of MPO. A) Investigation of maturely 

folded monoprotomeric MPO (as it appears in the early-stage processing) revealed correlations 

between i) the Asn accessibility and the degree of ii) N-glycan type processing plotted as the 

oligomannose-to-processed N-glycan conversion, and iii) core fucosylation determined from possible 

FUT8 substrates based on nMPO glycopeptide profiling and solvent accessibility data (Figure 1D, 

Supplementary Table S7 and Supplementary Table S8A). The occluded Asn355 and Asn391 (green 

bars) carried mostly under-processed oligomannosidic N-glycans and afucosylated N-glycans. Mean 

values for the accessible sites (Asn323, Asn483, Asn729) (broken lines) were statistically compared to 

Asn355 and Asn391. iv) Occluded Asn355 and Asn391 (green, depicted without glycans for clarity) and 

accessible Asn323, Asn729 and Asn483 (orange) were mapped on monoprotomeric MPO (PDBID, 

1D2V). B) i) Exploration of the late-stage glycan processing of maturely folded MPO involving the N-

glycan truncation pathway (Tjondro et al., 2019; Ugonotti et al., 2020) demonstrated less truncation 

of the Asn483-glycans and partly Asn323-glycans as measured by the lower removal efficiency of 

terminal residues including ii) β1,2-GlcNAc and iii) α1,3-Man residues relative to Asn729-glycans based 

on nMPO glycopeptide data and iv) a reduced β1,2-GlcNAc accessibility of FA1-conjugated Asn483 

(orange) upon MPO dimerisation (Supplementary Table S8B). Statistical comparisons were made to 
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Asn729. v) Illustration of the dimerisation-dependent occlusion of the Asn483-glycan on diprotomeric 

MPO (1D2V). Contact between (and hence masking of) the Asn483-FA1 glycan and the protein surface 

of the other αβ-protomer was observed (see zoom). The Asn323-glycan positioned near the dimer 

interface was partially affected by MPO dimerisation. For all panels, data plotted as mean ± SD, n = 3 

(glycopeptide profiling), n = 5 (solvent accessibility), *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001, 

*****p < 0.00005. See Figure 1 for key. 
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Figure 3 

 

Figure 3. Dynamics, granule distribution, polypeptide processing, site-specific glycosylation, and 

degranulation of MPO across the neutrophil life stages. A) Dynamic expression of MPO mRNA and 

protein during granulopoiesis. The relative MPO expression levels, normalised to the PM-stage, were 

established by data re-interrogation (Hoogendijk et al., 2019). See key for nomenclature. B) 

Quantitative proteomics of granule-separated neutrophils showed an uneven MPO distribution across 

granules congruent with literature (Rørvig et al., 2013). C) S. aureus-mediated neutrophil activation. 

Longitudinal profiling of the levels and glycosylation of released Dg-MPO (see Panel F, D for data and 

controls). D) Site-specific glycoprofiling of MPO from maturing, resting (PMN-nMPO, see Figure 1D), 
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granule-separated, and activated neutrophils. Prominent N-glycans at each site were plotted 

(Supplementary Figure S5 and Supplementary Table S10). The MPO glycosylation of maturing 

neutrophils was determined by data re-interrogation (Hoogendijk et al., 2019). See key for intensity 

scale and biological replicates and Figure 1 for short-hand nomenclature of glycans. E) Longitudinal 

tracking of the proMPO-to-MPO conversion within maturing, mature, and granule-separated 

neutrophils. Relative levels of peptides arising from the proMPO regions (normalised to PM-stage) 

were plotted. ^ProMPO levels were determined from the intensity of peptide pairs arising from 

proMPO and mature MPO. The data do not discriminate apoproMPO and proMPO. See insert for 

schematics of MPO polypeptide maturation. F) S. aureus-mediated activation of neutrophils (MOI 1:5) 

demonstrating a rapid time-dependent and cell death-independent degranulation of Dg-MPO as 

measured by ELISA and LDH release assays. Controls (a–c, mean plotted as broken lines) were included 

for both assays. G) Sequence alignment showed that Asn355 and Asn391 are conserved sequons 

across the human peroxidases implying functional importance. EPO, eosinophil peroxidase; LPO, 

lactoperoxidase; TPO, thyroid peroxidase. See Supplementary Figure S6 for alignment to mammalian 

MPO. H) Hyper-truncated GlcNAcβAsn and absent glycosylation were elevated features at i) Asn355 

and ii) Asn391 of Se/Pl-MPO relative to MPO from other granules. For all panels, data plotted as mean 

± SD. ns, not significant (p ≥ 0.05), *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001, *****p < 

0.00005. 
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Figure 4 

 

Figure 4. Hyper-truncated Asn355- and Asn391-GlcNAc signatures positioned distal to the catalytic 

site augment the MPO activity. A) i) The MPO N-glycans are positioned distal to the catalytic site. 

Zoom: Oxidation-prone Met251, Met253 and Trp255 (yellow) in the heme-containing (orange) 

catalytic site. Mapped on monoprotomeric MPO (PDBID, 1D2V), see Figure 1 for key. ii) Hyper-

oxidation of Met251, Met253 and Trp255 indicates extensive auto-oxidation. iii) Se/Pl-MPO from 

Donor a–b neutrophils displayed a higher chlorination and oxidation activity than MPO from other 

granules (Supplementary Table S11). Adjusted for MPO levels, n = 3, technical replicates. iv) Relative 

Tyr chlorination level of proteins from granules fractionated with high resolution of neutrophils from 

Donor c–f (Supplementary Table S12). Adjusted for total protein and MPO levels, n = 4, biological 

replicates. B) i) Endo H-treatment of nMPO produced an Asn355- and Asn391-GlcNAc glycophenotype 

(mimicking the enriched GlcNAcβAsn signatures of Se/Pl-MPO, see Figure 3H) as validated using LC-

MS/MS (Figure 5B). Main glycoforms are depicted for each site. ii) The Endo H-treated nMPO exhibited 

a higher enzyme activity than native nMPO based on technical triplicate measurements of HOCl 
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production (activity assay 1) and the oxidation rate (activity assays 2–3) (Supplementary Table S5A-

C). C) Endo H-treated and untreated nMPO displayed indistinguishable secondary structure profiles 

based on i) CD profiling (Supplementary Table S13A-B) and ii) MD-based predictions. D) Relative to 

native nMPO (WT), Endo H-treated MPO (P1) showed i) higher thermal stability as determined by 

CD208 nm (arrows indicate initial melting temperatures) and ii) greater global polypeptide accessibility 

based on MD data (Supplementary Figure S8-S9). Key: a–e and i–ii indicate positions of the MPO 

glycosylation sites and key catalytic residues, respectively. For panel Bii, Ci, and Di: ^Data from Endo 

H only controls were subtracted from Endo H-treated nMPO data to enable comparison to untreated 

nMPO. For all panels: Data plotted as mean ± SD, ns, not significant (p ≥ 0.05), *p < 0.05, **p < 0.01, 

***p < 0.005, ****p < 0.001, *****p < 0.00005. 
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Figure 5 

 

Figure 5. Hyper-truncated Asn355-glycans augment the ceruloplasmin-mediated MPO inhibition. A) 

Schematics of the glycoform-dependent ceruloplasmin-based inhibition of Endo H-treated and 

untreated nMPO. Common glycans decorating Asn323, Asn355, and Asn391 in proximity to the MPO-

ceruloplasmin interface and the HOCl-producing active site (yellow star) are portrayed. B) 

Glycopeptide data (selected EICs) demonstrating complete conversion of Asn355-M6 and Asn391-M6 

to GlcNAcβAsn upon Endo H-treatment (Supplementary Figure S7). The Endo H-insensitive Asn323-

M2F was included as a control. C) The chlorination (i) and relative oxidation (ii-iii) levels of native 

nMPO (left graphs) and Endo H-treated nMPO (right) incubated with (grey bars) and without (black) 

serum ceruloplasmin (Cp) were determined in technical triplicates using activity assay 1–3, 

respectively (Supplementary Table S5D-F). ^Data from Endo H and Cp only controls were subtracted 

from Endo H-and Cp-treated nMPO data to enable comparison to untreated nMPO. D) MD data of 

Asn323-M2F (green), Asn355-M6 (magenta) and Asn391-M6 (red) modelled on a crystal structure of 

the ceruloplasmin-MPO complex (PDBID, 4EJX) demonstrated that Asn355-M6 and not Asn355-
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GlcNAc clashes with ceruloplasmin (see zoom). Data plotted as mean ± SD, ns, not significant (p ≥ 

0.05), *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.07.24.219956doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.219956



