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This paper discusses the formulation and development of a trajectory reconstruction
tool for the NASA X–43A/Hyper–X high speed research vehicle, and its implementation
for the reconstruction and analysis of flight test data. Extended Kalman filtering techniques
are employed to reconstruct the trajectory of the vehicle, based upon numerical integration
of inertial measurement data along with redundant measurements of the vehicle state. The
equations of motion are formulated in order to include the effects of several systematic
error sources, whose values may also be estimated by the filtering routines. Additionally,
smoothing algorithms have been implemented in which the final value of the state (or
an augmented state that includes other systematic error parameters to be estimated) and
covariance are propagated back to the initial time to generate the best-estimated trajectory,
based upon all available data. The methods are applied to the problem of reconstructing
the trajectory of the Hyper-X vehicle from flight data.

I. Introduction

The NASA Hyper–X Program is a joint Langley Research Center and Dryden Flight Research Center
effort to develop a hypersonic airbreathing research vehicle, powered by an airframe–integrated supersonic

combustion ramjet (scramjet) propulsion system. Major objectives of the program are to acquire data on the
operation of the scramjet propulsion system and to demonstrate controlled hypersonic flight technologies.1,2

A secondary goal is to evaluate the experimental3–6 and computational7–10 techniques used in the design and
analysis of the Hyper–X vehicle in order to facilitate future hypersonic and launch vehicle programs.1,11,12

The flight experiment mission profile is shown in Fig. 1, and takes place in the Western Test Range over
the Pacific Ocean. The experiment begins with a boost phase, where the Hyper–X Launch Vehicle (HXLV)
stack (shown in Fig. 2), consisting of the X–43A/Hyper–X Research Vehicle (HXRV), shown in Fig. 3, mated
to a modified Pegasus booster, is dropped from the NASA B–52 aircraft at an altitude of approximately
40,000 ft and ascends to an altitude of approximately 100,000 ft. At this point, the HXRV separates from
the stack, stabilizes, and the scramjet propulsion experiment begins, lasting several seconds. Following the
engine test, the vehicle follows a descent trajectory that includes various maneuvers that are optimized for
the post–flight extraction of stability and control derivatives and other aerodynamic properties (e.g., Ref. 13).
It is important to point out that approximately one minute prior to the drop time, the on-board navigation
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Figure 1. Hyper–X Flight Trajectory
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Figure 2. Hyper–X Launch Vehicle Stack Configuration

system switches from a satellite-aided system to a free inertial system. Therefore, drift is expected in the
on-board navigation solution after this time.

A critical component of the post–flight data reduction and analysis tasks to determine propulsion sys-
tem performance and the extraction of various aerodynamic coefficients is the reconstruction of the vehicle
trajectory. The trajectory reconstruction process uses in–flight telemetry data combined with a variety of
redundant measurements to generate maximum–likelihood estimates of the vehicle position, velocity, and
orientation time histories, along with estimates of the uncertainty associated with them. The Hyper-X vehi-
cle has many instruments that gather data to be used for this process, such as the Inertial Measurement Unit
(IMU), Global Positioning System (GPS), and Flush Air Data Systems (FADS). Numerous other useful ob-
servations and measurements are available from ground-based radar tracking stations and from instruments
carried on board the B-52 carrier vehicle.

A tool known as the Statistical Trajectory Estimation Program (STEP)14–16 has been developed for
post-flight trajectory reconstruction and parameter identification in support of maneuvering re-entry vehi-
cle flight projects in the 1960’s. STEP uses a recursive, minimum variance filtering algorithm to process
accelerometer and gyroscope measurements recorded by the IMU during the flight, as well as position and
velocity measurements from outside sources, such as ground based radar tracking stations, to determine
a maximum–likelihood trajectory and user defined systematic error sources along with an estimate of the
accuracy of these parameters. STEP allows the user to specify which systematic error sources should be
estimated, such as an accelerometer bias, and is general with the type of outside tracking measurements
available. STEP and its variants have been applied to a variety of post-flight planetary entry trajectory re-
construction and analysis problems, particularly the SV-5D/X-23A maneuverable entry vehicle,17 the Viking
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Figure 3. Hyper–X Research Vehicle Configuration

landers,18–20 Pioneer,21 and the Space Shuttle,22,23 among others.
STEP is not without drawbacks, however. The STEP user interface is poor, and the source code is

archaic and not commented. The latter issue makes the STEP algorithm difficult to check or modify to
suit algorithmic developments or new types of data sources. With these limitations in mind, an effort
was made to assess how STEP may be modernized both in terms of its underlying filter algorithm and
its implementation.24 This paper discusses the application of several nonlinear filtering algorithms to the
post–flight trajectory reconstruction problem, wherein the inertial accelerations and angular rates measured
by the IMU are used to integrate the nonlinear equations of motion, while GPS observations of position and
velocity are used to provide corrections to the trajectory estimate. These corrections are incorporated into
the state estimate at the measurement points through use of an Extended Kalman Filter (EKF)25–28 for a
forward and backward pass through the data. The results of the two filtering passes are combined using the
Fraser–Potter smoothing method26,29 to determine the final trajectory estimate as a function of time.

Similar methods have been recently applied to the entry trajectory estimation problem in Refs. 30–32
using a variety of Kalman filtering and smoothing techniques. Unfortunately, these methods do not model
the vehicle rotational dynamics, and furthermore, Refs. 31 and 32 are not formulated for cases where the
vehicle measures its acceleration and angular rates. Therefore, the methods of Refs. 30–32 are not directly
applicable to the problem investigated in this paper. Other proposed techniques for post–flight trajectory
reconstruction simply use either a numerical integration of the raw IMU acceleration and angular rate data,
or the on-board navigation solution, to produce estimates of position, velocity, and orientation,33,34 but do
not make use of all available observation data through the application of a filtering and smoothing process
to correct for various drifts, as is discussed in the next section.

II. Filtering Equations

The current section shall be concerned with the problem of estimating the state of a nonlinear system of
ordinary differential equations

ẋ(t) = f(x(t),v(t), t) (1)

where x is the matrix of the system states, f(x,v, t) is a nonlinear function that describes the evolution of
the system state, and v is a random process with covariance matrix Q given by Q = E(vvT ) and mean
v̄ = E(v), where E is the expectation of the random variable. The state estimation procedure requires
knowledge of independent observations of some quantity which may be related to the value of the state by
the nonlinear algebraic equations

y(t) = g(x(t),w(t), t) (2)

given at discrete time intervals, where y is the value of the observation, g is the nonlinear relationship
between the states and the observations, and w is a random measurement noise variable with covariance
matrix R and mean w̄.
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A. The Extended Kalman Filter

The extended Kalman filter (EKF) is a somewhat ad-hoc modification of the linear Kalman filter in which the
linear state transition is replaced by a numerical integration of the full nonlinear dynamic model in between
measurement updates, before applying the Kalman update at each measurement time. In addition, the
nonlinear relationship between the state and measurement data is used to calculate the residuals rather than
the linear approximate relationship. The EKF uses the current estimated state as the reference conditions
for computing the system dynamics matrices required to calculate the Kalman gain matrix at each time
step. The algorithm is given by25–28

x̂k = x̄k + Kk [yk − g (x̄k, w̄k, tk)] (3)

where x̄k is the predicted value of the state at time increment k, yk is the value of the measurement data,
and g (x̄k, w̄k, tk) is the predicted value of the measurement data at time tk, following from the propagation
of the state estimate from time tk−1 to time tk. The gain and covariance equations are given by

Kk = P̄kCT
k

(
CkP̄kCT

k + DkRkDT
k

)−1
(4)

P̂k = (I−KkCk) P̄k (5)

where P̄k is the solution of the matrix differential equation

˙̄P(t) = AP̄ + P̄T AT + BQBT (6)

P̄ (tk−1) = P̂k−1 (7)

at time tk, calculated through numerical integration. The matrices A, B, C and D used in the Kalman gain
calculations are found by linearizing the system dynamics about the current state estimate, x̂k, so that

A(t) =
∂f
∂x

∣∣∣∣
x=x̂k,v=0,t

(8)

B(t) =
∂f
∂v

∣∣∣∣
x=x̂k,v=0,t

(9)

C(t) =
∂g
∂x

∣∣∣∣
x=x̂k,w=0,t

(10)

D(t) =
∂g
∂w

∣∣∣∣
x=x̂k,w=0,t

(11)

The EKF formulation is superior to that implemented in the original STEP code in Refs. 14–16. The
STEP implementation made use of linearized equations of motion for state propagation between measurement
points, as well as linearized representations of the measurement equations for computing the residuals. This
linearization was performed about the current estimate, as is used by the EKF for gain calculations, or
about a pre-defined nominal trajectory; the latter technique is better known today as a neighboring–optimal
Kalman filter27 or as a linearized Kalman filter.28

Note that in the current formulation of the filtering equations, the state x could include both dynamic
states as well as constant model parameters to be estimated. Likewise, the input noise v could include
random inputs to reflect the model uncertainty (process noise), or the uncertainty associated with model
parameters that are not included in the state x. The uncertain parameters from the latter case are commonly
known as “consider parameters.” The two noise inputs to the system dynamics both seek to degrade the
state covariance matrix in order to reflect uncertainty in the model, but are different in the sense that the
process noise accounts for effects that are unknown whereas the consider parameters account for effects that
are known but uncertain. A Kalman filter designed to include parametric uncertainty is typically known
as a Kalman–Schmidt filter.25 It is worth noting that the STEP filter was designed to have the option of
using a variety of consider parameters, but did not include a means of incorporating process noise into the
estimation procedure.

The linearized Kalman–Schmidt filter algorithm implemented in STEP is computationally efficient and
well understood. However, the algorithm has proven itself to be sensitive to the quality of the nominal
trajectory or the estimated trajectory, depending on the mode of operation. If the reference trajectory is not
an accurate representation of the true flight path, then the assumption of local linearity is violated and the
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filter often diverges, hence the algorithm must be modified to take nonlinearity into consideration, which is
the advantage of the EKF method.

The EKF algorithm implemented in this paper may be used for both a forward pass and a backward
pass through the measurement data. The final estimate from the forward pass through the data is used as
the initial condition for the backward pass. This process can also be iterated globally using the change in
the initial condition to measure the convergence of the estimates. The final trajectory is then computed as
a linear combination of the forward and backward passes using the Fraser–Potter method,26,29 which is the
subject of the next section.

B. The Fraser–Potter Smoother

The optimal smoothed solution is the blend of the forward and backward estimates of the state time history as
output from the EKF algorithm. The Fraser–Potter method26,29 seeks to determine the smoothed solution
at any instant in time as a linear combination of the forward and and backward filtered solution. The
smoothed solution at a time k is given by

P̂k =
[
P̂−1

fk
+ P̂−1

bk

]−1

(12)

x̂k = P̂k

[
P̂−1

fk
x̂fk

+ P̂−1
bk

x̂bk

]
(13)

where P̂ is the smoothed covariance estimate, and x̂ is the smoothed state estimate, P̂f and P̂b are the
covariance estimates from the forward and backward filter, respectively, and x̂f and x̂b are the state estimates
from the forward and backward filter. By inspecting Eqs. (12–13) it is apparent that the smoother combines
the forward estimate at time tk, which makes use of all measurement data from the beginning of the data
set to time tk, with the backward estimate at time tk, which makes use of all data from time tk to the end
of the interval. In other words, the smoother makes use of all available data at each point of interest.

It should be noted that the original STEP code did not make use of an statistical smoothing method as
is discussed in this section. STEP conducted smoothing by simply integrating the final state estimate back
to the initial time via Eq. (1). The flaw with this approach is that it does not account for model uncertainty,
and is also subject to numerical error buildup over large fit spans. These problems are eliminated by using
the forward–backward filter implementation, combined together in the smoother.

III. Dynamic Model

The dynamic model discussed in this section is similar to that implemented in the original STEP. The
equations of motion are based upon Newton’s laws of motion, and are developed in a local, non-inertial
coordinate system. Similar to the formulation used in STEP, the inertial acceleration and angular rate
measurements recorded during the flight are used in place of detailed aerodynamic and propulsion force and
moment models. An approximate representation of the complete gravitational potential is used to develop
an expression for the gravitational force acting upon the vehicle. These assumptions lead to a system of
nonlinear ordinary differential equations that describe the motion of the vehicle. The summary to follow
begins with a definition of the required coordinate systems.

A. Coordinate Systems

This section provides a brief review of the coordinate systems used to develop the nonlinear equations of
motion used in the trajectory reconstruction process. Firstly, the Earth Centered Inertial (ECI) frame is
the frame fixed at the center of the Earth, or any other primary body of interest. The fundamental plane
of this coordinate system is the equatorial plane of the Earth, with the x-axis, ~eXI , aligned with the vernal
equinox, the z-axis, ~eZI , in the direction of the planetary axis of rotation, and y-axis, ~eY I , chosen in such a
way as to complete a right-handed coordinate system. This frame is obviously not truly inertial, although
for short periods of time the inertial assumption is a valid and common approximation.

The Earth Centered Earth Fixed (ECEF ) frame is the coordinate system whose origin is located at the
center of the Earth, similar to the ECI frame, but the coordinate axes are fixed with respect to the planet
surface. The x-axis, ~eXF , and the z-axis, ~eZF , are aligned with the prime meridian and the axis of planetary
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Figure 4. ECI, ECEF, and GC Frames

rotation, respectively. The ECEF and ECI frames may be related by the simple transformation




~eXF

~eY F

~eZF





= GECI2ECEF





~eXI

~eY I

~eZI





(14)

GECI2ECEF =




cosλ sin λ 0
− sinλ cos λ 0

0 0 1


 (15)

where λ is the sidereal angle of the prime meridian.
The geocentric (GC) frame is one whose origin is located at the center of mass of the vehicle, and whose

z-axis, ~eZC , is aligned in the direction of the origin of the ECI (and ECEF ) frame. The x-axis of the this
frame, ~eXC , is perpendicular to the z-axis, and points in the general direction of north. The GC frame may
be related to the ECEF frame by the transformation





~eXC

~eY C

~eZC





= GECEF2GC





~eXF

~eY F

~eZF





(16)

GECEF2GC =



− sin φ 0 cos φ

0 1 0
− cosφ 0 − sin φ


 ·




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 (17)

where θ is the longitude of the vehicle and φ is its declination. The geocentric frame is sometimes called the
topocentric or local-vertical frame. The ECI, ECEF , and GC frames are shown in Fig. 4.

A frame similar to the GC frame is the geodetic (GD) frame, sometimes known as the topodetic, local-
horizontal, or North-Earth-Down (NED) frame. This frame is one in which the origin is located at the center
of mass of the vehicle, and the x-axis, ~eXD, points in the direction tangent to the surface of the Earth, in
the direction of North. The z-axis, ~eZD, is aligned perpendicular to the x-axis and oriented downward,
while the y-axis, ~eY D is shared with the GC frame. The GD frame may be related to the GC frame by the
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Figure 5. Declination, Geocentric Latitude, Geodetic Latitude, Geodetic Frame, and Geocentric Frame

transformation 



~eXD

~eY D

~eZD





= GGC2GD





~eXC

~eY C

~eZC





(18)

GGC2GD =




cos ε 0 sin ε

0 1 0
− sin ε 0 cos ε


 (19)

where ε = φgd − φ, with φgd being the geodetic latitude of the vehicle’s sub-latitude point, which is the
projection of the vehicle position to the surface of the Earth along the ~eZD axis. The geodetic latitude is
then the angle between the ~eZD axis and the equatorial plane of the Earth. The GC and GD frames are
shown in Fig. 5.

An alternate measure of the location of the sub-latitude point is the geocentric latitude, φgc, which is the
angle from the equatorial plane of the Earth to the line connecting the sub-latitude point and the center of
the Earth. Fig. 5 shows the differences between the declination, geocentric latitude, and geodetic latitude
for a planet with exaggerated eccentricity. Note that the three angles are equal for a spherical planet. Fig. 5
also shows the physical meaning of the geodetic altitude, hgd, and the magnitude of the radius vector, r –
two variables that will be used presently.

Table 1. Summary of WGS–84 Earth Model Constants

Constant Value
R⊕ 2.092565 ·107 ft
e⊕ 8.1819191 ·10−2

µ 1.4076444 ·1016 ft3/s2

J2 1.0826230 ·10−3

Ω 4.1780741 ·10−3 ◦/s

The relationship between the geocentric and geodetic latitude is quite simple, and takes the form

tanφgc =
(
1− e2

⊕
)
tan φgd (20)
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where e⊕ is the Earth’s eccentricity. The transformation between declination and geodetic latitude, however,
is more complicated. Vallado35 gives the formulas

tanφgd = tan φ +
R⊕e2

⊕ sin φgd

r cos φ
√

1− e2⊕ sin2 φgd

(21)

hgd =
r cos φ

cosφgd
− R⊕√

1− e2⊕ sin2 φgd

(22)

where R⊕ is the mean equatorial radius of the planet. Sofair36,37 determined an exact solution of Eqs. (21–
22), φgd (r, φ) and hgd (r, φ). The solution is explicit, and is free of singularities at the poles and the equator,
although the solution space is confined to a region outside a spheroid fixed at the center of the Earth with
semimajor axis of approximately 1.42 × 105 ft. This restriction is of no concern for the present problem as
the region is well within the surface of the Earth.

The transformation to geocentric coordinates is much less complicated, and may be determined directly
from Eqs. (21) and (22). Note that there are other definitions of the geocentric coordinates available in the
literature. For an example, see Ref. 38.

The values of R⊕, e⊕, and other constants that describe the shape, mass, and rotation of the Earth are
summarized in Table 1. These values are the World Geodetic System of 1984 (WGS–84).39

Lastly, the body (B) frame is fixed to the center of mass of the vehicle with the ~eXB axis directed through
the nose of the vehicle, the ~eZB axis oriented perpendicular to the ~eXB axis, in the plane of symmetry, with
the positive direction taken to be toward the bottom of the vehicle, and the ~eY B axis completing the right-
handed system so that it points out the right side of the vehicle. The B frame is shown in Fig. 3. The
orientation of the B frame is typically expressed by a 3-2-1 Euler angle sequence relating the GD frame to
the B frame. The transformation is given by





~eXB

~eY B

~eZB





= GGD2B





~eXD

~eY D

~eZD





(23)

GGD2B =




1 0 0
0 cosΦ sinΦ
0 − sinΦ cos Φ


 ·




cosΘ 0 − sin Θ
0 1 0

sinΘ 0 cos Θ


 ·




cosΨ sinΨ 0
− sinΨ cos Ψ 0

0 0 1


 (24)

where Ψ, Θ, and Φ are the azimuth, elevation, and bank angles, respectively, also commonly referred to as
the yaw, pitch, and roll angles.

Although the Euler angle sequence offers an ease of visualization, other parameterizations of the vehicle
orientation are preferable for implementation in the equations of motion and filtering algorithms.40 The most
advantageous of these parameterizations are the Euler parameters, the use of which leads to a representation
of the attitude transformation matrix of the form

GGD2B =




e2
0 + e2

1 − e2
2 − e2

3 2 (e1e2 + e0e3) 2 (e1e3 − e0e2)
2 (e1e2 − e0e3) e2

0 − e2
1 + e2

2 − e2
3 2 (e0e1 + e2e3)

2 (e1e3 + e0e2) 2 (e2e3 − e0e1) e2
0 − e2

1 − e2
2 + e2

3


 (25)

The Euler parameters constitute a four parameter set that describe the orientation of the B frame with
respect to the GD frame. Due to the fact that four parameters are used to describe a rotation with three
degrees of freedom, the constraint equation e2

0 + e2
1 + e2

2 + e2
3 = 1 must also be satisfied.

B. Equations of Motion

Newton’s laws of motion, expressed for a body moving relative to a planet–fixed reference frame, lead to the
translational equations of motion of the form24

ṙ = −w (26)

φ̇ =
u

r
(27)

θ̇ =
v

r cosφ
− Ω (28)
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u̇ = aXC +
1
r

(
uw − v2 tanφ

)− 3µJ2

2r4
sin (2φ) (29)

v̇ = aY C +
1
r

(uv tan φ + vw) (30)

ẇ = aZC − 1
r

(
u2 + v2

)
+

µ

r2
− 3µJ2

2r4

(
2− 3 cos2 φ

)
(31)

where u, v, and w are the x, y, and z-axis components of the velocity in the GC frame, respectively, and
aXC , aY C , aZC are the geocentric representation of the accelerations acting at the body center of mass, not
including the gravitational terms.

These accelerations may be given in terms of the body-axis accelerations at the IMU location by the
transformations





aXB

aY B

aZB





=





aXT

aY T

aZT




−

(
Γ2 + Γ̇

)




xM

yM

zM




− 2Γ





ẋM

ẏM

żM




−





ẍM

ÿM

z̈M





(32)

where aXB , aY B , and aZB are the accelerations acting at the vehicle center of mass, represented in the B
frame, aXT , aY T , and aZT are the accelerations acting at the IMU location, expressed in a frame parallel
to the B frame, xM , yM , and zM are the components of the position of the IMU measured from the vehicle
center of mass, expressed in the B frame, and

Γ =




0 −R Q

R 0 −P

−Q P 0


 (33)

where P , Q, and R and the components of the angular velocity of the B frame with respect to the ECI
frame, expressed in the B frame.

The accelerations may then be transformed into the GC frame to be consistent with the equations of
motion by means of 




aXC

aY C

aZC





= GB2GC





aXB

aY B

aZB





(34)

where GB2GC = (GGD2BGGC2GD)T .
The rotational kinematics of a vehicle relative to the GD frame may be written as





ė0

ė1

ė2

ė3





=
1
2




−e1 −e2 −e3

e0 −e3 e2

e3 e0 −e1

−e2 e1 e0











P

Q

R




− 1

r
GGC2B





v

−u

−v tan φ






 (35)

In summary, the equations of motion for a vehicle relative to a rotating central body are given by the
combination of Eqs. (26–31) and (35), together with the transformation given in Eq. (32). The states may

be written as x =
{

r φ θ u v w e0 e1 e2 e3

}T

. The strapdown formulation of the inertial
measurements in the equations of motion may be modified without difficulty to a platform implementation
as in Ref. 41 for applications that make use of that particular type of inertial measurement source.

The dynamic model discussed in this section is similar to that implemented in the original STEP code
with several subtle differences. The first and most obvious difference is that the current implementation uses
the radius of the vehicle position relative to the planet center of mass whereas the STEP equations of motion
used an altitude variable. The current formulation is superior in the sense that additional transformations
between altitude and radius as required to compute the gravitational acceleration is not required. Another
difference between the current dynamic model and the STEP dynamic model is that the latter did not
distinguish between the GD frame and the GC frame as does the former. Although the difference between
these two frames is a small, it is not negligible, and may lead to large errors in the north and down velocity
components, as was demonstrated in Ref. 42.

It should also be noted that the equations of motion developed in this section make use the Euler
parameters to describe the orientation of the B-frame relative to the GD-frame, as was used in STEP as
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well. Recent research has shown that some problems exist when using this particular parameterization
within estimation algorithms, which lead to the possibility of ill-conditioned covariance matrices due to the
constraint on the norm of the Euler parameters.43–45 Pittelkau,46 however, showed that filters with properly
tuned process noise models do not suffer from these problems, and that enforcing the Euler parameter
constraint within the filter update equation is not an ad-hoc modification of the filter, but in fact equivalent
to a measurement update equation. Therefore, the use of the Euler parameter set within the estimation
procedure remains justified.

The next section discusses the development of the equations relating the states to the measurement data
for use in the filtering process.

IV. Measurement Equations

This section discusses the formulation of the measurement equations used within the trajectory recon-
struction tool, including the modelling of various error sources. The first such measurement equation is that
of the GPS, or some other source such as a radar altimeter, that provides redundant position information
that may be incorporated into the trajectory estimate during the filtering process. Secondly, a GPS unit
or other sources may provide a velocity measurement, which may also be incorporated into the trajectory
estimation procedure. Another source of interest is the IMU data, which records the acceleration and angular
rates of the vehicle in question. This data source in not used to provide measurement updates via a filtering
algorithm, but are inputs into the equations of motion that are integrated to provide the state predictions at
the time of the measurement update. However, a vehicle that contains two separate IMUs could use one to
process the equations of motion, and the other to provide redundant data for use in filtering. Also included
in this section are equations for the measurement of the vehicle orientation, and for ground–based radar
tracking stations.

A. Position Measurement Equations

The filtering algorithms require observations of the vehicle state in order to generate a minimum variance
trajectory estimate. One such source of the observation data is a satellite navigation Global Positioning
System (GPS) receiver carried within the vehicle. The GPS-based observations provide position estimates
of the receiver location.

The position observation data, provided in the geodetic coordinates hgdM , φgdM , and θgdM , can be written
as a function of the vehicle state by the transformations





x?

y?

z?





= GB2ECEF





xG + δXG

yG + δY G

zG + δZG





(36)

xFG
= r cos φ cos θ + x? (37)

yFG
= r cos φ sin θ + y? (38)

zFG
= r sin φ + z? (39)

rG =
√

x2
FG

+ y2
FG

+ z2
FG

(40)

sinφG =
(

zFG

rG

)
(41)

cos θG =
xFG

rG cos φG
(42)

sin θG =
yFG

rG cos φG
(43)

hgdM
= hgd (rG, φG) (44)

φgdM
= φgd (rG, φG) (45)

where xG, yG, and zG are the components of the position of the GPS unit relative to the vehicle center
of mass, expressed in the B frame (with bias error sources δXG, δY G, and δZG), while x?, y?, and z? are
the same position expressed in the ECEF frame. The variables xFG

, yFG
, and zFG

represent the ECEF
coordinates of the GPS receiver, rG, φG, and θG are the geocentric coordinates of the GPS receiver, and
hgdM and φgdM are the position measurements, calculated using Sofair’s method.
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B. Velocity Measurement Equations

Similarly, the velocity of the GPS unit or other observation is provided in the planet-relative, geodetic
velocities ugdM

, vgdM
, and wgdM

, and may be found as a function of the inertial velocity of the vehicle center
of mass, in the GC frame, by first transforming the inertial velocity from the GC frame to the GD frame, and
then subtracting out the velocity due to the planetary rotation in order to create planet-relative velocities.
Lastly, the velocity due to the rotation of the body and the offset of the GPS unit from the vehicle center of
mass must also be accounted for. These transformations take the form





ugdM

vgdM

wgdM





= GGC2GD





u

v − rΩ cos φ

w





+ GB2GDΓ





xG + δXG

yG + δY G

zG + δZG





(46)

C. Acceleration and Angular Rate Measurement Equations

The equations of motion for a vehicle, developed in Sec. III B, assume that the acceleration and angular
rates of the vehicle center of mass are known functions of time. The inertial flight data contains this
information, however, several transformations are required in order to bring this data into the proper form,
and furthermore, the data recorded during the flight is subject to systematic errors and measurement noise.
Systematic error sources may be modelled, and if values are known, their effects may be compensated for
in the trajectory reconstruction procedure. Otherwise, the values of the systematic errors may be estimated
using the filtering techniques, with an augmented state vector consisting of the usual position, velocity, and
attitude states, along with the systematic error terms that are assumed to be constants over the time interval
in question.

Assuming small systematic error sources allows for a linear representation of the IMU measurement
equations of the form16,47,48





aXM

aY M

aZM





=




1 + ξX µXY µXZ

µY X 1 + ξY µY Z

µZX µZY 1 + ξZ








aXT

aY T

aZT





+





ηX

ηY

ηZ





(47)

where aXT , aY T , and aZT are the true accelerations at the IMU location, expressed in the B frame, and
aXM , aY M , and aZM are the measured accelerations at the IMU location, expressed in a frame parallel to
the B frame. The parameters ξX , ξY , and ξZ account for the scale factor error in the accelerometer data,
µXY , µXZ , µY X , µY Z , µZX , and µZY account for misalignment errors. The parameters ηX , ηY , and ηZ

account for bias. The components of the position of the IMU with respect to the vehicle center of mass (xM ,
yM , and zM ) are also assumed to be perturbed by the biases δXM , δY M , and δZM , respectively.

Similarly, the inertial angular velocity components are subject to systematic errors of the form16,47,48





PM

QM

RM





=




1 + ξP µPQ µPR

µQP 1 + ξQ µQR

µRP µRQ 1 + ξR








P

Q

R





+





ηP

ηQ

ηR





(48)

where PM , QM , and RM are the measured inertial angular velocity components, expressed in the B frame,
and P , Q, and R are the true inertial angular velocity components of the vehicle, expressed in the B frame.
ξP , ξQ, and ξR are the scale factor errors, µPQ, µPR, µQP , µQR, µRP , µRQ are the misalignment errors, and
ηP , ηQ, and ηR are the bias terms. Note that the inertial angular velocity is a property of the body and not
a point, and so these terms do not require a moment-arm transformation as do the accelerations.

Note that the preceding transformations give the measured acceleration and angular rate data as a
function of the true acceleration and angular rates, thus, in order to provide the proper inputs into the
equations of motion, the IMU measurement equations must be inverted to yield the true acceleration as a
function of the measured acceleration and error sources, either known or estimated.

The acceleration measurement error equations developed in this section are used principally to correct
the forcing function input to the equations of motion. However, a vehicle with two or more IMUs could
potentially use the additional data as a source of redundancy, which may be incorporated into the state
estimation in a manner similar to the position and velocity measurements.

11 of 21

American Institute of Aeronautics and Astronautics



D. Radar Measurement Equations

The last measurement source of interest to the current document is that associated with ground-based radar
tracking stations that measure the range, azimuth, and elevation of the vehicle with respect to a GD-frame
local to the tracking station. Given the site coordinates hgdS

, φgdS
, θS , or equivalently, rS , φS and θS , the

relative position between the vehicle and the tracking station, expressed in a GD-frame local to the station,
may be expressed as 




xrel

yrel

zrel





= GS





r cos φ cos θ − rS cosφS cos θS

r cos φ sin θ − rS cosφS sin θS

r sinφ− rS sin φS





(49)

where

GS =



− sin φgdS

0 cos φgdS

0 1 0
− cosφgdS

0 − sinφgdS


 ·




cos θS sin θS 0
− sin θS cos θS 0

0 0 1


 (50)

The range, azimuth, and elevation angles may then be written as

ν =
√

x2
rel + y2

rel + z2
rel (51)

sin χ = −zrel

ν
(52)

sin κ =
yrel√

x2
rel + y2

rel

(53)

cosκ =
xrel√

x2
rel + y2

rel

(54)

where ν is the range measurement, χ is the elevation angle, and κ is the azimuth angle, respectively.

V. Application to the Analysis of Flight Data

This section summarizes the results of applying the methods developed in the previous sections to the
problem of estimating the trajectory of the Hyper–X flight test vehicle given the IMU data and several
redundant data sources, such as GPS and radar measurements. The data preprocessing methods are discussed
first.

A. Flight Data Preprocessing

This section summarizes the data preprocessing that were required in order to provide useful measurements
as needed for the trajectory reconstruction process. The raw flight data were passed through a preprocessing
tool, known as PREPR,49 which consists of four main utilities. The first utility removes duplicate points in
the data series which result from differences between the sensor data refresh rate and the telemetry sampling
rate. The second utility allows users to interactively remove rogue points from the data series. Users select
individual or groups of points to remove from a graph of the data series. The third utility samples the
data series at a uniform time step, using a user-specified option of linear, cubic spline, or Hermite spline
interpolation between available data points. The fourth utility gives the user the option to filter the data
series using Fourier series and optimal Weiner filtering method50 available within the Systems Identification
Program for Aircraft (SIDPAC).51 A separate fifth utility is included which can be used to differentiate a
data series once it has been passed through the previous four routines. The user is given the option to use
backward difference or center divided difference methods. Alternatively, users can select to curve fit the data
using either cubic or Hermite spline polynomials, and to individually differentiate each piecewise segment.

Data recorded by the Hyper-X control room were used for the drop phase up to the end of the engine
test experiment. Some communications issues arose during the descent portion of the flight in which data
were not transmitted to the control room, but were recorded by a P3 chase plane. The data from the control
room and from the P3 chase plane were spliced together to give a continuous data stream for post-flight
analysis. This spliced data set was used for the portion of the flight beginning just after the engine test to
the end of the flight.
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Figure 6. Body Y-Axis Inertial Angular Velocity

1. Inertial Data

Measurements of acceleration and angular rates were provided by QA2000 accelerometers and GG1320 Digital
Laser Gyroscopes (DLG) contained within the Honeywell H-764G system,52 a unit with a background of
numerous civilian and military applications. These measurement data were obtained from the on-board
telemetry stream at a rate of 100 Hz and were first preprocessed by removing points which contained
obviously bad or rogue data. Next, the data were edited to remove points which could be considered as
repeated, stale, or non-updated frames. Gaps in the data due to telemetry dropouts or due to edited data
were filled in by a piecewise cubic Hermite interpolating function, and were then filtered to remove the effects
of high–frequency structural noise, measurement noise, and to smooth out the data from quantization effects.

Table 2. Summary of Cut-Off Frequencies for IMU Data Preprocessing

IMU Data HXLV Stack Cut-Off HXRV Cut-Off
aXM 10 Hz 10 Hz
aY M 8 Hz 10 Hz
aZM 8 Hz 10 Hz
PM 8 Hz 10 Hz
QM 5 Hz 10 Hz
RM 8 Hz 10 Hz

Table 2 summarizes the cut–off frequencies used to filter the IMU data for the periods when the HXLV
stack is complete and for the periods after the HXRV has separated from the HXLV. The body Y-Axis inertial
angular velocity is shown in Fig. 6 as an example of the data before and after the filtering process, during
the boost phase. In this example, evidence of a known 8 Hz structural mode in the HXLV configuration can
clearly be seen, which influenced the decision to use a lower cut-off frequency for this channel. After the
separation of the HXRV from the HXLV, the IMU data had almost no apparent structural mode content,
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and therefore a higher cut-off frequency was used for preprocessing.
Numerical derivatives of the inertial angular rates, as required for evaluation of Eq. (32), were calculated

using a second–order centered divided difference scheme, except for the beginning and end points, which
used first–order forward and backward divided differences, respectively.

Preliminary values of the process noise standard deviations used in connection with the inertial measure-
ment data in the EKF formulation were taken from Refs. 53 and 54, which were tuned somewhat to suit the
problem at hand.

2. GPS Data

GPS measurements were obtained as outputs from the H-764G GPS Embedded Module (GEM), which is
a 5-channel receiver, operating in Precision Positioning Service (PPS) mode at a rate of 1 Hz. The GPS
data required little preprocessing, aside from extracting the data from the telemetry stream. There were
several issues with the data itself, however. First, the east velocity channel saturated at approximately 28
sec. after the HXLV was dropped from the B–52 carrier vehicle, due to inadequate telemetry system bit
assignments. The east velocity data unsaturated during the vehicle descent, at a time of approximately 448
sec. after drop. Secondly, the GPS antenna carried on the HXRV itself was activated at the instant of the
drop (previous GPS points from the HXRV telemetry stream were provided by the vehicle flight management
computer, but were derived from a GPS antenna carried on the B–52), and as a result, suspected blockage
or multi path effects seem to have corrupted the first several data points recorded after the drop. Therefore,
the first several points were deleted from the data set and were not considered in the reconstruction process.
Also, there were several brief dropouts of all GPS data streams along the trajectory, as well as several stale
frames and repeated time points during the descent, all of which were deleted from the data set.

The GPS measurement noise characteristics were taken from Ref. 54 and were scaled linearly by the
Figure of Merit (FOM), which is a telemetry parameter that takes on a value depending on the estimated
errors in the GPS–based navigation solution. The FOM depends on many factors including the number of
satellites used to compute the navigation solution and the dilution of precision in the event of an unfavorable
geometry between the satellites and the receiver.

3. Radar Data

Many radar stations were tasked to provide measurements of the Hyper-X vehicle during its flight both for
range safety and for trajectory reconstruction purposes. This tracking data is summarized in Ref. 55 along
with details of the corrections made for atmospheric refraction. The tracking data must be further corrected
for unknown bias and scale factor errors in order to be useful for trajectory reconstruction.

During the captive carry portion of the flight, highly accurate GPS-aided INS navigation solutions are
available in terms of geodetic altitude, geodetic latitude, and longitude. The radar tracking data are also
available during the same portion of the flight, providing position measurements of the target relative to
the tracking station, in terms of range, azimuth, and elevation measurements. The GPS/INS data may be
related to the radar tracking data by means of the transformations given in Sec. IV D. A simple systematic
error model relating measured quantities (νm, κm, and χm) to the true quantities (ν, κ, and χ) for the
tracking data is of the form

νm = (1 + ξν) ν + ην (55)
κm = (1 + ξκ) κ + ηκ (56)
χm = (1 + ξχ)χ + ηχ (57)

where ξν , ξκ, and ξχ are the scale factor errors associated with the range, azimuth, and elevation data, and
ην , ηκ, and ηχ are bias errors. By defining the radar error parameter state space as

xr =
{

ξν ξκ ξχ ην ηκ ηχ

}T

(58)

the model for the measurement equation in terms of the navigation data may be written as

gr (xr,wr, t) =




νnav 0 0 1 0 0
0 κnav 0 0 1 0
0 0 χnav 0 0 1


xr +




1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


wr +





νnav

κnav

χnav





(59)
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Figure 7. Radar and GPS Residuals as Seen by MOTR-16

where νnav, κnav, and χnav are the range, azimuth, and elevation as computed from the navigation solution,

wr =
{

wνnav wκnav wχnav wν wκ wχ

}T

represents the zero-mean uncertainty associated with the
range, azimuth, and elevation as computed from the INS data (essentially the navigation uncertainty trans-
formed into range, azimuth, and elevation coordinates) and the measurement noise uncertainty for the radar
measurements themselves. These uncertainties may be characterized in terms of their covariance matrix,
Rr = E

(
wrwT

r

)
.

The error parameters were estimated by using a Kalman filter implementation, as is described in Sec. II A.
(A similar method for radar calibration using GPS measurements was used in Ref. 56 for air traffic control
applications.) The resulting minimum–variance estimates of the error parameters were then applied to the
rest of the radar tracking data in order to provide calibrated measurements of the vehicle trajectory during
the flight experiment. Unfortunately, the tracking data provided were at low elevation angles and as a result,
suffered from high noise content, atmospheric, and nonlinear effects that could not be accounted for in the
calibration method. Therefore, the radar data was deemed to be unsuitable for direct use in the trajectory
reconstruction. The data did prove useful, however, for providing reasonableness checks for the GPS data.

As an example of the reasonableness checks, consider the MOTR-16 tracking station, located at Van-
denberg Air Force Base (VAFB). This station provided tracking measurements on a C-Band transponder
located on the starboard side of the HXRV. The GPS measurements of altitude, latitude, and longitude may
be transformed into range, azimuth, and elevation data, as would be seen from this tracking station. Fig. 7
shows the residuals between the transformed GPS data and the calibrated radar measurements. Although
the range and elevation residuals seem to have some systematic errors (i.e., nonlinearity), and results of the
comparison are noisy, the plots serve to show that the residuals between the GPS-derived quantities and the
radar measurements do not seem to change in character between periods of relatively benign flight, such as
that seen by the Hyper-X vehicle shortly after drop, and periods of high Mach number and high acceleration
such as that encountered toward the end of the boost segment. Therefore, these results serve to give some
credibility to the use of the GPS data for trajectory reconstruction purposes.
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Figure 8. Synoptic Weather Model

B. Atmosphere Reconstruction

Unlike the planet–relative trajectory reconstruction, a typical atmosphere reconstruction relies solely upon
measurements taken with large space and time separations between the measurement point and the vehicle
during its flight. This fact is no different for the case of the Hyper–X flight. A total of 16 weather balloons
were launched in order to provide the atmospheric data required to compute parameters of interest that are
not estimated in the trajectory reconstruction (since the methods reconstruct a planet-relative trajectory),
such as the dynamic pressure, Mach number, and so on. A total of 4 balloons were launched from each of
Edwards Air Force Base (EAFB), VAFB, Point Magu Naval Air Weapons Center, and San Nicolas Island
Naval Station. The map in Fig. 8 shows the separation of the balloon launch sites from the HXLV drop
site. The balloon data was assembled into a synoptic model containing the ambient atmospheric properties
as a function of altitude above the point φgdref

= 33.45◦, θref = −120.0◦, which is marked by the X on
the map in Fig. 8. The HXLV stack drop and HXLV/HXRV separation points are also shown for reference.
Weather data at a point other than the location of the synoptic model reference point must be transformed
by making use of pressure gradient information to map the pressure to such a location. The temperature
table is assumed to be invariant with respect to latitude and longitude, and the density follows directly from
the application of the equation of state.

C. Results of the Trajectory Reconstruction

The results of the application of the EKF method to the Hyper-X trajectory reconstruction are shown in the
following Figs. 9– 12. Fig. 9 shows the north velocity during the boost phase (ending at the instant before
the opening of the engine cowl door) as a function of time since drop, which occurred at 50396.686 sec since
midnight Pacific Standard Time (PST) on March 27, 2004. The plot shows the EKF-derived solution with
a solid curve, the on-board navigation solution (with some prost-processing, as discussed in Ref. 58) with a
dashed curve, and the GPS velocity measurement. In this plot, the IMU drift is clear, and the improvement
made by using the EKF method can be seen after approximately 50 sec after drop.

The improvement can be seen more clearly in Fig. 10, which shows the residuals between the GPS
measurement and the EKF solution in the solid curve with circles at the data points, and the residuals
between the GPS measurement and the on-board solution with the solid curve with squares at the data
points. The dashed curves show the +/- one standard deviation levels in the north velocity as output from
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Figure 9. North Velocity Comparison During Boost

the EKF method.
Similar results occur for the other components of velocity and position measurements. The improvements

are summarized in Table 3, which shows the Root Mean Square (RMS) errors between the EKF solution
and the GPS solution, and the same with the on-board navigation solution. An improvement is made by
the application of the EKF method in all measurement components, although some cases are more dramatic
than others. The EKF-derived component to show the smallest improvement over the on-board navigation
solution is the east velocity. This result is perhaps not surprising, since the east velocity measurement
channel saturated during the boost, which limited the number of useful data points to be processed.

Table 3. Summary of RMS Errors

Measurement EKF NAV Ratio Observations
hgd 21.59 ft 42.69 ft 1.977 571
φgd 1.202·10−5 ◦ 3.788·10−4 ◦ 31.51 571
θ 2.346·10−4 ◦ 5.779·10−4 ◦ 2.463 571
ugd 0.08972 ft/s 0.3517 ft/s 3.920 571
vgd 0.9515 ft/s 0.9746 ft/s 1.024 164
wgd 0.3189 ft/s 0.5893 ft/s 1.848 571

Finally, the time histories of the atmosphere-relative Mach number, angle of attack, and dynamic pressure
are shown in Fig. 11 for the boost portion of the flight and Fig. 12 for the descent phase of the flight, which
began at the instant after the engine cowl door closed. Data from the engine test phase itself is sensitive
and cannot be shown. The various parameter identification maneuvers during the descent can be clearly
seen in the angle of attack time history. The plots show the estimates for these quantities with a solid curve,
and the +/- 3 standard deviation values in the dashed curves. It should be noted that these uncertainties
are coupled in terms of the altitude uncertainty, and therefore the estimated Mach number uncertainty,
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Figure 10. North Velocity Residual During Boost

for example, includes the planet-relative velocity uncertainty, wind uncertainty for a specific altitude, wind
uncertainty due to altitude uncertainty, speed of sound uncertainty for the specific altitude, and speed of
sound uncertainty due to uncertainty in the altitude. All of these factors were taken into consideration when
computing the standard deviations of the trajectory.

VI. Conclusions

This paper has discussed the formulation and implementation of an Extended Kalman Filtering algorithm
for use in reconstructing the flight path of the Hyper–X/X–43A vehicle, using in-flight inertial measurements
in the dynamic model combined with redundant measurements of the vehicle state from independent sources,
particularly from the Global Positioning System. The equations of motion were formulated in a local, non-
inertial coordinate system, and included the effects of several systematic error sources. Equations relating
the state to measured quantities were provided for a variety of data sources of interest to this problem. Data
recorded during the Hyper-X flight 2 on March 27, 2004, were first preprocessed and then processed using the
estimation methods discussed in this paper, leading to an improvement over the on-board navigation solution.
Results for the boost and descent phases of the flight were shown. The trajectory estimate determined using
the EKF method was chosen as the project Best Estimated Trajectory (Ref. 59), principally because the
method allowed for a systematic procedure with which to consider all sources of uncertainty in the various
measurements, and as a result was able to provide the uncertainty values for the trajectory itself.
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