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Abstract

BACKGROUND

Plants that accumulate metal and metalloid tracments to extraordinarily high
concentrations in their living biomass have ingpineuch research worldwide during the
last decades. Hyperaccumulators have been recamttexperimentally confirmed for
elements such as nickel, zinc, cadmium, mangamesenic and selenium. However, to
date, hyperaccumulation of lead, copper, cobalproium and thallium remain largely
unconfirmed. Recent uses of the term in relatiomat@-earth elements require critical
evaluation.

SCOPE

Since the mid-1970s the term ‘hyperaccumulator’ haen used millions of times by

thousands of people, with varying degrees of pratjsaptness and understanding that
have not always corresponded with the views obtiginators of the terminology and of

the present authors. There is therefore a neethtifycthe circumstances in which the

term ‘hyperaccumulator’ is appropriate and to sgttbe conditions that should be met
when the terms are used. We outline here the naisiderations for establishing metal

or metalloid hyperaccumulation status of plants)define some of the terminology and
note potential pitfalls.

CONCLUSIONS
Unambiguous communication will require the inteimaal scientific community to adopt
standard terminology and methods for confirmingridmbility of analytical data.

Keywords: Hyperaccumulator, metallophyte, trace elements, amemnetalloid,
hydroponic experiments. phytoextraction.

I ntroduction

The term ‘hyperaccumulator’ was devised by onehefiresent authors (Reeves) as part
of the title of a paper reporting the extraordinagcumulation of nickel by the tree
Sebertia acuminaténow Pycnandra acuminatain New Caledonia (Jaffré et al. 1976;
Swenson and Munzinger 2010). The term 'hyperaccationl can be found in Brooks et
al. (1977) and in many subsequent publicationg)goased to describe accumulation of
Ni to >1,000ug/g in dry leaf tissue. This level was chosen asg@00-1,000 times
higher than that normally found in plants on soitg of ultramafic origin, and 10-100
times higher than that found for most other platsNi-rich ultramafic soils. Although
there was some arbitrariness in the choice of ¢hterion, it was noted that in many
ultramafic floras, Ni concentrations of 100-1,08§/g are quite rare, and accumulation to
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>1,000 pug/g seems to represent a distinct form of planpaoese, implying some
characteristic and unusual metabolic functionaitie

An attempt to give greater precision to the dabmitof Ni hyperaccumulation was made
by Reeves (1992) for Ni: “a hyperaccumulator of Ni a plant in which a Ni
concentration of at least 1,0Q@/g has been recorded in the dry matter of any ebov
ground tissue in at least one specimen growingsimatural habitat'This indicates that
the use of the term should not be based on anabyselkole plants or subterranean plant
parts, (i) because of the difficulty of ensuringatththe samples are free of soil
contamination, and (ii) because plants that imnobiimetals in the root system are
relatively common, whereas active accumulation bova-ground tissues is more
diagnostic of hyperaccumulation (Baker 1981; Bakeal. 1994b). To make the original
definition even more precise, above-ground tissuellsl be regarded as plant leaves only
for establishing hyperaccumulator status, andalss important to note that the criterion
for hyperaccumulation is thereby thus set at tlgaoievel (leaves), and not at the level
of specific tissues or organelles (e.g. epidermighe latex. Furthermore ‘accumulation’
should imply only active accumulation inside tharlleaf tissue, via the roots; passive
accumulation via air-borne deposition on plant é&savs not to be considered when
(hyper)accumulation is discussed.

This more detailed definition is also intended tariy questions surrounding cases
where (1) some specimens of a species may be faithd>1,000ug/g and others with
<1,000pug/g, or (2) a species has been found to take up leigels of a metal under
artificial conditions, such as through substantiaketal-salt amendments to an
experimental soil or a nutrient solution. Plantaugoqualify as hyperaccumulators under
case (1) but not under (2). Concentrations of reetan greatly differ between plant
parts; in some plants metal concentrations in gienx or latex are many times those in
the leaf. Examples includ8ebertia acuminatavith 257,400ug/g in latex and 11,700
ug/g in leaves (Jaffré et al. 1976) aRttyllanthus balgooywith 90,000ug/g in the
phloem tissues and 16,00@/g in leaves (Hoffmann et al. 2003). It appearbeovery
unusual, however, for a plant to reach hyperaccatauthreshold concentrations in other
organs or the latex/sap, but not in leaves. Thdigampon of the phrase ‘growing in its
natural habitat’ is that hyperaccumulators mustie@htheir high metal concentrations
while remaining healthy enough to maintain a seftaining population.

Subsequent to its original publication, the ternogy of hyperaccumulation has been
expanded to elements other than Ni. A compreherdis@ission of the early reports on
unusual accumulation of Zn, Cd, Pb, Co, Cu, Mna@d Se is given in the review by
Reeves and Baker (2000) and records of unusuahadation of As have been noted by
Reeves (2005). As the interest in plants accunmgathese elements developed, the
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concepts and definitions of hyperaccumulation hbeen extended. Malaisse et al.
(1978) used the 1,00Qg/g criterion for Cu accumulation, and Brooks et @!980)
argued for this to be applied also to Co. Reeveab Bimoks (1983b) used the same
criterion in discussing Pb, but for Mn and Zn, whixre normally present at higher and
more widely varying concentrations (about 20-4@flg), a 10,00Qtg/g threshold was
suggested by Baker and Brooks (1989), following thee of the term
‘hypermanganésophore’ for plants with this levelMi accumulation (Jaffré 1980).
Normal Cd levels are so low (0.03-54@/g in most plant species) that those plants
capable of concentrating this element to >10§/g should be regarded as Cd
hyperaccumulators (Baker et al. 1994a), havingifogmt phytoremediation potential.

We consider accumulation of major soil elements & Mg, Na and Al) to constitute a
different phenomenon to hyperaccumulation of tralegnents, and do not discuss these
further here (for a discussion of Al accumulatiee $1etali et al. 2012).

The basisfor hyperaccumulation threshold criteria

The metal supply to a plant ranges from deficietocgptimum and eventual toxicity, and
differs greatly between elements, being particuladrrow for transition metals such as
Zn, Cu and Ni (Clemens et al. 2002). When a spezségblishes on a soil with either a
too low or a too high metal supply, adjustmentsl wake place within the limits of
phenotypic plasticity followed by adaptation andletion of efficiency or tolerance in
populations over time (Schat 1999; Pollard et &02 Ernst 2006,). The uptake and
metabolism of non-essential metals and metallagdg. (Cd, As, Pb) is not regulated as
tightly as for essential metals (e.g. Zn, Cu) beeaof interference or lack of specificity
of the ecophysiology of plants (Ernst 2006). Theaye been efforts to define typical
concentrations of metals and metalloids in plaats] the worldwide ‘standard reference
plant’ has elemental concentrationsyfg) of Ni (1.5), Zn (50), Cd (0.05), Pb (1), Cu
(10), Co (0.2), Cr (1.5), Mn (200), Tl (0.02), A3.1) and Se (0.02) (Markert 1994; Dunn
2007).

The hyperaccumulation threshold criterion for Niswet only chosen because it is 10-
1,000-fold higher than the average concentratiothaf element in plant leaves but also
because 1,000g/g seemed to separate two modes of a bimodaldrexyucurve (Brooks
and Radford 1978; Brooks et al. 1979). These frequecurves showed more or less
lognormally distributed concentrations up to abb@00ug/g and an outlying cluster at
exceptionally high concentrations. This bimodal tgyat is particularly apparent in
phylogenetically restricted data sets, such ahéngenusAlyssumin the Brassicaceae
(Brooks 1987, 1998; Pollard et al. 2002). Such hiality has also been found in some
edaphically limited datasets of plants growing ttnramafic soils, such as a dataset from
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temperate ultramafic plants which showed a shaspoditinuity, but not in a dataset with
tropical ultramafic plants which showed an appraadeniognormal distribution (Reeves
1992; Reeves et al. 2007).

Further (meta)analysis for a range of metals (Bimadt al. 2001; Watanabe et al. 2007)
has dealt with accumulation of elements in plarisf do not clarify whether
hyperaccumulators form a qualitatively distinct gpo(a bimodal pattern), which would
indicate a different physiology, or whether hyperanulators are merely the tail of a
positively skewed continuous (lognormal) distrilbati Such datasets are not suitable for
defining hyperaccumulation criteria because of rlative rarityof hyperaccumulators,
making it statistically difficult to distinguish bgeen bimodality and skewness. This is
exemplified by the approximately 23,000 speciediwithe Asterales, of which only 38
are hyperaccumulators under the current criterimd@ley et al. 2001). Only datasets
limited phylogenetically or edaphically (e.g. frametalliferous soils) could be of use in
this respect. For phylogenetically limited datasétere are however few candidates
other then the genuslyssum.On a global scale the gendrayllanthusand Psychotria
are some of the largest for Ni hyperaccumulatout,dompared to the overall size of
these huge genera the hyperaccumulators willlsgilh minority. On the other hand, the
genusBuxusin Cuba has 17 Ni hyperaccumulators and 17 nooraatators (Reeves et
al. 1996), showing distinct bimodality. Much withus depend on the selection of the
genera and the geographical delimitation. Edaplyiciimited datasets may be
inappropriate for statistical recognition of hypsramulators because of various forms of
sampling bias, e.g. a specific search for new rggmmulators. This means that
providing statistical evidence for a qualitativelistinct group and basing thresholds on
the group delimitation is extremely difficult.

Other criteria, not based upon nominal thresholdes could be considered to define
hyperaccumulation. In particular, hyperaccumulatomge a very high bioconcentration
factor (shoot:soil ratio) as a result of their pbiggical make-up enabling active metal
sequestration and concentration, and it has beggested that this should be a critical
factor in recognition of hyperaccumuators (Hobbsl &itreit 1986). However, the

bioconcentration factor in isolation cannot sergeaadefinition of hyperaccumulation
when based on field-collected material, becausés imanifested as a genotype x
environment interaction and is controlled by bdih genetically-determined physiology
of the plants and the local edaphic conditions |@Pdlet al. 2002). Hyperaccumulators
can sequester metals even from soils with low nmmdacentrations; for example, some
populations oflhlaspi caerulescersndArabidopsis hallergrowing on normal soils still

exhibit hyperaccumulation (Reeves et al. 2001; Berl. 2002; Assuncéo et al. 2003).
As such there is no unequivocal relationship betweaf metal content and the total
metal concentration in the soil or its bioavaildpjlwhich is a characteristic feature of
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hyperaccumulators (Baker 1981). A complicating dads that no chemical extraction
method (including CaG| DTPA, EDTA, ammonium acetate) universally anduaately
replicates the bioavailable soil metal fraction hyperaccumulators, although advances
are made with more realistic approaches e.g. cgtiseacid extraction (Feng et al. 2005)
and in better replicating the soil-rhizosphere riigige e.g. Diffusive Gradients in Thin
films; DGT (Zhang et al. 2004; Tandy et al. 2011atdhabe et al. 2011). Even if an ideal
soil extraction method could be formulated, theidogf the shoot:soil ratio is
guestionable. Metal concentrations in plants arasmesd on a dry-weight basis and are
thus, to a good approximation, a ratio of metal snas cellulose mass. Soil
measurements, however, are a ratio of metal mase teolid fraction of the soil. As the
denominators of these ratios are totally differénis not apparent why they should be
directly comparable. Moreover, high soil metal camications could result in a
bioconcentration factor < 1, for example in ultrdimagoils with 3,000ug/g Ni in the soil
and 2,000ug/g in a plant (while such a plant would clearlyvédaan abnormal
physiology), or conversely plants growing on saitficient in essential trace elements
(e.g Zn) might be extremely efficient in sequesbtratand hence have very high
bioconcentration factors yet low absolute conceiaing. The bioconcentration factor
however might have use in a comparative way, whiewigg plants in homogenized soll
or in hydroponic culture but this has little advage over simple comparisons of foliar
metal concentrations.

Another criterion sometimes proposed for definiggdraccumulation is the shoot-to-
root quotient of metal concentrations (or translimcaratio), which typically is >1 in
hyperaccumulators (Macnair 2003). While a usefapprty in supporting other evidence
of hyperaccumulation, this ratio cannot be usedeato define hyperaccumulation for
several reasons: (i) the difficulty of sampling t©&rom many plants, especially trees; (ii)
the difficulty in analysis of ensuring that roote dree of all soil contamination and
externally sorbed metal ions; (iii) the fact thia relative concentrations on a dry weight
basis of a metal in various plant organs (leavastsy stems, fruits, seeds, etc.) may
depend as much on the proportion of structural nzte those tissues as on the detailed
solution transport processes; (iv) a plant with,deample, 1Qug/g metal in the root and
20 ug/g in the leaves, while having a translocatiororai, is of no special importance in
the context of hyperaccumulation; (v) metal pantithg into shoots relative to the roots
may depend on external metal supply (Talke etG062 and the higher root-to-shoot
biomass ratio of some hyperaccumulators can alstrsibate to relatively high shoot-to-
root metal quotients (Kramer et al. 1997).

In contrast to these attempts to define hyperactation on statistical grounds, the ‘Holy
Grail' (Baker and Whiting 2002) would be an ovectang, ‘physiological definition’ of
hyperaccumulation, based on structural, functionalmetabolic characters unique to
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hyperaccumulators. Knowledge of the physiology gedetics of hyperaccumulation has
been greatly advanced in recent years (Pence 20@0; Talke et al. 2006; Courbot et al.
2007; Willems et al. 2007; Hanikenne et al. 200&hBRu et al. 2009). However, the
inherent complexities of the phenomenon, such asspecificity for different metals
(Zhao et al. 2002; Assuncéo et al. 2003) and treeyaf different physiologies enabling
hyperaccumulation (Van de Mortel et al. 2006; Ricle al. 2009) make a workable
physiological definition still far away.

As a workable approach, we propose to set hypemaglation threshold criteria at a level
that is (i) 2-3 orders of magnitude higher tharmplant leaves on normal soils, and (ii) at
least one order of magnitude greater than the uangke in plant leaves on metalliferous
soils. However, nominal thresholds should be apgpsensibly and not regarded as a
‘magical’ or absolute cut-off, e.g. a plant thahsistently accumulates 9Q@/g Ni still
exhibits extreme physiological behaviour, and stotherefore be regarded as a
hyperaccumulator of that metal. As such, nominaeghold criteria are part of an
operational framework, complemented with a suiteladracteristics which include (a) a
bioconcentration factor >1 (but often >50); (b) laoat-to-root metal concentration
guotient >1 and (c) extreme metal tolerance (‘hyglerance’) due to effective
biochemical detoxification (Baker and Whiting 2002)

Patter ns of hyperaccumulation in natural populations

Hyperaccumulators can be further categorized acopito the consistency of their metal
accumulation behaviour. We distinguish here betwebligate’ (also called ‘strict’) and
‘facultative’ hyperaccumulators. The obligate hygmumulator species are endemic to
some type of metalliferous soil and always exhibétal uptake at the level defined for
hyperaccumulation. Facultative hyperaccumulatonsihe other hand, are species with
populations of which (some) individuals are hypetaculators and other individuals of
the same species are not (Pollard et al. 2002ulfaéive hyperaccumulation can result
from (i) genetic differences between different @eped) populations of a species; or (ii)
soil-based differences, i.e. differences in medalavailability and uptake. The latter can
result from variations in (1) the total concentatin the soil of the element of interest;
(2) the presence of the metal in different phaseshemical forms; (3) differences in soil
pH; (4) the concentrations of major elements indbi (5) physical factors, such as the
local rainfall, soil porosity and evaporation cladedistics. Facultative
hyperaccumulation applies when the species oraat k& local population possesses the
inherent propensity for metal accumulatiand the local soil factors provide sufficient
metal availability. The frequency of occurrence dfiifferent facultative
hyperaccumulators on metalliferougs. normal soils varies: some species occur
predominantly on metalliferous soils, while othecgur predominantly on normal soils.
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The facultative hyperaccumulator category covergadety of situations. It includes
particularly those species that occur on both rietiadus and non-metalliferous (normal)
soils, showing hyperaccumulation from only the riiéaous ones. On normal soils,
such plants do not hyperaccumulate, either becthesg cannot do so because of a
genetic difference, or (more generally) becaus¢heflow availability of the metal in
guestion.

Leaf analysis of the widespre&inorea bengalensigor example, includes 23 specimens
showing Ni concentrations of 1,000-17,7p§/g from ultramafic soils, and another 77
specimens with 1-30Qug/g from other soils (Brooks and Wither 1977; Reeve
unpublished) and is hence a typical facultative engpcumulator. There are more
complex cases however, for example the AustraRanelea leptospermoidethat is
apparently restricted to Ni-rich ultramafic soilbut shows a wide range of Ni
concentrations (15-2,80@/g) from those soils (Reeves unpublished). Sorneeisp are
able to hyperaccumulate from soils with low metaintent, for exampleThlaspi
(Noccaea caerulescensthat has been found on various localities (e.gessiin
Luxembourg, France, Spain, Scotland and Swedeih) weity high Zn concentrations on
soil with low Zn status (Reeves et al. 2001; Assinet al. 2003).

Critical evaluation of hyperaccumulation reports

The hyperaccumulator plants reported to date fadhdly into eight groups: (i) plants
from ultramafic soils showing Ni (and rarely Co)paeyaccumulation; (ii) plants of soils
enriched in chalcophile elements such as Zn, Pb,a@d TI, which may show
hyperaccumulation of any of these elements; (ii@nfs from soils rich in Cu and Co,
showing hyperaccumulation of either or both of thekements; (iv) plants showing Mn
hyperaccumulation, which can occur from some ulafiensoils and from some other
substrates; (v) plants with unusually high Se caotre¢ions from soils with elevated
concentrations of this element; (vi) plants thatehbeen identified as hyperaccumulators
based on uptake of elements from industrially getlusoils, which include many of the
elements listed above, along with reports of Cr asdhyperaccumulation; (vii) plants
reported to hyperaccumulate light rare earth elesnguch as Ce and La; and (viii) plants
reported to hyperaccumulate major soil elements. (those above trace-element
concentration) such as Fe or Al, a category whiehwil not discuss further. Although
the term hyperaccumulation has been applied intladise cases, the amount of
experimental support and scientific understandiages widely.

Nickel
As indicated in the introduction to this paper keaicwas the first element designated as
being hyperaccumulated by plants. Nickel hyperaedatars comprise the great



302 majority of the current reports of hyperaccumulatiand there is broad agreement that
303 1,000ug/g represents a useful criterion for their rectigni Various additional terms
304 have been used to indicate other levels of Ni acdation. Brooks et al. (1977)
305 described the small number of plants in their stthdy showed 100-1,0003/g Ni as

306 ‘strong accumulators’, and at the highest end ef<gbale, Jaffré and Schmid (1974)
307 used the term ‘hypernickelophores’ for plants with0,000 ug/g (1%) in the dry
308 matter. It is doubtful whether these additionalegaties are required. Certainly those
309 species regularly showing more than 1% Ni are goodidates for applications such
310 as phytoremediation and phytomining, but they sezform part of a continuum that
311 begins around 1,000y/g.

312

313 Zinc

314 Zinc hyperaccumulation is also well-established oasurring in natural populations
315 (Reeves and Brooks 1983a; Reeves 1988; Escarré @0@0) and well-studied in
316 experimental systems (Shen et al. 1997). ReevesBakdr (2000) suggested that the
317 10,000ug/g criterion of Baker and Brooks (1989) might onge cases be regarded as
318 unduly restrictive. In particular, for Zn, presémimost plants on zinc-rich soils at 50-500
319 ug/g, it might be more appropriate to regard Zn lewabove 3,00Qug/g as remarkable,
320 and deserving of being described as hyperaccuronlathn example isSGomphrena
321 canescen$rom Australia with 9,00Qug/g Zn (Cole et al. 1968). Furthermore, some very
322 strongly Zn-accumulating species might then notdbscribed as non-accumulators, a
323 term used by Sheet al (1997) forThlaspi ochroleucumwhich can be found with up to
324 6,300ug/g Zn and 5-10Qug/g Cd on zinc-rich soils (Reeves 1988 and unphet}, as
325 well as 5,20Qug/g Ni on ultramafic soils (Reeves 1988). The loweterion for Zn was
326 also proposed by Broadley et al. (2007) and Kra@€10). For phytoremediation
327 potential, and also for biological reasons (3,000) Zn is more than enough to suggest
328 ‘abnormal physiology’), there is likely to be inést in any species that consistently
329 shows such Zn levels, particularly if Cd levels also abnormally high.

330

331 Cadmium

332 Work in several laboratories from about 1994 onwdrds revealed the Cd-

333 hyperaccumulating ability dFhlaspi (Noccaea) caerulescefi®obinson et al. 1998;

334 Escarré et al. 2000; Lombi et al. 2000, 2001b; Reet al. 2001) anéirabidopsis halleri
335 (Bert et al. 2002, 2003). The genetic propensitydd hyperaccumulation varies strongly
336 between populations (Lombi et al. 2001b; Assun¢ad. 2003; Bert et al. 2003; Roosens
337 etal. 2003). More recently, several Cd hyperacdatats have been described from

338 China, notab\Rorippa globulosgdSun et al2007),Solanum nigrunfWei et al. 2006;

339 Gao et al. 2010K5edum alfredi{Deng et al. 2008) andiola baoshanensid.iu et al.

340 2004; Li et al. 2010). We note that much of theeagsh with Cd hyperaccumulators from
341 this region, and some reports of ‘new hyperaccutargaare based on hydroponic
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experiments with artificial exposure to Cd. Howewame of these cases of Cd
hyperaccumulation do exist under natural conditidang et al. 2009; Wu et al. 2010).
Almost all natural Cd-rich soils (e.g. calaminelsanineralised with Zn-Pb-Cd) are also
extremely enriched in Zn. Cadmium hyperaccumulataust therefore also be very Zn-
tolerant in their natural habitats, and hence Zqetty in effect limits Cd-
hyperaccumulation. For exampkabis paniculatédrom China can accumulate 20,800
ug/g Zn as well as 2,30@y/g Pb, and 434g/g Cd (Tang et al. 2009). Caution should
however be exercised when putative Cd-hyperaccuorslare grown in soils amended
only with Cd. This stresses again that hyperaccatorg have to be recorded from the
natural habitats and exemplifies the importancesirig natural soils in experiments.

Lead

There are several reports of Pb concentrationseathg®OOug/g in plant material, using
material collected directly from the field (Johnstand Proctor 1977; Williams et al.
1977; Barry and Clark 1978; Deram and Petit 19%tkiikhun et al. 2006) or supplied
by herbaria (Reeves and Brooks 1983b). It is adstdrue that some species such as
Thlaspi(Noccaea caerulescensan accumulate Pb in shoots to levels of the artil800
ug/g from Pb-amended nutrient solution, whilst imitigimg Pb in the roots at levels
close to 30,00Qug/g (Baker et al. 1994b). Recent experiments hdnevs that some
populations off. caerulescensom southern France can accumulate Pb at >Iy§@pin
leaf dry matter in nature, as well as from nutrientution amended with low molar
concentrations of Pb (Mohtadi et al. 2012). Simitaports have been made from
Thailand where 26 taxa collected from a lead mnea avere shown to accumulate foliar
lead to these levels (Rotkittikhun et al. 2006).

Much higher foliar concentrations can be achievéd tine use of Pb-complexing and
mobilizing agents such as EDTA and EDDS (‘induchgtpextraction’sensuSalt et al.
1998), as shown in work dsrassica junceandB. carinatagrown in hydroponic
solution or in EDTA-treated soil (Kumar et al. 1994&ssil et al. 1998). As noted above,
we do not regard extreme accumulation achievedigirénydroponics or chemically-
amended soils as hyperaccumulatiBrassica juncedas no specific uptake mechanisms
for Pb and part of the enhanced uptake results ttamage to the root membrane by
EDTA (Vassil et al. 1998 Moreover, such in situ chelate-induced phytoexioact
introduces serious environmental problems andss pmhibitive for large-scale
application (Chaney et al. 2007). The chelatinghégyased to induce in situ
phytoextraction cause Pb to become mobile and leathnd contaminate groundwater
and surrounding soils, a pollution scenario thateiarly impossible to control. At the
optimal concentration in the soil solution theselating agents (EDTA) are also very
expensive (Chaney et al. 2002). Although much reseientific inquiry has focused on
reducing the risks of the technology, by searclamghelating agents that are more

10
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biodegradable (e.g. EDDS, NTA which are more experthan EDTA), unavoidable
contamination issues largely remaRo(Imkens et al. 2001; Wu et al 2004; Nowack et
al. 2006).

The high values recorded in material grown natyriadlve always been from the vicinity
of Zn/Pb mine sites or smelters. Here, there hasariably been a local long-term
exposure to metals from the surface expressiomdérlying geological sources. Under
these conditions there is abundant opportunitycmtamination by wind-blown or rain-
splashed dusts and soil, or even (in the case eftars) from vapour-phase deposition.
We regard the existing records as doubtful, andireg further confirmation through
the use of samples that have been treated to resu¥ace contamination. Rigorous
washing with de-ionized water or a detergent sofutire effective methods to clean the
surface of roots and leaves from particulates (Migitdin et al. 1985; Azcue 1996). Such
washing may not remove metals that are fully ereddsy wax, however, which requires
intensive washings with non-polar solvents in orteremove all cuticular metals, but
this may in turn damage the underlying tissue agldase metals from the internal
structure. Where intensive treatment with non-pelax-dissolving agents (e.g. hexane)
in an ultrasonic bath does not significantly deseethe foliar metal concentration, then
hyperaccumulator status can be affirmed, but wheh svashings decrease foliar metal
concentrations it is still unknown whether the rhataved in the cuticle via the air or via
the roots. InThlaspi caerulescenmetal accumulation in the cuticle can also oceur i
metal-free air (Schat unpublished), which makesahexvashing problematic.

Accurate mass calculations comparing the leaf Pih wie total soil Pb can give an
estimate of potential Pb contamination, but anarpto exclude surface contamination
with Pb and other metals from the analysis is tmgthe plants from seed in their natural
soil in the glasshouse or a climate room, wheraal@eposition can be entirely
precluded. Such controlled experiments are necgssamny instance where surface
contamination is suspected, except when foliar heatacentrations are far in excess of
the total soil concentrations (which is often nlo¢ ttase for mine tailings and smelter
sites). In addition, an experiment to distinguigitmeen Pb entering the plant via the root
system and that deposited externally, using twdssoi very different Pb isotopic
composition, has been devised by Reeves et al5§2€te experiment itself has not yet
been conducted.

Copper and cobalt

Copper hyperaccumulators have been recorded freyDRR Congo (with at least 32
species; Reeves and Baker 2000; Reeves 2005) smft@in China, with species such as
Elsholtzia splendeng¢E. haichowensjs(Jiang et al. 2004) an@ommelina communis
(Wang et al. 2004). There are also five record®0dpg/g Cu from Sri Lanka, which
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includesGeniosporum tenuiflorumwvith 2,299 ug/g (Rajakaruna and Baker 2006) and
from Salajar Island (Indonesia) with seven reco¥@80 ug/g Cu, up to 60Qug/g in
Laportea ruderalis(Brooks et al. 1978). The evidence for copper hgpeumulation is,
however, limited and most of the copper hyperacdatats that have been described
from the DR Congo (Malaisse et al. 1978; Brooksaletl982; Leteinturier 2002) could
not be verified in a recent study which employetemsive washing of the plant leaf
material (Faucon et al. 2007). The authors of stugly found that 12 species that were
studied and which were previously recorded as aopgperaccumulators did indeed
have high copper concentrations, but rarely exakeade limit for hyperaccumulation.
They concluded that the large variation of planhaamtrations within a single site,
significant linear soil/plant correlation (pointingp ‘bioindicator’ behaviour) and
relatively low concentrations in many specimens awmcharacteristic for
hyperaccumulators. It seems that most of the eaalytical results were contaminated
by dust. For example, 0.2 mg of malachite includeda dust with 100 mg of plant leaf
genuinely containing 1@g/g Cu is enough to raise the apparent Cu condemtréo
more than 1,15Q0g/g (Reeves and Baker 2000).

Cu concentrations in plant leaves are controlletthiwia narrow range~(0 ug/g) even
on metalliferous soils, and regardless of the dliffies in obtaining contamination-free
plant leaves, the current hyperaccumulator critefior copper is probably too high
(Faucon et al.2007). This relates also to the current situatiomth wcobalt
hyperaccumulators. Cobalt concentrations are ndymalty low in plant leaves (0.03-2
ug/g) and even on metalliferous soils seldom reatindglg. Cobalt hyperaccumulators
are predominantly known from the DR Congo. In addit Co reaches 530-84m)/g in
Nyssa sylvatican non-metalliferous soils in the US (Kubota et1#160; Brooks et al.
1977; Robinson et al. 1999). There are two recofd®hyllanthusspecies from Cuba and
New Guinea respectively (with Co values of 200-0;iflg) (Reeves 2003; 2005), both
from ultramafic soils. It is important to note thatultramafic soils Ni might limit Co-
hyperaccumulation, because Ni is usually presembmcentrations 10-fold greater than
those of Co (Malik et al. 2000). Kramer (2010) prsed to lower the hyperaccumulation
criteria for Co and Cu to 30@y/g, and we affirm this.

Chromium

Chromium hyperaccumulation is another phenomenanwioich evidence is mostly
lacking. In soils chromium generally has very lowart availability, and thus low
potential uptake (Han et al. 2004), although in Neavedonia (Becquer et al. 2003) and
Brazil (Garnier et al. 2006) relatively high avail@ chromium (V1) has been reported,
which could cause phytotoxicity. Examples whereoafium hyperaccumulation has
been described includesersia hexandrgZhang et al. 2007) arffpartina argentinensis
(Redondo-Gémez et al. 2010). However, chromiumeslliffered greatly between sites
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and plants; this might indicate surface contamamatand/or the inability to remove
surface contamination during analysis, which, athvwdopper, might cause spurious
results. Given the very low chromium concentrationglants, both on normal (<iig/g)
and metalliferous (ultramafic) soils (<%@/qg), it is proposed to set the criterion at 300
ug/g for hyperaccumulator status.

Thallium

Currently only a small number of thallium hyperagezdators have been reported, all
from Southern Francdiscutella laevigatavith with up to 15,20Qug/g Tl (Andersoret

al. 1999),lberis intermediawith up to 2,81Qug/g Tl (LaCoste et al. 1999, Leblanc et al.
1999) andSilene latifoliawith up to 1,489 ug/g (Escarré et al. 2011). Various authors
have proposed threshold hyperaccumulation condentsaof either 50@ug/g (Leblanc et
al. 1999) or 1,00Q9/g (McGrath 1998; Kramer 2010), without discussionjustification

of why these values were selected. Further stsidgquired to validate these reports and
designate appropriate criteria, but given thatdiaentrations are generally < 0.08/g

in plant leaves, we propose a tentative threshaldevof 10Qug/g.

Manganese

Manganese hyperaccumulation has been describedpmamately 10 species (Baker
and Brooks 1989; Fernando et al. 2009; Pollard.e2@9). As mentioned above, the
criterion for Mn hyperaccumulation is 10,008/g, reflecting the general abundance of
this element in soils and biological materials (Bak&nd Brooks 1989). The majority of
Mn hyperaccumulators are from ultramafic soils,isas in several species in the genus
Gossia(Myrtaceae) from Australia with up to 21,500/g Mn (Fernando et al. 2009) and
a number of Mn hyperaccumulators from New Caledomeluding Macadamia
neurophyllawith up to 51,800ug/g Mn (Jaffré 1979) andlaytenusspp. with up to
32,000ug/g Mn (Jaffré 1977; Fernando et al. 2008). Hypewawulation of Mn has also
been reported iRhytolaccaspp. from industrially-polluted soils (Xue et a0d), and it
appears that the phenomenon also occurs on ngtocurring soils derived from
manganiferous schist (Pollard unpublished).

Metalloids

The Se content of soils is usually 0.01fg, but can greatly exceed this range, reaching
concentrations of several hundrgd/g in soils derived from certain Cretaceous shales
(Reeves 2005). Recognition that some plants coetaiaptionally high concentrations of
selenium has a long history, pre-dating the originhyperaccumulator terminology
(Rosenfeld and Beath 1964; Terry et al. 2000). rEleent literature is particularly rich in
reports on the ecological significance of selenilnyperaccumulation in natural
populations (Barillas et al. 2011). Most authaegard 100Qug/g as a criterion for Se
hyperaccumulation. However, because normal Sdslemeplants are below gg/g, a
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case could be made for considering any plant witoremthan 100ug/g as a
hyperaccumulator of this element. Selenium hypenacdators are widespread in the US
and Australia where they occur on Se-rich shald waibout 10ug/g Se (Reeves and
Baker 2000). Most Se hyperaccumulators are in #meilies of Fabaceae such as the
genus Astralagus, including Astragalus bisulcatusand the Brassicaceae including
Stanleya pinnatahoth these species hyperaccumulate up to 10,009 Se (Freeman et
al. 2006).

Hyperaccumulation of As, defined as a concentratidmove 1,000ug/g, has been
reported in ferns growing on industrially pollutesbils, with further reports from
laboratory screening (reviewed in Reeves 2005)ewics hyperaccumulation has been
described for a number &fteris spp., most notablfteris vittatawith up to 22,63q.g/g
As (Ma et al. 2001; Wang et al. 2007) and othendesuch a®ityrogramma calomelanos
with up to 8,35Qug/g As (Visoottiviseth et al. 2002). Because of tivecity of As, this
phenomenon has been intensively studied for iteriatl in phytoremediation. Arsenic
also occurs in some aquatic species exposed toalgtelevated As concentrations in
the water. The relatively frequent occurrence of RAgperaccumulation among
hydrophytes (as opposed to terrestrial plantshigely due to precipitation of water-
borne As on or in the peripheral cell walls of thaf, rather than ‘active uptake’ across
the plasma membrane (Robinson et al. 2006). Thi®nsparable with terrestrial plants
trapping airborne contamination (see issues wittppssed Pb, Co, Cu, Cr
hyperaccumulation), especially those species gmwm environments polluted by
human activities.

Rareearth elements

Reports have appeared recently on the accumulatibght rare earth elements (LREES)
such as cerium (Ce) and lanthanum (La), predoniynd&mm China (Shan et al. 2003;
Wei et al. 2005; Lai et al. 2006; Wang et al. 20@8) example iDicropteris dichotoma
which accumulates up to 7,008/g LREEs in its dry leaf biomass (Shan e8l03) and
Pronephrium simplexvith up to 3,000ug/g LREEs (Lai et al. 2006). Little is known
about the ecophysiological functions of LREEs oprapriate criteria for defining their
hyperaccumulation. The reported hyperaccumulatave been described from industrial
smelter sites, available for plant colonizationyonécently, and more information is
needed to establish the routes of uptake of theeglés into the plants. Again airborne
contamination might be a factor here. Until mor&rnswn about the behaviour of LREES
in plants, hyperaccumulator criteria cannot be set.

Numbers of hyperaccumulators
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As explained above, we propose to set hyperaccuimuolghreshold criteria at a
minimum of 2-3 orders of magnitude higher thandolconcentrations on normal soils,
and at least one order of magnitude greater tharrdghge in foliar concentrations on
metalliferous soils. On this basis, we recommermdftiiowing concentration criteria for
different metals and metalloids in dried foliagé0lug/g for Cd, Se and TI; 3@@/g for
Co, Cu and Cr; 1,000g/g for Ni, Pb and As; 3,000g/g for Zn; and 10,00Qg/g for Mn,
with plants growing in their natural habitats. Hiese criteria are adopted more than 500
plant taxa have been cited in the literature te det hyperaccumulators of one or more
elements (As, Cd, Co, Cu, Mn, Ni, Pb, Se, Tl, Zfis still represents a very small
proportion of the (approximately) 300,000 recogdizescular plant species (The Plant
List 2011). Approximate numbers for various elemseare as follows: Ni (450), Cu (32),
Co (30), Se (20), Pb (14), Zn (12), Mn (12), As,BY (2), Tl (2). These numbers are
subject to change, and may increase with furthefoeation and analysis. Some of the
tentatively identified hyperaccumulators, partieclyyahose of Cu, Co, or Pb, might also
be removed from the list after further testing (gxample in glasshouse experiments in
which airborne contamination can be eliminated).h#ts been suggested that the
preponderance of Ni plants is the result of a greaffort made into seeking these, but
there is a more fundamental reason: the total afddi-rich ultramafic soils exposed
worldwide is much greater than that presented Ippsures of the other metals listed.

Experiments using hydroponic cultures and metal-amended soils

Baker and Whiting (2002) warn that “In their entlaigsn to report new hyperaccumulator
plants, many authors have regularly assumed thatidrmally non-accumulating plant
can take up >10,000ug/g Zn from hydroponic culture it can be assigned
hyperaccumulator status.” It must be recognizetlahmost any plant can do this, but the
‘forced’ or ‘induced’ metal uptake often leads mititely to plant mortality, and may have
no relevance to the continuing life cycle of nalilyraccurring metallophyte populations,
even though it may be of interest for some phyt@diation strategies. Many pieces of
published experimental work have used metal-amendédent solutions containing
amendments far in excess of the metal concentsatmmd in natural soil solution. Such
experiments can be useful in demonstrating theraote of a species to a particular
element, and in showing the fate within the plahtswech massive exposure.g how
much becomes immobilized within the root system hod much is translocated to the
shoots), but have very limited relevance to theiragtenvironment in which the species
evolved: the experiments are almost never takefaisas to demonstrate survival and
production of viable seed.

The problem thus lies in that hydroponic experimasften use unrealistically high dose
treatments, where the characteristic differenceasvden hyperaccumulators and non-
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accumulators tend to disappear, because of satmratithe root-to-shoot translocation in
the hyperaccumulator, or of the root's sequestnatiapacity in the non-accumulator.
When used sensibly, it seems that hydroponic exyaris can help to distinguish
genuine hyperaccumulators, provided that the expdswels are kept low (e.gl uM).
However, experimental confirmation using the ndtsal is more straightforward and
therefore preferable.

Similar comments apply to experiments in which ohthe standard soil media is
supplemented (‘spiked’) by the addition of largeoentrations of soluble metal salts
(nitrates, sulfates, etc.). The nature of the ateon between the amending solution and
the base soil is generally largely unknown, andrésellting medium is unlikely to mimic
a real metalliferous soil. This is analogue tofiarél acidification of natural soil to
increase metal-uptake (even if induced phytotoxisitkept relatively low). Again great
care needs to be taken in interpreting (and exta#ipg from) the results of such
experiments. In both cases, hydroponics and amenrdacidified soils, we reject such
experiments as capable of defining a species gpardccumulator. Even when natural
metalliferous soils are used, large-scale experiatiagreening for hyperaccumulators
could yield misleading results if non-tolerant dps@re tested. When the tolerance limits
of excluder species are exceeded, it is commobgerge non-specific ‘breakthrough’ of
metals into the shoot (Fig. 1; Baker 1981), yet thinot hyperaccumulation if the uptake
results in death of the plant.

Hyperaccumulator databases

In order to provide a univocal platform for sharkmgpwledge of hyperaccumulators it is
proposed to create an online database portal. pteeto produce such databases have
been few and global coverage is patchy. The moktwewn are Environment Canada’s
PHYTOREM database and the METALS (metal-accumujgpilants) database originally
maintained by the Environmental Consultancy, Ursitgrof Sheffield (now ECUS Ltd,
UK). Since 2009, the on-line Global Metallophytet&lzase (www.metallophytes.com),
under the auspices of the International Serperfiogogy Society (ISES) and future
administration by the Centre for Mined Land Rehtdiibn (CMLR) of The University

of Queensland (UQ), has been put in place and amprovide a global database
available through the internet.

Conclusions
The use of the term ‘*hyperaccumulator’ and the rbigzal and practical implications of

different methods of establishing ‘hyperaccumulatistatus’ have been evaluated
critically, and we conclude the following as guidek for future use of the term:
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(1)

(2)
3)

(4)

(5)

(6)

(7)

(8)

(9)

Nominal threshold criteria currently provide the lyorpractical operational
framework for recognizing hyperaccumulators unfpepriate physiological
definitions are defined in the future. When usedsg®y, nominal criteria can
guide the identification of extreme physiologicahlaviour. Furthermore, they
are the only way to recognize hyperaccumulatorsthe field, without
experimental cultivation, which has never beennapted for most reported
hyperaccumulators.

Hyperaccumulation for nickel, zinc, cadmium, mareg arsenic and selenium
have been confirmed experimentally beyond doubtriange of plant species.
Hyperaccumulation of lead, copper, cobalt, chromamd thallium have not (yet)
been demonstrated beyond doubt in one or more platies, whereas the use of
the term for rare-earth elements requires critwaluation.

Only plant leaves (or fronds) are to be considerned establishing
hyperaccumulator status. Moreover, only metal otalteads inside plant leaves
indicates active (hyper)accumulation. Passive actation via air-borne
deposition on plant leaves is not to be regardedhygeraccumulation. Such
contamination is a major cause of erroneous degnaarticularly for Pb and
Cr.

Growing plants from seed in their natural soil e glasshouse or climate room
iIs the most appropriate method for confirming hyeeumulator status. This
approach avoids airborne contamination and otheontnolled irregularities of
natural conditions in the field.

Hydroponic experiments often use unrealisticallghhdose treatments, which
can result in spurious claims for supposed hyperactation when ‘normal’
plants are exposed, resulting in immediate highosinoetal concentrations but
also in inevitable plant death.

When exposure levels are kept low hydroponic expenis however can help to
distinguish genuine hyperaccumulators by confirnghgracteristic traits such as
hypertolerance to phytotoxic metal ions, hyperaadation in the shoot, high
bioconcentration factors and high shoot/root metaislocation, and have been
an effective methodology for physiological expenntagion.

Experimental confirmation using natural soil isfprable over hydroponics, but
the use of standard soil ‘spiked’” with soluble rnealts is unlikely to mimic
natural metal-rich soils.

Hydroponics, metal-amended ‘spiked’ soils and iaréifly acidified (natural)
soils in isolation are not capable of defining &@ps as a hyperaccumulator:
natural populations must be studied.

(10) Critical review suggests that criteria which hé&#een commonly used to delimit

hyperaccumulation of some metals are unnecessaitlgervative. We propose
that the criteria for hyperaccumulation of Se ah&é#d lowered to 100 ug/g dried
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leaf, the criteria for hyperaccumulation of Cu, @od Cr be lowered to 3Q®/g
dried plant leaf, and the criterion for hyperacclatian of Zn be lowered to
3,000ug/g dried plant leaf.

(11)Diffused reporting means that the exact number gpehaccumulators is
presently unknown. Therefore the adoption of stedided terminology and
methods, and the use of an on-line database odalital.
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CAPTION FOR FIGURE 1

Conceptual response diagram for uptake of metatkraatalloids in plant leaves/fronds,
adapted from Baker (1981). ‘Normal' plants can omdjerate low concentrations of
bioavailable metals/metalloids in soil, before thdie due to acute phytotoxicity.
Excluders however can grow over a wide range oftqgibyic available metals before
physiological mechanisms cannot control and allomregulated uptake, resulting in
death of the plant. Bioindicators take up metalsrav wider range than ‘normal’ plants
and the concentrations in plant leaves reflect tfathe soil, until phytotoxicity prevents
further growth and causes death of the plant. Hgpeamulators are able to withstand
much higher concentrations of bioavailable metdlant ‘normal’ plants, bioindicators
and excluders, and because of competitive disadgastand greater sensitivity to fungal
and pathogen infections, most do not occur overmetal-enriched soils, depicted by
the latent start of the line in the diagram. Thettdd baseline indicates the
hyperaccumulator threshold for the different metatsl metalloids: 10@ug/g for Cd, Se
and TI, 300ug/gfor Cu, Co and Cr, 100Qg/gfor Ni, As, and Pb, 300Qg/gfor Zn, and
10,000pug/g for Mn. Note that the response line for hyperacclamous represents the
possible behaviour of such plants, individual plaohcentrations are scattered around
the line, and most hyperaccumulators occupy orgynall portion of the line (above the
hyperaccumulation threshold).
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