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Abstract

Deep neural networks are traditionally trained using human-
designed stochastic optimization algorithms, such as SGD
and Adam. Recently, the approach of learning to optimize
network parameters has emerged as a promising research
topic. However, these learned black-box optimizers some-
times do not fully utilize the experience in human-designed
optimizers, therefore have limitation in generalization ability.
In this paper, a new optimizer, dubbed as HyperAdam, is pro-
posed that combines the idea of “learning to optimize” and
traditional Adam optimizer. Given a network for training, its
parameter update in each iteration generated by HyperAdam
is an adaptive combination of multiple updates generated by
Adam with varying decay rates . The combination weights
and decay rates in HyperAdam are adaptively learned de-
pending on the task. HyperAdam is modeled as a recurrent
neural network with AdamCell, WeightCell and StateCell. It
is justified to be state-of-the-art for various network training,
such as multilayer perceptron, CNN and LSTM.

1 Introduction

Deep learning approach has exhibited strong capabilities in
data representation (LeCun, Bengio, and Hinton 2015), non-
linear mapping (Sutskever, Vinyals, and Le 2014), distribu-
tion learning (Goodfellow et al. 2014), etc. Deep learning
not only has wide applications in a broad field of academi-
cal studies, such as image analysis (He et al. 2016), speech
recognition (McMahan and Rao 2018), robotics (Lillicrap et
al. 2016), inverse problem (Yang et al. 2016), but also draws
attention of industry for realization in products.

One challenge in deep learning is the effective optimiza-
tion of deep network parameters, required to be generaliz-
able to varying network architectures, e.g., network type,
depth, width, non-linear activation functions. For a neural
network f(x;w), the aim of network training is to find the
optimal network parameters w∗ ∈ R

p to minimize empir-
ical loss between the network output given input xi ∈ R

d

and the corresponding target label yi ∈ R
b:

w∗ = argmin
w

ΣN
i=1l(f(xi;w), yi), (1)

∗corresponding author
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where {(xi, yi)}Ni=1 is the training set. For a deep neural net-
work, the dimension p and number of training data N are
commonly large in real applications.

The network, as a learning machine, is referred to as a
learner, the loss for network training is defined as an op-
timizee, and the optimization algorithm to minimize opti-
mizee is referred to as an optimizer. For example, a gradient-
based optimizer can be written as a function O that maps the
gradient gt to network parameter update dt in t-th iteration:

dt(Θ) = O(gt,Ht;Θ), (2)

where Ht represents the historical gradient information and
Θ represents the hyperparameters of the optimizer.

The human-designed optimizers, such as stochastic gra-
dient descent (SGD) (Robbins and Monro 1951), RMSProp
(Tieleman and Hinton 2012), AdaGrad (Duchi, Hazan, and
Singer 2011), AdaDelta (Zeiler 2012) and Adam (Kingma
and Ba 2015), are popular in network training. They have
well generalization ability to various network architectures
and tasks. Adam takes the statistics of gradients as the histor-
ical information recursively accumulated with constant de-
cay rates (i.e., β, γ in Alg. 1). Though universal, Adam suf-
fers from unsatisfactory convergence in some cases because
of the constant decay rates (Reddi, Kale, and Kumar 2018).

Recently, “learning to optimize”, i.e., learning the opti-
mizer by data-driven approach, triggered the interest of com-
munity. The optimizer (Andrychowicz et al. 2016) outputs
the update vector by RNN, whose generalization ability is
improved by two training tricks (Lv, Jiang, and Li 2017).
This idea is also applied to optimizing derivative-free black-
box functions (Chen et al. 2017). From the perspective of
reinforcement learning, the optimizer is taken as policy (Li
and Malik 2016). Though faster in decreasing training loss
than the traditional optimizers in some cases, the learned op-
timizers do not always generalize well to diverse variants of
learners. Moreover, they can not be guaranteed to output a
descent direction in each iteration for network training.

In this paper, we propose an effective optimizer Hyper-
Adam, which is a generalized and learnable optimizer in-
spired by Adam. For network optimization, the parameter
update generated by HyperAdam is an ensemble of updates
generated by Adam with different decay rates. Both de-
cay rates and combination weights for ensemble are adap-
tively learned depending on the task. To implement this
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Algorithm 1 Adam Optimizer

Require:
1: Initialized parameter w0, step size α, batch size NB .
2: Exponential decay rates β, γ; dataset {(xi, yi)}Ni=1.

Initialize: m0 = 0, v0 = 0.
3: for all t = 1, . . . , T do

4: Draw random batch {(xik , yik)}NB

k=1
from dataset

5: gt = ΣNB

k=1
∇l(xik , yik , wt−1)

6: mt = βmt−1 + (1− β)gt ⊲ moving average
7: vt = γvt−1 + (1− γ)g2t
8: m̃t =

mt

1−βt , ṽt =
vt

1−γt ⊲ correcting bias

9: m̂t =
m̃t√
ṽt+ε

10: wt = wt−1 − αm̂t

11: end for
12: return final parameter wT .

idea, AdamCell and WeightCell are respectively designed
to generate candidate updates and weights to combine them,
conditioned on the output of StateCell for modeling task-
dependent state. As a recurrent neural network, parameters
of HyperAdam are learned by training on a meta-train set.

The main contribution of this paper is two-fold. First, to
the best of our knowledge, this is a first task-adaptive opti-
mizer taking merits of adaptive moment estimation approach
(i.e., Adam) and learning-based approach in a single frame-
work. It opens a new door to design learning-based opti-
mizer inspired by traditional human-designed optimizers.
Second, extensive experiments justify that the learned Hy-
perAdam outperforms traditional optimizers, such as Adam
and learning-based optimizers for training a wide range of
neural networks, e.g., deep MLP, CNN, LSTM.

2 Related Works

2.1 Learning to Optimize

With the goal of facilitating learning of novel tasks, meta-
learning is developed to extract knowledge from observed
tasks (Amit and Meir 2018; Ren et al. 2018; Finn et al. 2017;
Snell, Swersky, and Zemel 2017; Wichrowska et al. 2017;
Santoro et al. 2016; Daniel, Taylor, and Nowozin 2016).

This paper focuses on the meta-learning task of optimiz-
ing network parameters, commonly termed as “learning to
optimize”. It originates from several decades ago (Schmid-
huber 1992; Naik and Mammone 1992) and is developed af-
terwards (Hochreiter, Younger, and Conwell 2001; Younger,
Hochreiter, and Conwell 2001). Recently, a more general op-
timizer that conducts parameter update by LSTM with gradi-
ent as input is proposed in (Andrychowicz et al. 2016). Two
effective training techniques, “Random Scaling” and “Com-
bination with Convex Functions”, are proposed to improve
the generalization ability (Lv, Jiang, and Li 2017). Subse-
quently, several works use RNN to replace certain process in
some optimization algorithms, e.g., variational EM (Marino,
Yue, and Mandt 2018), ADMM (Liu et al. 2018). In (Chen et
al. 2017), RNN is also used to optimize derivate-free black-
box functions.

Algorithm 2 Task-Adaptive HyperAdam

Require:
1: Initialized parameter w0, step size α, batch size NB .
2: Dataset {(xi, yi)}Ni=1.

Initialize:
3: m0, v0, β̂0,γ̂0, s0 = 0 ∈ R

p×J , 1 ∈ R
p×J , ε=1e-24 .

4: for all t = 1, . . . , T do

5: Draw random batch {(xik , yik)}NB

k=1
from dataset

6: gt = ΣNB

k=1
∇l(xik , yik , wt−1)

7: Gt = [gt, . . . , gt] ⊲ Gt ∈ R
p×J

8: st = Fh(st−1, gt;Θh) ⊲ current state

9: βt , [β1
t , . . . , β

J
t ] = Fu(st,mt−1;Θu)

10: γt , [γ1
t , . . . , γ

J
t ] = Fr(st,mt−1;Θr)

11: mt = βt ⊙mt−1 + (1− βt)⊙Gt

12: vt = γt ⊙ vt−1 + (1− γt)⊙G
2
t

13: β̂t = βt ⊙ β̂t−1 + (1− βt)⊙ 1

14: γ̂t = γt ⊙ γ̂t−1 + (1− γt)⊙ 1

15: m̃t = mt/β̂t, ṽt = vt/γ̂t, ⊲ correcting bias

16: m̂t , [m̂1
t , . . . , m̂

J
t ] =

m̃t√
ṽt+ε

⊲ moment field

17: ρt , [ρ1t , . . . , ρ
J
t ] = Fq(st;Θq) ⊲ weight field

18: dt = ΣJ
j=1ρ

j
t ⊙ m̂j

t

19: wt = wt−1 − αdt
20: end for
21: return final parameter wT .

These pioneering learning-based optimizers have shown
promising performance, but did not fully utilize the expe-
rience in human-designed optimizers, and sometimes have
limitation in generalizing to variants of networks. The pro-
posed optimizer, HyperAdam, is a learnable optimizer but
with architecture designed by generalizing traditional Adam
optimizer. In the evaluation section, the HyperAdam is jus-
tified to have better generalization ability than previous
learning-based optimizers for training various networks.

2.2 Adam Method

Vanilla SGD has been improved by adaptive learning rates
for each parameter (e.g., AdaGrad, AdaDelta, RMSProp)
or (and) Momentum (Tseng 1998). Adam (Kingma and Ba
2015) is an adaptive moment estimation method combining
these two techniques, as illustrated in Alg. 1. Adam takes
unbiased estimation of second moment of gradients as the
ingredient of the coordinate-wise learning rates, and the un-
biased estimation of first moment of gradients as the basis
for parameter updating. The bias is caused by the initializa-
tion of mean and uncentered variance during online moving
average with decay rates (i.e., β, γ in Alg. 1). It is easy to
verify that the parameters update generated by Adam is in-
variant to the scale of gradients when ignoring ε.

As observed in (Reddi, Kale, and Kumar 2018), Adam
suffers from unsatisfactory convergence due to the constant
decay rates when the variance of gradients with respect
to optimization steps are large. While, in HyperAdam, the
generalized Adam are with learned decay rates adaptive to
task state and gradients. Moreover, the ensemble technique
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Optimizee + + +
wt−2 wt−1 wt wt+1
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Optimizer OHt−2
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dt−1 dt dt+1
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StateCell

s1t sJt. . .
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t m̂J

t
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t−1 mJ

t−1
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t
. . .

Ht−1 Ht

Moment field Weight field

Figure 1: Computational graph of HyperAdam. O represents the optimizer. gt is the gradient of the optimizee L and dt is the
update vectors. The historical information Ht consists of the first moment and previous task state.

(Wolpert 1992) of HyperAdam that combines multiple can-
didate updates can potentially find more reliable descent di-
rections. These techniques are justified to be effective for
improving the baseline Adam in evaluation section.

3 HyperAdam

In this section, we introduce the general idea, algorithm and
network architecture of the proposed HyperAdam.

3.1 General Idea

Adam is non-adaptive because its hyperparameters (decay
rates β and γ in Alg. 1) are constant and set by hand when
optimizing a network. According to Alg.1, different hyper-
parameters make the parameter updates different both in di-
rection and magnitude. Our proposed HyperAdam improves
Adam as follows. First, Adam in HyperAdam is designed
with multiple learned task-adaptive decay rates and to gen-
erate multiple candidate parameter updates with correspond-
ing decay rates in parallel. Second, HyperAdam combines
these parameter updates to get the final parameter update
using adaptively learned combination weights.

As illustrated in Fig. 2, at a certain point, e.g., wt in
parametric space, multiple update vectors are generated by
Adam with different decay rates. The final update dt is an
adaptive combination of these candidate vectors. Consider-
ing that, for a deep neural network (Dauphin et al. 2014),
there exist abundant saddle points surrounded by high loss

w0

d1

w1

wt−1

wt

dt
Saddle point

wt+1

dt+1 dt+2 wt+2

dT

wT−1

wT

Update vector

Candidate vector
Moment field

Figure 2: An illustration of parameter optimization of a
learner using proposed HyperAdam algorithm.

plateaus, a certain candidate update vector may point to a
saddle point, but an adaptive combination of several candi-
date vectors may potentially relieve the possibility of getting
stuck in saddle point.

3.2 Task-Adaptive HyperAdam

Based on the above idea, we design a task-adaptive Hyper-
Adam in Alg. 2. In iteration t, first, the current state st is
determined by state function Fh with current gradient gt and
previous state st−1 as inputs in line 8. Then in lines 9-16, J

candidate update vectors m̂j
t are generated by Adam with

J pairs of decay rates (βj
t , γ

j
t ) which are adaptive to the

current state st via decay-rate functions Fu and Fr. Mean-

while, J task-adaptive weight vectors ρjt are generated by
weight function Fq with the current state st as input in line
17. Finally, the final update vector dt is a combination of
the candidate updates weighted by weight vectors in line 18.
m̂t containing candidate updates and ρt containing weight
vectors are called moment field and weight field respectively.

As illustrated in the left of Fig. 1, HyperAdam, as an op-
timizer, is a recurrent mapping O iteratively generating pa-
rameter updates. The right of Fig. 1 shows the graphical dia-
gram of HyperAdam having four components. The StateCell
corresponds to the state function Fh outputting the current
state st = [s1t , . . . , s

J
t ]. With the current state as basis, the

moment field and weight field are produced by AdamCell
and WeightCell respectively. The final update dt is gener-
ated in the “Combination” block. We next introduce these
components.

gt

Normalization Preprocessing LSTM

st−1

st

StateCell

Figure 3: Diagram of StateCell. Normalization refers to nor-
malizing the gradient gt with its Euclidean norm.
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StateCell The current state st = [s1t , . . . , s
J
t ] is deter-

mined by the gradient gt and previous task state st−1 in the
StateCell implementing the state function Fh in line 8 of
Alg. 2. The diagram of StateCell is illustrated in Fig. 3. After
normalized with its Euclidean norm, the gradient is prepro-
cessed by a fully connected layer with Exponential Linear
Unit (ELU) (Clevert and and 2016) as activation function.
Following preprocessing, the gradient together with the pre-
vious task state st−1 are fed into LSTM (Reiter and Schmid-
huber 1997) to generate the current state st.

AdamCell AdamCell is designed to implement lines 9-16
in Alg. 2 for generating moment field, i.e. a group of update
vectors. We first analyze these lines. Task-adaptive decay
rates βt,γt are generated by decay-rate functions in lines
9-10, with which the biased estimations of first and second
moment of gradients mt,vt are recursively accumulated in

lines 11-12. The bias factors β̂t, γ̂t are computed in lines
13-14. Finally, moment field is produced with unbiased esti-
mations of first and second moment of gradients in line 16.

Note that the accumulated β̂t (line 13 of Alg. 2) is equiv-
alent to 1 − βt when β is constant based on lemma 1. It
also holds for γ̂t. Therefore, we can derive that each com-
ponent in moment field (line 16 of Alg. 2) is equivalent to a
parameter update produced by Adam in line 9 of Alg. 1.

Lemma 1 β̂t = ββ̂t−1 + (1− β) with β̂0 = 0 is the online

formula of β̂t = 1− βt.

Proof 1 See proof in supplementary material.

If we denote Ct = [mt,vt, β̂t, γ̂t], Ft = [βt,γt,βt,γt]

and C̃t = [Gt,G
2
t ,1,1] (1 ∈ R

p×J ), based on lemma 1,
lines 11-14 in Alg. 2 can be expressed in the following com-
pact formula resembling cell state updating in LSTM:

Ct = Ft ⊙ Ct−1 + (1− Ft)⊙ C̃t. (3)

Thus we construct AdamCell, a structure like LSTM, to con-
duct lines 9-16 in Alg. 2 as illustrated in Fig. 4. Ft deter-
mines how much historical information would be forgot like
the forget gate in LSTM. We define the decay-rate functions
Fr, Fu in Alg. 2 to be in parametric forms:

βt = σ([m′
t−1, st]θu + bu), (4)

γt = σ([m′
t−1, st]θr + br), (5)

Ct−1 Ct

mt−1

Pointwise Operation Neural Network Layer

⊙ +

Normalization

st

σ σ

⊙Ft
1− Ft

(Gt,G
2
t ,1,1)

vt/γ̂t mt/β̂t

1√
·+ǫ ⊙

m̂t

Figure 4: Diagram of AdamCell. The neural network layer
corresponds to the decay-rate functions Fu, Fr in Alg. 2.

with θu,θr ∈ R
2J×J , bu = [bu, . . . , bu]

T ∈ R
p×J , br =

[br, . . . , br]
T ∈ R

p×J and m
′
t−1 = [

m1

t

‖m1

t
‖2

, . . . ,
mJ

t

‖mJ
t
‖2

] ∈
R

p×J , where Θu = {θu, bu}, Θr = {θr, br} are learnable
parameters. The decay-rate functions Fr, Fu output decay
rates βt = [β1

t , . . . β
J
t ] and γt = [γ1

t , . . . γ
J
t ] respectively,

and each pair of decay rates (βj
t , γ

j
t ) determines a candidate

update vector m̂j
t generated by Adam.

WeightCell WeightCell is designed to implement the
weight function Fq (line 17 in Alg. 2) which outputs the
weight field with the current state st as input. The weight
function is a one-hidden-layer fully connected network with
ELU as activation function:

ρt = ELU(stθq + bq), (6)

with θq ∈ R
J×J and bq = [bq, . . . , bq]

T ∈ R
p×J where

Θq = {θq, bq} are learnable parameters.
We choose ELU instead of ReLU as activation function to

ensure that the weights are not always positive, since some
candidate vectors in the moment field may not be favorable
because of pointing to a bad direction.

Combination The final update dt is the combination of
the candidate update vectors in moment field with weight
vectors in weight field (line 18 in Alg. 2):

dt = ΣJ
j=1ρ

j
t ⊙ m̂j

t . (7)

Parameter sharing It can be verified that the different co-
ordinates of parameter w and intermediate terms such as
st,βt,γt share the hyperparameter Θ = {Θh, Θq, Θr, Θu}
of HyperAdam. For example, different rows of βt in
Eqn. (4), corresponding to different coordinates of w, share
hyperparameters Θu. Moreover, J candidate update vectors
are generated in parallel by matrix operations. Consequently,
HyperAdam can be applied to training networks with vary-
ing dimensional parameters in parallel.

Scale invariance To achieve the scale invariance property

same as traditional Adam, the gradient gt and mj
t (j =

1, . . . , J) are normalized by their Euclidean norms in State-
Cell and AdamCell (see proof in supplementary material).

4 Learning HyperAdam
We train HyperAdam on a meta-train set consisting of
learner (i.e., network in this paper) coupled with correspond-
ing optimizee (loss for training learner) and dataset, which is
implemented by TensorFlow. We aim to optimize the param-
eters of HyperAdam to maximize its capability in training
learners over the meta-train set. We expect that the learned
HyperAdam can be generalized to optimize more complex
networks beyond the learners in meta-train set. We next in-
troduce the training process in details.

Meta-train set consists of triplets of learner f , optimizee
L, and dataset D = {X,Y }, where X = {xi}Ni=1 and

Y = {yi}Ni=1 represent the data set and corresponding la-
bel set. The HyperAdam parameter set Θ is optimized by
minimizing the expected cumulative regret (Andrychowicz
et al. 2016) on the meta-train set:

L(Θ) = EL[
1

T
ΣT

t=1L(f(X;wt(Θ)), Y )], (8)
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where wt(Θ) = wt−1(Θ)− αdt(gt, Θ) is network parame-
ter of learner f at iteration t when optimized by HyperAdam
with parameters Θ = {Θh, Θq, Θr, Θu}. f(X;wt(Θ)) de-
notes the network output of learner f on dataset D when
network parameter is wt(Θ), and L(·, ·) is an optimizee, i.e.,
the loss for training learner f . Therefore, L(Θ) defines the
expectation of the cumulative loss over meta-train set. Mini-
mizing L(Θ) is to find optimal parameter for HyperAdam to
reduce training loss L (i.e., optimizee) as lower as possible.

As in (Lv, Jiang, and Li 2017), the learner f is simply
taken as a forward neural network with one hidden layer of
20 units and sigmoid as activation function. The optimizee L
is defined as L(f(X;w), Y ) = ΣN

i=1l(f(xi;w), yi) where l
is the cross entropy loss for the learner f with a minibatch of
128 random images sampled from the MNIST dataset (Le-
Cun et al. 1998). We set the learning rate α = 0.005 and
maximal iteration T = 100 indicating the number of opti-
mization steps using HyperAdam as an optimizer. The num-
ber of candidate updates J is set to be 20.

HyperAdam can be seen as a recurrent neural network
iteratively updating network parameters. Therefore we can
optimize parameter Θ of HyperAdam using BackPropaga-
tion Through Time (Werbos 1990) by minimizing L(Θ)
with Adam, and the expectation with respect to L is approx-
imated by the average training loss for learner f with differ-
ent initializations. The T = 100 steps are split into 5 periods
of 20 steps to avoid gradient vanishing. In each period, the
initial parameter w0 and initial hidden state H are initialized
from the last period or generated if it is the first period.

Two training tricks proposed in (Lv, Jiang, and Li 2017)
are used here. First, in order to make the training easier, a
k-dimensional convex function h(z) = 1

k
‖z − η‖2 is com-

bined with the original optimizee (i.e., training loss), and
this trick is called “Combination with Convex Function”
(CC). η and initial value of z are generated randomly. Sec-
ond, “Random Scaling” (RS), helping to avoid over-fitting,
randomly samples vectors c1 and c2 of the same dimension
as parameter w and z respectively, and then multiply the
parameters with c1 and c2 coordinate-wisely, thus the op-
timizee in the meta-train set becomes:

Lext(w, z) = L(f(X; c1 ⊙ w), Y ) + h(c2 ⊙ z), (9)

with initial parameters diag(c1)
−1w, diag(c2)

−1z.

5 Evaluation

We have trained HyperAdam based on 1-layer MLP (basic
MLP), we now evaluate the learned HyperAdam for more
complex networks such as basic MLP with different activa-
tion functions, deeper MLP, CNN and LSTM.

• Activation functions: The activation function of basic
MLP is extended from sigmoid to ReLU, ELU and tanh.

• Deep MLP: The number of hidden layers of MLP is ex-
tended to range of [2, 10], and each layer has 20 hidden
units and uses sigmoid as activation function.

• CNN: Convolution neural networks are with structures
of c-c-p-f (CNN-1) and c-c-p-c-c-p-f -f (CNN-2), where
c, p and f represent convolution, max-pooling and fully-
connected layer respectively. Convolution kernel is with

size of 3 × 3 and the max-pooling layer is with size of
2 × 2 and stride 2. CNN-1 and CNN-2 are also trained
with batch normalization and dropout respectively.

• LSTM: LSTM with hidden state in size of 20 is ap-
plied to sequence prediction task using mean squared er-
ror loss as in (Lv, Jiang, and Li 2017). Given a sequence
f(0), . . . , f(9) with additive noise, the LSTM is supposed
to predict the value of f(10). Here f(x) = A sin(wx+φ).
The dataset is generated with uniformly random sampling
A ∼ U(0, 10), w ∼ U(0, π/2), φ ∼ U(0, 2π), and the
noise is drawn from Gaussian distribution N(0, 0.1).

We also evaluate whether our learned HyperAdam can well
generalize to different datasets, e.g. CIFAR-10 (Krizhevsky
2009). Moreover, the HyperAdam is trained assuming it it-
eratively optimizes network parameters in fixed iterations
T = 100, we also evaluate the learned HyperAdam for
longer iterative optimization steps as in (Lv, Jiang, and Li
2017). The generalization ability of the networks trained by
HyperAdam will be also evaluated preliminarily.

In evaluations, we will compare our HyperAdam with
traditional network optimizers such as SGD, AdaDelta,
Adam, AdaGrad, Momentum, RMSProp, and state-of-
the-art learning-based optimizers including RNNprop (Lv,
Jiang, and Li 2017), DMoptimizer (Andrychowicz et al.
2016). For the traditional optimizers, we hand-tuned the
learning rates and set other hyperparameters as defaults in
TensorFlow. All the initial parameters of learners used in the
experiments are sampled independently from the Gaussian
distribution. We report the quantitative value as the average
measure for training the learner 100 times with random pa-
rameter initialization.

5.1 Generalization with Fixed Optimization Steps

We first assume that the learned HyperAdam optimizes the
parameters of learners for fixed optimization steps T = 100,
same as the learning procedure for HyperAdam.

Activation functions As shown in Table 1, HyperAdam is
tested for training basic MLP with different activation func-
tions on MNIST dataset, the loss values in Table 1 show that
HyperAdam can best generalize to optimize basic MLP with
ReLU, ELU and tanh as activation functions, compared with
DMoptimizer and RNNprop. Our HyperAdam also outper-
forms the basic Adam algorithm. The DMoptimizer can not
well generalize to basic MLP with ELU activation function,
which can be also visually observed in Fig. 5(a).

Deep MLP We further evaluate performance of Hyper-
Adam on learning parameters of MLPs with varying layer

Activation Adam DMoptimizer RNNprop HyperAdam

sigmoid 0.35 0.38 0.34 0.33
ReLU 0.32 1.42 0.31 0.29
ELU 0.31 2.02 0.31 0.28
tanh 0.34 0.83 0.33 0.36

Table 1: Performance for training basic MLP in 100 steps
with different activation functions. Each value is the average
final loss for optimizing networks in 100 times.
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Figure 5: HyperAdam performs best compared with other optimizers on neural networks with different structures.

Figure 6: Comparison of different optimizers for optimizing different CNNs in different optimization steps.

numbers. According to Fig. 5(d), for different number of
hidden layers ranging from 1 to 10, HyperAdam always
performs significantly better than Adam and DMoptimizer.
Compared with RNNprop, HyperAdam is better in general,
especially for deeper MLP with more than 6 layers. The loss
curves in Fig. 5(b) of different optimizers for MLP with 7
hidden layers illustrate HyperAdam is significantly better.

LSTM As shown in Table 2, the “Baseline” task is to uti-
lize one-layer LSTM to predict f(10) on dataset with noise
drawn from N(0, 0.1), which is further varied by training
on dataset with small noise drawn from N(0, 0.01) (“Small
noise”) or using two-layer LSTM (“2-layer”) for prediction.
By comparing the loss values in Table 2, our HyperAdam
can better decrease the training losses than the compared op-
timizers, i.e., Adam, DMoptimizer, RNNprop, HyperAdam.
Specifically, Fig. 5(c) shows an example for the comparison
in task of “Small noise”.

Figure 7: HyperAdam with 10000 optimization steps. Train-
ing curves by DMoptimizer, AdaGrad, RMSProp, AdaDelta,
Momentum and SGD coincide in the left figure.

Task Adam DMoptimizer RNNprop HyperAdam

Baseline 0.65 3.10 0.49 0.42
Small noise 0.39 3.06 0.32 0.19

2-layer 0.51 2.05 0.27 0.26

Table 2: Performance on different sequence prediction tasks.

CNN Figure 6(a)-(b) compare training curves of CNN-1
and CNN-2 on MNIST using different optimizers. Figure
6(e)-(f) compare training curves of CNN-1 with batch nor-
malization and CNN-2 with dropout on CIFAR-10 respec-
tively. In these figures, DMoptimizer and RNNprop do not
always perform well or even fail while HyperAdam can ef-
fectively decrease the training losses in different tasks.

5.2 Generalization to Longer Horizons

We have evaluated HyperAdam for optimizing different
learners in fixed optimization steps (T = 100), same as the
meta-training phase. We now evaluate HyperAdam for its
effectiveness in running optimization for longer steps.

Deep MLP Figure 7(a) illustrates the training curves of
MLP with 9 hidden layers on MNIST using different op-
timizers for 10000 steps. DMoptimizer and almost all tra-
ditional optimizers, including SGD, Momentum, AdaGrad,
AdaDelta and RMSProp, fail to decrease the loss. Our Hy-
perAdam can effectively decrease the training loss.

LSTM The comparison of training two-layer LSTM to
predict f(10) with different optimizers for 10000 steps is
shown in Fig. 7(b). DMoptimizer decreases the loss first
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Figure 8: Ablation study for the number of candidate updates, training tricks and structure in StateCell. CC denotes “Combina-
tion with Convex function”, and RS denotes “Random Scaling”.

and then increases the loss dramatically. With similar per-
formance to the traditional optimizers, such as AdaGrad and
AdaDelta, our HyperAdam and RNNprop perform better
than RMSProp and SGD.

CNN Figure 6(c)-(d) show the training curves of CNN-2
for 2000 steps and 10000 steps on MNIST dataset. Both RN-
Nprop and DMoptimizer fail to decrease the loss. However,
HyperAdam manages to decrease the loss of CNNs and per-
forms slightly better than the traditional network optimizers,
such as SGD, Adam and AdaDelta. When training CNN-2
on CIFAR-10 dataset, HyperAdam does not perform as fast
as Adam and RMSProp for the first 2000 steps according to
Fig. 6(g), but achieves lower loss at 10000th step as shown
in Fig. 6(h), while RNNprop and DMoptimizer fail to suffi-
ciently decrease the training loss.

5.3 Generalization of the Learners

The generalization ability of the learners trained by DMop-
timizer, RNNprop, Adam and HyperAdam for 10000 steps
is evaluated. Table 3 shows the loss, top-1 error and top-
2 error of the two learners, CNN-1 and CNN-2 on dataset
MNIST, which shows the generalization of learners trained
by HyperAdam and Adam are significantly better than those
trained by DMoptimizer and RNNprop.

5.4 Ablation Study

We next perform ablation study to justify the effectiveness
of key components in HyperAdam.

Task Measure Adam DMoptimizer RNNprop HyperAdam

CNN-1
(MNIST)

loss 0.10 2.30 0.36 0.05
top-1 98.50% 10.10% 96.46% 98.48%
top-2 99.59% 20.38% 99.03% 99.63%

CNN-2
(MNIST)

loss 0.09 2.30 2.30 0.07
top-1 98.98% 11.35% 11.37% 99.02%
top-2 99.80% 21.45% 21.69% 99.78%

Table 3: Generalization of the learner trained by Adam,
DMoptimizer, RNNprop and HyperAdam for 10000 steps.

LSTM and preprocessing in StateCell Figure 8(a) illus-
trates that HyperAdam achieves lower loss than HyperAdam
without LSTM block or (and) preprocessing for training 3-
hidden-layer MLP on MNIST, which reflects that the LSTM
block and preprocessing help strengthen HyperAdam.

Training tricks We justify the effectiveness of “Random
Scaling” and “Combination with Convex Functions” in our

proposed HyperAdam. As shown in Fig. 8(b), HyperAdam
trained with both two tricks performs better than Hyper-
Adam trained with either one of them and neither of them
for training loss of 3-hidden-layer MLP on MNIST as opti-
mizee, which indicates that the two tricks can enhance the
generalization ability of learned HyperAdam.

Number of candidate updates Figure 8(c) shows the
comparison for optimizing cross entropy loss of 4-
hidden-layer MLP on MNIST dataset with HyperAdam
having different number of candidate updates (J =
1, 5, 10, 15, 20, 25, 35). It is observed that the performance
of HyperAdam is improved first with the increase of J until
20 achieving best performance, then becomes saturated and
decreased with larger number of candidate updates. But all
the HyperAdams with J = 5, 10, 15, 25, 35 are better than
the baseline with single candidate update.

5.5 Computation Time

The time for computing each update by HyperAdam is
roughly the same with that of DMoptimizer and RNNprop.
For example, the time consuming for computing each update
given gradient of a 9-hidden-layer MLP by DMoptimizer,
HyperAdam and RNNprop is 0.0023s, 0.0033s and 0.0039s
respectively in average. Though faster for computing each
update than HyperAdam, Adam is not as efficient as Hyper-
Adam to sufficiently decrease the training loss. When train-
ing 8-hidden-layer MLP, HyperAdam takes 26.33s to de-
crease the loss to 0.6 (the lowest loss that Adam can achieve)
while Adam takes 28.97s.

6 Conclusion and Future Work

In this paper, we proposed a novel optimizer HyperAdam
implementing “learning to optimize” inspired by the tradi-
tional Adam optimizer and ensemble learning. It adaptively
combines the multiple candidate parameter updates gener-
ated by Adam with multiple adaptively learned decay rates.
Based on this motivation, a carefully designed RNN was
proposed for implementing HyperAdam optimizer. It was
justified to outperform or match traditional optimizers such
as Adam, SGD and state-of-art learning-based optimizers in
diverse networks training tasks.

In the future, we are interested in applying HyperAdam
to train larger scale and more complex networks in vision,
NLP, etc., and modeling the correlations among parameter
coordinates to further enhance its performance.
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