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HYPERARITHMETICAL INDEX SETS IN RECURSION THEORY

STEFFEN LEMPP

ABSTRACT. We define a family of properties on hyperhypersimple sets and
show that they yield index sets at each level of the hyperarithmetical hierarchy.
An extension yields a H%-complete index set. We also classify the index set of
quasimaximal sets, of coinfinite r.e. sets not having an atomless superset, and
of r.e. sets major in a fixed nonrecursive r.e. set.

0. Introduction. The present paper deals with index sets, i.e., sets of indices of
partial recursive (p.r.) functions and recursively enumerable (r.e.) sets that are de-
fined through the p.r. functions or r.e. sets they code. The early results in index sets
used geometric arguments in one- or two-dimensional arrays: Rogers showed the
¥3 and Il3-completeness of the index sets of recursive and simple sets, respectively,
in a finite injury argument. Lachlan, D. A. Martin, R. W. Robinson, and Yates
(1968, unpublished, later appearing in Tulloss [Tu71}) showed the I14-completeness
of the index set of maximal sets in an infinite injury argument. Tulloss [ibid.] also
mentions for the first time the question whether the index set of quasimaximal sets
is ¥5-complete. However, the geometric method was too complex at higher levels
of the arithmetical hierarchy. During the 1970’s, progress in'index sets was mainly
made in other areas by several Russian mathematicians as well as L. Hay.

Schwarz [Schta] was the first to introduce induction into index set proofs (in the
r.e. degrees) and was able to show that the index sets of low,, and high,, r.e. sets are
Zn+3 and T, 4-complete, respectively. Solovay (JLSSta| then extended Schwarz’s
methods to show the ¥, ;-completeness of the index sets of low.,, (low,, for some
n) and of high.,, (high,, for some n) r.e. sets as well as the J1,;-completeness of
the index set of intermediate degrees (degrees neither low.,, nor high.,).

In this paper, we exhibit a family of algebraically invariant properties Ly, .-
definable in &, that yields index sets at any level of the hyperarithmetical hierarchy.
The proof is based on induction and Lachlan’s theorem [La68] that any ¥3-Boolean
algebra is isomorphic to the lattice of r.e. supersets of some r.e. set (modulo finite
sets). It uses tree arguments and the fact that the Cantor-Bendixson rank of a
tree corresponds to certain properties of the lattice of r.e. supersets of the set
constructed. An extension yields a I1}-complete index set. A corollary shows the
Ys-completeness of the index set of quasimaximal sets, thereby settling this long-
open question. Further results classify the index sets of atomic sets and of r.e. sets
major in a fixed nonrecursive r.e. set.

Our notation is fairly standard and generally follows Soare’s forthcoming book
Recursively Enumerable Sets and Degrees [Sota).
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560 STEFFEN LEMPP

We consider sets and functions on the natural numbers w = {0,1,2,3, ... }. For
a partial function ¢, p(z) | denotes that z € dom ¢, otherwise we write () 1.
We identify a set A with its characteristic function x4. f | = denotes f restricted
to arguments less than z, likewise for sets.

We let A C B denote that A C B but A # B; A C* B that A — B is finite;
and A Co Bthat A C B and |B — A| = co. A will denote the complement of A,
A U B the disjoint union. For each n € w, we let {z1,z9,...,z, ) denote the coded
n-tuple (where z; < (z;,2a,...,z, ) for each 7).

In a partial order, z | y denotes that z and y are incomparable. [k,l) denotes
the interval {new |k <n<l}.

The logical connectives “and” and “or” will be denoted by A and V, respectively.
We allow as additional quantifiers (in the meta-language) (3°z), (3<*°z), and
(a.e. z) to denote that the set of such z is infinite, finite, and cofinite, respectively.

{e} (or p) and W, ({e}* (or ®X) and WX) denote the eth partial recursive
function and its domain (with oracle X) under some fixed standard numbering. <;
and <r denote one-one and Turing reducibility, respectively, and =; and =r the
induced equivalence relations.

In the context of trees, p,0,7,... denote finite strings; |o| the length of o; 6”1
the concatenation of o and 7; (a) the one-element string consisting of a; (a"b™...)
the finite string consisting of n many a’s, followed by m many b’s, ...; 0 C 7 (6 C 1)
that o is a (proper) initial segment of 7; 0 <y 7 that for some ¢, o ) ¢ =7 ] ¢ and
o(7) <p 7(¢) (where <, is a given order on A and T C A<%); and 0 < 7 (6 < 7)
that o <proro C7 (0 C7).

The set [T] of infinite paths through a tree T C A<¥ is {pe A¥ | (Vn)[p|n €
T]}. The extendible part of a tree T is {o € T | (3p € [T])[o C p]}. The part of a
tree above o is T(o) = {r| o1 €T}.

We will first prove an easy warm-up theorem to demonstrate our technique for
index set classifications in a simple setting. It reproves previously known results
and classifies for the first time the index sets of quasimaximal sets and of coinfinite
r.e. sets not having atomless supersets (the so-called atomic sets) as £s- and Ilg-
complete, respectively.

First of all, however, we will explain the tree machinery needed to prove the
main results of this chapter. All trees using this machinery will from now on be
binary.

1. The machinery. Lachlan [La68] showed that any ¥3-Boolean algebra can
be represented as the lattice of r.e. supersets (modulo finite sets) of some hyperhy-
persimple set A. The proof uses an argument that can be generalized substantially.
From an arbitrary Xo-tree T € 2<% (i.e., 0 € T iff R(o), for some Xy-predicate R),
Lachlan constructs a (hyperhypersimple) r.e. set Ar with a 1-1 correspondence

between nodes o € T and elements a, € A satisfying the following two properties:

(i) (Vo € T)[AUC, isr.e], and
(ii) (VW 2 Ar.e)(3S CT finite)W =* AUU, s Cols

where C, = {a, |T€ T AT 20} is the “cone” of elements of A “above” a,.
The idea is now to reduce index set proofs to proofs about trees by the above
correspondence between trees T and r.e. sets Ar.
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HYPERARITHMETICAL INDEX SETS IN RECURSION THEORY 561

Using Lachlan’s construction as a starting point, we can break up an index set
classification into easier parts. Suppose we are trying to show that (¥,,I1,) <;
(A, B) for certain disjoint index sets A and B which are closed modulo finite sets,
i.e., which satisfy

(1) e€cANW. =W, -1€A,

and likewise for B. (The technique works just as well if we replace the integer n by
a recursive ordinal .} Then it suffices to establish the following two lemmas:
(I) Correspondence Lemma: The mapping index of T +— index of A7 maps
the Ts-trees of § into A, and the Xa-trees of T into B, for certain disjoint
classes of index sets of binary Ax-trees S, T.
(II) Reduction Lemma: A recursive function f maps C into the set of recursive
trees of S and C into the set of recursive trees of T.

Here C is a ¥,,-complete set (where 2+m = n), and we require that membership
of T in § and T only depends on [T}, namely, for Az-trees T and T,

(2) TeSAT|=[T)->TeS,

and likewise for T .
Once we have established (I) and (II), we can complete the proof of the index
set classification as follows:

LEMMA. (i) We can relativize the construction of f to @" to obtain a recursive
function f mapping o Eg -complete (t.e., Ly, -complete) set C to the A®
trees (i.e., Ag-trees) of S, and the complement of C to the Ag-trees of T .

(ii) We can appro:mmate the Az-trees T obtained in (i) by Lo-trees T with [T] =
[T], and denote this approzimation of f by f.

PROOF. (i) Straightforward relativization of the construction of f first yields a
function g <7 &". Now it is easy to find the desired partial recursive function f
such that Wﬁe) = ng(e) (where these sets code the trees) by “pushing the oracle

of the index function into the main oracle”. Since g is total, so is f

(ii) Notice that for a Ag-tree (i.e., AZ’ -tree) T, there is a function h <7 @' such
that o € T iff lim, h(g,s) = 1, and o ¢ T iff lim, h(o,s) = 0. Now enumerate T
(relative to &') by putting o into T at stage s if

lo| < sA(Vn<|o|)[h(e | n,s)=1]. O

Now the composition of f with the mapping index of T + index of Ar yields
the desired reduction (£,,II,,) <; (A,B). 0O

Three typical examples of a correspondence as in (I) are the following: A finite
tree T (i.e., [T] = &) corresponds to a cofinite set Ar. A Xa-tree with exactly one
infinite path corresponds to a maximal set Ax. A perfect tree T is a tree such that
for all 0 € T, there are 7,75 € T such that ¢ C 71,72 and 71 | 72. A perfect Xo-tree
corresponds to an atomless hyperhypersimple set Ar. (We will give a proof below
for the latter two correspondences.)

In the Reduction Lemmas below, since the construction is recursive we will
ensure that the tree T constructed is recursive by letting Ty = T'N 2<%, where Ty is
the part of T constructed by the end of stage s.
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562 STEFFEN LEMPP

2. A warm-up theorem.
DEFINITION. Let A be a coinfinite r.e. set.

(i) A is mazimal if for all r.e. sets W 2 A, either W =* Aor W =* w.

(ii) A is quastmazimal if it is a finite intersection of maximal sets.

(iii) A is atomless if it has no maximal superset.

(iv) A is atomic if it has no atomless superset.

(v) A is hyperhypersimple if L(A), the lattice of r.e. supersets of A, forms a
Boolean algebra. (By Lachlan [La68], this is equivalent to the original
definition.)

Notice that a coinfinite r.e. set having no atomic superset is the same as an
atomless set, so the hierarchy collapses at that level.

PROPOSITION. The indez sets of mazimal, quasimazimal, atomless, and atomic
sets are Iy, Xs, I5, and Ig, respectively.

PROOF. By the fact that Max is 14 and the usual Tarski-Kuratowski algorithm.
0O

We denote these index sets by Max, QMax, Atomless, and Atomic, respectively.
Our machinery now allows an easy classification of these four index sets:

THEOREM A. The following reductions hold:
(i) (I, X4) <1 (Max, QMax — Max);

(ii) (Zs5,115) <1 (QMax, Atomless); and

(iii) g <; Atomic.

COROLLARY. {a) (Lachlan, D. A. Martin, R. W. Robinson, Yates (unpub-
lished); later appearing in Tulloss [Tu71]) The index set of mazimal sets is
I14-complete.

(b) The index set of quasimazimal sets is L5-complete.

(c¢) (Jockusch) The index set of atomless sets is II5-complete.

(d) The indezx set of atomic sets is llg-complete. O

PROOF OF THEOREM A. We have to establish (I) and (II) above for our
machinery to apply. Call T essentially perfect if Ext(T) is a perfect tree, i.e., if
there is a 1-1 map e from 2<% into the extendible part Ext(T") of T such that

(a) (Vo,7 € 2<¥)[oc C 1 — ¢(0) C e(r)], and
(b) (¥p'€ Ext(T))(30 € 2<9)[o C e(0)].

We define four classes of trees:
Ty ={T C2%%tree||[T}| =1},
To ={T C 2% tree | [T] # &, finite },
Ts = {T C 2<% tree | T is essentially perfect },
Ta={T C 2% tree | [T] # O A (Vo € T)[T(0) is not essentially perfect] }.

CORRESPONDENCE LEMMA. Let T C 2<% be a Xo-tree. Then:

(i) IfT € Ty then A s mazimal, and conversely.
(it If T € T, then Ar is quasimazimal.

(iii) If T € T3 then Ar is atomless.

(iv) If T € Ty then At s atomic, and conversely.

3)
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HYPERARITHMETICAL INDEX SETS IN RECURSION THEORY 563

PROOF. (i) Let W 2 Ar be an r.e. superset. Then W =* Ar UJ,cg Co for
some finite set S C T. If SNExt(T) = & then W =* Ar, and, since |[T]| = 1,
if SNExt(T) # & then W =* w. So Ar is maximal. The converse is shown
analogously.

(ii) Similar to (i).

(iii) Suppose W 2 Ar is a maximal superset. Then W =* Ar U{J,¢g Co for
some finite set S C T. Since W is coinfinite there is some og € Ext(T) such
that C,, NW = &. Let 19 € 2<“ be such that oo C e(r9). Then W Co W U
Ce(TQA(O)) Coo W U Ce(ry), contradicting W’s maximality.

(iv) Suppose W D Ar is an atomless superset. Then W =* Ar UlJ g Co for
some finite set § C T. Since W is coinfinite there is some og € Ext(T") such that
Coo NW = . Let

Wo=4ArU |J G,

lol=lool
oc€T— {00}

Then Wy is coinfinite and Wy D* W, so Wy is also atomless. We will show that
T(0g) is essentially perfect to reach a contradiction. Let Ty = Ext(T(0g)). It
suffices to show that, for all 7 € Ty, there exist 71,79 € Tp such that 7 C 71,79 and
71 | 2. Suppose 19 € Ty does not admit such a splitting. Then

wi=Aru  |J G~
jrI=l7o]
T€To— {70}

is maximal by an argument similar to (i).
Conversely, assume that T(og) is essentially perfect for some op. Then
w=4ru |J G

lo|=lool
oc€T—{o0}

is an atomless superset of Ar by (iii). O

REDUCTION LEMMA. We have the following reductions (where all images of
the reducing maps are recursive trees):

(i) (g,%22) <1 (11, T2 — T1),

(il) (23,1_13) Sl (7'2’ 7'3)7 and

(iil) My <; Tg.

PROOF. (i) We choose Inf and Fin, the index sets of infinite and finite r.e. sets,
respectively, as IIs- and ¥5-complete index sets. We will build a reduction k — T}
such that k € Inf implies Ty, € T1, and k € Fin implies Ty € T3 — T1. Fix k. At
stage 0, let Ty o = {}; at stage 1, we put (0) and (1) into Tk ;. At a stage
s> 2, if Wis # Wks—1, we put (0°) and (0% '1) into T s; otherwise, we put
77(0) into Tk, s for the two 7 € T s_; with || = s — 1. Then

k€ lInf — (3® [Wk:a#Wks 1]—>[Tk]={ 0“)}—*Tk€T1,
(4) k € Fin — 3<°° Y Wk.s # Wes—1] = [Te] = {(0¥),(0%°7110%) }
—-TeeT—-T,

where so = max{ s | Wg s # Wk s_1}

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



564 STEFFEN LEMPP

(ii) We choose Cof and Coinf, the index sets of cofinite and coinfinite r.e. sets,
respectively, as 23- and II3-complete index sets. We will again build a reduction
k — Ty such that k € Cof implies Ty € T3, and k € Coinf implies T, € T3. Fix
k and let Wi s = {w), < wj < wi, <--}. Let { 4o }oea<w be a sequence of
markers. At stage 0, let ng = 0, let ug o = &, let all other markers be undefined,
and put & into Ty . At a stage s > 0, let ny = min({ns—y +1}U{n|wg,_, #
wE }). For [o] < ng, let g s = pos—1. For |o] = ng, let u, s be equal to some
string 7 with |7| = s, 77 € T s—1, and 7 D p,- s where p~ = p |\ (|p| — 1), and put
all these 7 into Ty . For |o| > ng, let py, s be undefined.

Now assume that Wy is cofinite. Then there is some (least) 7 such that lim, w;
= 00, 80 lim; |gy,5| = oo for all ¢ with |o| > 7. But then liminf, [T} N 2% = 27,
50 [Ty] is finite. [T] is nonempty by Konig’s Lemma since for all s, T, N 2% # O.
Thus Ty € T5.

On the other hand, if Wj is coinfinite, then lims wi ; < oo exists for all n, so
limgns, = oo. We can thus define, for all n, a stage s, = max{s | ns = n}.
Therefore, lim, g s = 1o exists for all o € 2<%, The mapping o — y, now shows
that T} is essentially perfect.

(iii) The final part of the proof is a first example of how the uniformity of the
construction can be used to yield more and more complicated index set results.

There is a recursive function ¢ such that

ke oW o (30)[Wy(k,s) coinfinite], and
k¢ o4 o (Vi) [Wy(k.i) cofinite].

Fix k. At stage 0, we let Ty o = {@}. At a stage s > 0, put (0°) and (0°"11) into
Ty s and start the construction described in part (ii) but above (0°~!1) in place of
& and using Wk s—1) in place of Wy.

Now, if k ¢ @4, then for all ©, W ) is cofinite, so [Tx((0°1))] is finite for all ¢
by (ii), and therefore Tx(c) is not essentially perfect for any o € Ty. Thus T} € T4.

On the other hand, if k € @4, then W (ks is coinfinite for some ¢, so, again by
(ii), [Te({0°1))] is essentially perfect. Thus Ty ¢ T4. O

This establishes Theorem A by our machinery. O

3. The main theorem. Call a set A C w 0-atomic iff [A] < 1. Then a set B
is cofinite iff B is in the filter generated by the 0-atomic sets. A set C is maximal
iff its equivalence class is a coatom of the lattice of r.e. sets modulo the cofinite
filter. A coinfinite set D is quasimaximal iff D is in the filter in £ generated by
the maximal sets, etc. This alternation of generating a filter and considering the
coatoms leads to the following definition:

DEFINITION. Let A be a hyperhypersimple or cofinite set, @ an ordinal, and A
a limit ordinal. Then:

(i) Ais 0-atomicif |A| < 1;

(ii) A is a-quastatomzc if A is a finite intersection of a-atomic sets, i.e., if A is

in the filter generated by the a-atomic sets;

(ili) Ais (a4 1)-atomic if for all r.e. sets W D A, W or AUW is a-quasiatomic,

i.e., if A is a-quasiatomic or its equivalence class is a coatom of the lattice of
r.e. sets modulo the a-quasiatomic filter (notice here and in (v) that AUW
is r.e. if A is hyperhypersimple);

(5)
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HYPERARITHMETICAL INDEX SETS IN RECURSION THEORY 565

(iv) A is <A-atomic if A is o-atomic for some o < A, i.e., if A is in the filter
generated by the a-atomic sets for o < A;

(v) Ais A-atomicif for allr.e. sets W 2 A, W or AUW is <A-quasiatomic, i.e.,
if A is <A-quasiatomic or its equivalence class is a coatom of the lattice of
r.e. sets modulo the <A-quasiatomic filter.

The notions of a-atomic, a-quasiatomic, and <A-atomic are natural generaliza-
tions of the notions of cofinite sets, maximal sets, and quasimaximal sets. Namely,
A is cofinite iff A is 0-quasiatomic; A is maximal (or cofinite) iff A is 1-atomic; and
A is quasimaximal (or cofinite) iff A is I-quasiatomic.

Let At,, QAt,, and At.) denote the index sets of a-atomic, a-quasiatomic, and
< A-atomic sets, respectively.

The importance of the above definition lies in the correspondence of these prop-
erties with the Cantor-Bendixson rank of binary trees, as explained below. This
correspondence allows the classification of their index sets, yielding a family of in-
dex sets of properties Ly, ,,-definable over £, which goes all the way through the
hyperarithmetical hierarchy.

In the following, we will use ordinal arithmetic to compute expressions like 2a+2,
etc. A set of integers is x4y, (IIx45) (for A a recursive limit ordinal, n € w—{0})
iff it is ©2 » (2 * ). We use Rogers’s book [R067] for the background on recursive
ordinals. He defines a system of ordinal notations |- | : 0 — w{¥ from Kleene’s
0 C w into the set of recursive ordinals as well as a partial order <g on O by

|1| =0,
lzl =a— 2| =a+1, and 2z <p 2 — 2 <o 2%,
{py(n) }new a <o-increasing sequence and sup |py(n)| = «
n
— |3:5Y| = a, and (In)[z <o py(n)] — 2 <¢ 3 - 5Y.

The hyperarithmetical hierarchy H : 0 — 2“ is then defined by

H(1)=Q
(7) H(2*) = (H ())
H@3-5Y)={(u,v)|ue Hv) ANv<g3-5Y}.

Now |z| < |y| implies H(z) <t H(y). In particular, the Turing degree of H(3 - 5¥)
does not depend upon the specific notation for a limit ordinal A = |3-5Y|. Thus the
definition of £, and Il 4, does not depend upon which H(3-5Y) with |3-5¥] = A
we use for @*). (Recall also that for any y € 0, {z | £ <¢ ¥} is r.e. uniformly in
v.)

The following theorem generalizes Theorem A (i) and (ii) to the hyperarith-
metical hierarchy. We can do so by bounding the Cantor-Bendixson rank of the
associated trees more carefully.

THEOREM B. Leta be a recursive ordinal and A a recursive limit ordinal. Then:

(1) (M2a+2, T2a+2) <1 (Ata, QAt, — Aty);
(i) (Z2a+3:M20+3) <1 (QAt,, Ata+1 — QAL,); and
(iii) (2,\+1,H,\+1) <i (At<A,AtA — At.y).
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COROLLARY 1. (a) Aty 8 Igq4o-complete;
(b) QAt, is Xon43-complete; and
(c) Atcy is Lay1-complete.

PROOF. By Theorem B and the fact that At,, QAt,, and Atcy are Han4o,
Yoa+3, and L4y, respectively, by the Tarski-Kuratowski algorithm. E.g.,
T € Atg — (Vy)[y € Wo V (V2 > y)[z € W,]]
= (Vy)[Z1 v 1],
and
T € Ate, « (3n)[z € At,] « (In)R(z,n),
where R is a @(“)-recursive predicate. O

COROLLARY 2. (a) (Lachlan, D. A. Martin, R. W. Robinson, Yates (unpub-
lished); later appearing in Tulloss [Tu71}) The indez set of mazimal sets 1s
I14-complete.

(b) The indezx set of quasimazimal sets is Ls-complete.

PROOF. Set ¢ =1 in Corollary 1. O
PROOF OF THEOREM B. The proof for the 0-atomic case does not fit into our
machinery but follows easily from (X9, ;) <; (Fin, Tot). Using the machinery, we
again have to prove a Correspondence Lemma and a Reduction Lemma.
. Recall the definitions of Cantor-Bendixson derivative and Cantor-Bendixson
rank. The Cantor-Bendizson derivative of a tree T C 2<% is T minus its isolated
paths, i.e.,

(8) D(T)={oc € Ext(T) | (3r1,72 € Ext(T))[o C 11,72 AT1 | 2] }.
We also define its iterates:
DYT) =
DT = (D“(T))
DMT)= () D*(T
a<A

(9)

where a is an ordinal, A is a limit ordinal. Then the Cantor-Bendizson rank of T is

-1 if T is finite,
(10) p(T) = min{ « | D**1(T) finite } if T is infinite
=min{ a | [[D*(T)]] finite } and this ordinal exists,
o0 otherwise.

It is a well-known fact that D®(T) = D#(T) for any uncountable ordinals @ and 3,
and that D*(T) finite for some limit ordinal A implies D*(T) finite for some a < A
by compactness.

These definitions lead to the

CORRESPONDENCE LEMMA. Let o be a recursive ordinal, T C 2<% a Xo-itree.
Then:
(i) o(T) = —1 iff AT s O-quasiatomic;
[[D*(T))| £ 1 iff A7 s (1 + a)-atomic; and
(111) p(T) < a iff Ap s (1 + a)-quasiatomic.
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HYPERARITHMETICAL INDEX SETS IN RECURSION THEORY 567

PROOF. By induction on a:

(). p(T) = —1iff T is finite iff A7 is cofinite iff Ar is O-quasiatomic.
(ii)o=0- By (i) and the Correspondence Lemma for Theorem A.

(i) —{ill)o. Assume (ii) for an ordinal a.

Suppose first that p(T) € a. Then [D*(T)] is finite, say,

[DQ(T)] g {plap'Z’"'?pn }

Let k be large enough such that ¢ # j implies p; | k£ # p; |' k. Then |[D*(0”T(0))]|
< 1 for all o € T N 2*%. By induction,

(11) A =at AU |J G
Ir|=l|o],7#0
TeT
is (1 + a)-atomic, thus Ar =" (), cpnor Ao i (1 + a)-quasiatomic.

On the other hand, if Ar is (1 + a)-quasiatomic then Ay = (\_; A; for a finite
set of (1 + «)-atomic sets A;, As, ..., A,. For each 7, let A; =* Ar UUUE&, C, for
some finite set S; C T, and let T; = T — U, s, 0 T (). Then J;_, T: =* T, and,
by induction, [D*(T;)] C {p; } for some p; € 2¥. Thus [D*(T)] C {p1,DP2;---,Pn }
is finite, and p(T) < e

(iil)<q—(ii)q. Assume « > 0, and that (iii) holds for all ordinals less than .
Without loss of generality, let « be a successor ordinal and put 8+ 1=« (if a is
a limit ordinal, replace 8 by <a throughout this part of the proof).

Suppose first that |[D*(T)]| < 1, say, [D*(T)] C {p}. f W D A7 is r.e. then
W =* Ar UlJ,cg Cs for some finite set S C T (assume that all 0 € S are of the
same length, say, k). Let Sg = (2¥ — S)N T, and put Wy = Ar U Uaeso C,. Then
Wy is the relative complement (w.r.t. Ar) of W (modulo a finite set). Without
loss of generality, suppose that p } k € Sy (the other case is symmetric). Then
To =T = U,es, Co, the tree associated with Wy, satisfies [D*(Tp)] =* &, and so
Wy is (1 + B)-quasiatomic. Thus Ar is (1 + a)-atomic.

On the other hand, let A7 be (1+ a)-atomic. Suppose for the sake of contradic-
tion that [D*(T)] contains two distinct infinite paths, say, p; and p,. Let k be large
enough that p; | k # py | k; let S; and S, be such that S$;1S; = 2¥NT, p; | k € S,
and pz ' k € Sy; and let Wy = Ar UlJ, g, Co and W2 = Ar UlJ,¢g, Co- Thus
W, and W are relative complements (w.r.t. A) to each other (modulo a finite
set). Then for both Ty = T — U,¢g5, Co and To = T ~ U, ¢s, Cs, [D*(T1)] and
[D*(T3)] are nonempty (namely, p; € [D*(T3)] and p; € [D*(T1)]), and thus, by
induction, neither of their associated r.e. sets W, and Ws is (1 + 8)-quasiatomic, a
contradiction. O

4. The Reduction Lemma for the main theorem. Let a be a recursive
ordinal. We define

So = {T € 25 tree | |[D*(T))| < 1},
Ta ={T € 2<% tree | p(T) < o} (allow a = —-1),
T<a = U Tﬂ

f<a

(12)
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It remains to prove the

REDUCTION LEMMA. Let o be a recursive ordinal and A a recursive limit or-
dinal. Then:

() (Maas2,S20+2) 1 (S Ta = S
(11) (220:-0—37 H20+3) Sl (Ta7 Sa+1 — Ta) ((ll.SO allow o = _1)’ and
(i) (Ea+1,Ta41) <1 (T, Sx = Tan)-

Notice that this lemma is an extension of the Reduction Lemma for Theorem A.
Let LOR be the class of limit ordinals.

PROOF. All constructions will be uniform in an ordinal notation for a (or A),
so we can use transfinite induction and the following four statements for o, A > 0:

(A) (Zy,M01) <4 (-1, 50 = Ta);

(B) (Z2a+1:M2a+1) <1 (T<a) Sa— T<a) = (Z20+3,M20+3) <1 (Tas Sa+1— Ta);

(C) (Z2a+l7n2a+l) <1 (T<ou Sa — T<a) - (H2a+2a22a+2) <1 (Sou To — sa);

and

(D) (Tag1,IIag1) <1 (Tens Sa — Ten).

Then (ii) for o = —1 follows from (A); (ii) for & > 0 and (i) follow from (ii) for
a—1{if @ ¢ LOR) or from (iii) (if @ € LOR) by (B) and (C), respectively; and (iii)
follows by (D). (Notice that the proof of (D) will require an induction argument
separate from the successor ordinal case (B)-(C), as explained later.)

We will now prove (A)-(D):

(A) Given k, we will construct a recursive tree Ty such that

k€ &' — Ty finite,

1s) D — Tl = 1

At any stage s, put (0% ) into Ty s iff {k},(k) 1. This construction obviously satisfies
the claim.

(B) By (A) (for @ = 0), (B) (for « ¢ LORU{0}), or (D) (for « € LOR), we
have a uniformly recursive sequence of trees { T} };c., satisfying

1€ @@+ — [D*(Ty)] = @,

(14 ¢ @2+ - |[D*(T))]| = 1.

(2a) . . . . .
Now @(2e+3) = Cof? ’ , so, given k, it suffices to uniformly build a recursive
tree T} such that

k € Cof?*™ — [D*(T})] finite,

(15) p(2a)
k¢ Cof?”™™ — |[D*(Ti))| = 1.

Define a recursive function f such that f(k,{) € @2+ iff | e W2’ Fix k.
At stage 0, put & into Ty . At any stage s > 0, put {0°) and (0°7'1) into T} s
and start the construction of Tf(k,s_l) on top of (0°~11).

If k € Cof?”™ then f(k,1) ¢ @(2¢+1) for only finitely many I, say, lo is greater
than all such I. Then [D*(Tx({0'1)))] = @ for all I > ly, so [D*(Tx({0%)))] C
{(0v)}. Also [D*(Tx({0'1)))] is finite for all [ < ly, so [D*(T%)] is finite.
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On the other hand, if k ¢ Cof?”* then f(k,1) ¢ @2+ for infinitely many I,
so |[D®(Tk({0'1)))]| = 1 for infinitely many . Thus [D*+}(T})] = {(0%) }.
(C) The proof is similar to the proof for (B). We use the fact that (Tlag 42, Z2q+2)

(2a) (2a) .

< (Totg , Cotwo? ), where TotX and Cotwo™ are the index sets of total
functions recursive in X and functions recursive in X undefined for exactly two
integers, respectively.

Given k and { T} }ie., as in the proof of (B), we have to uniformly build a recursive
tree T} such that

ke Tot?™ — |[D*(Ty))| < 1,

(16) )
k € Cotwo — 1 < |[D¥(T%)]| < No.

The construction is the same as in (B).

If k € Tot?* then f(k,1) € @2+ for all I, so [D*(Tx({0'1)))] = @ for all L.
Thus [D*(Tk)] € {(0%)}.

On the other hand, if £ € Cotwo?*” then f(k,1) ¢ @2t for exactly two
distinct I, say, {; and l2, and so D*(T,({0'1))) has exactly one infinite path for
[ =11 or I3, and none for all other {. Thus 2 < |[D*(T%)]| € 3 (since possibly
(0v) € [D*(Tk)])-

Part (D) is much harder to prove and requires some preparation.

5. The Reduction Lemma: The limit ordinal case. The first lemma
generalizes a lemma by Solovay for A = w [JLSSta] to arbitrary recursive limit
ordinals:

LEMMA 1 (APPROXIMATION LEMMA). Let A be a recursive limit ordinal and
{ &n }new the increasing sequence with sup,, &, = A given by our ordinal notation
for A (ve., A = |3-5%|, |pz(n)] = an). Then there is a recursive function d
(uniformly in a notation for X) such that

(17) (v9)[y € DXV = (3n)ld(y, n) € D=+
Here g(A+1) — (H(3-5%)), and Oilan+1) — (H(pz(n))).

PROOF. Recall that there are recursive functions h, (uniformly in a, b) and
r.e. sets P, (uniformly in a) such that

H(a) <; H(b) via hyp (for a <g b), and,

(18)
P,={blb<ga}foraeO.

(See Rogers [R067] for details.)
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Now
(19)
y € @A+
o {yHHB(y) |
o (Fu,v, ) [{y}PP)(y) |A D, C H(3-5%) AD,NH(3-5%) = 2]
o (Fu,v,8) [{y} PP (y) LA (W21, 22) € Du)[z1 € H(22) A 22 <o 3-5%] A
(V(z1.22) € Dy){z1 ¢ H(z2) V 22 £0 3-57]]

o (Fu,v,5,n) [{y}PP) (y) LA

(V(z1,22) € Du)lhzy o, (n)(21) € H(pz(n)) A 22 € Py (ny,s A 22 € Pasz] A
(V(21,22) € Dy)[(hzg.0,(n)(21) & H(p2(n)) A 22 € Py _(n),6) V 22 & Ps.5:])
— (3n)(Fu,v,8)[A1 A QAT A A A S 1/\( )[(Af(“”(")) A A3 VL)

where (Q) denotes a bounded quantifier, and {y}(P«Pv) that the computation uses
from the oracle set X at most that 2 € X for 2 € D, and that z ¢ X for z € D,,.
Now the matrix of the last expression is recursive in H(pz(n)) ® &', and thus
the expression following (3n) is recursive in (H(pz(n + 1))’ = @(@+1+1) This
establishes the claim of the lemma. O
The first try at the construction of Ty at a limit ordinal level A satisfying (D)
would be to build Tl;"(','c n) O1 top of (0™1). However, we only know p(T; % ok n)) Oin

or < ay, SO Sup,, p(Td(k ny) = A is possible independent of whether k € @A+1)
Our second try is to let the level o, at which we “discover” that k € & ’\+1)

by Lemma 1, stop the higher levels by some kind of “permission” for extending
branches above (0™1) for m > n. However, this is hard since T T.n) 100ks very

different from TdOZ’;c n)» SO We have to introduce a very strong kind of permlssmn at
all branchings of the much bigger tree T:(’,'c‘ m)" Keeping this in mind should make
the following construction seem less mysterious. This also requires a new induction
argument at the successor ordinal level.

For the sake of convenience, let o(ki,ka,..., k,) = (0%110k21 ... 0k=1) € 2<.
For o a recursive ordinal, the field of the a-strategy F, (i.e., the largest possible
tree that T could be) is defined by

F={{0")|new},
Foiri={on)"g|lo€Fynew}tUky,
={o(n)"olo€F, ,neEwtUF,
for A € LOR, A = |3 -5Y|, ap = |py(n)]-
(Notice that the F,’s are all recursive sets, and that they do depend upon the
particular ordinal notation chosen. However, since we will always fix an ordinal
notation in advance this will not matter in the following.)
The ordinal 8% associated with a branching node o on F, is defined by
Bs =a,

(21) B —1  for B2 ¢ LORU{0},
Bratn =) for B =~ € LOR, v = [3-5%|, 7 = |2 (n)],
undefined for g = 0.
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(Thus B2 is defined exactly for all nodes o € F,, of the form o = o(k1, ke, ..., kn).
The ordinals 8% will determine the strategy above the node o.)
The following lemma will be essential later:

LEMMA 2 (FINITE EXCEPTIONS LEMMA). For any subtree S C F, and any
infinite path p € [S], {7 | p(z) = 1} s finite.

PROOF. Otherwise there are ny,ne, ng,... € wsuch that & C o(ny) C a(ny,ng)
C (n1,n2,n3) C --- C p, so that all these nodes are in S and thus in F,, but then
B85, ﬂg(n,)v ﬁg(m n2)? ﬂg(m nams)t is an infinite descending sequence of ordinals.

We call a tree T C F,, a-dense (for o a recursive ordinal) iff
(22) (Vnewn(a+1))(ae ki)(ae ka)...(a.e.ky)
[p(T(o(k1,kay- - kn))) = Batiey kg ko))

IL.e., in an a-dense tree, all appropriate subtrees of 7" have maximal rank possible.
For example, the only 0-dense tree is Fy itself; a tree T C F; is 1-dense iff T(o(n)) =
Fy for almost all n, etc.

LEMMA 3 (DENSITY LEMMA)}. Let a > 0 be a recursive ordinal, T C F, a
tree. Then T is a-dense iff (a.e. m)[T(o(m)) is B, -dense].

PROOF. (—) Trivial by definition.

(<) We only need to show (20) for n = 0. Suppose that for all m > my,
p(T(o(m))) = B3 - Since Bomy =a—1 (for « ¢ LOR) or a = sup,, B (m) (for
o € LOR), we obtain p(T) =a. O

LEMMA 4 (INTERSECTION LEMMA). Let o be a recursive ordinal. If T and
T are a- dense, then so is T N T.

PROOF. By induction on a: For a = 0, note that T =T = {(0™) | m € w}.
For o > 0, use Lemma 3 and the fact that ﬁg(m) <a 0O

Notice that this would be false, for example, if we had defined a-dense just as
having rank «. For example, then the intersection of T,T C Fi, both of rank 1,
could have rank 0.

The following lemma will be essential later for showing that the nesting of trees
works properly. (It is the first example of the property of trees that the subtree
above a certain node o(ky, ks, ..., k,) looks exactly as if it were constructed by
itself.)

LEMMA 5 (NESTING LEMMA). Let 8 < a be two recursive ordinals, and let
T C Fs be a B-dense tree. ThenT ={oc € F, | Nr Co)re Fg —-7€T]} is
a-dense.

PROOF. By induction on 8: If =0 then T = {(0™) |[m € w}, and T = F,.
If 8 > 0 then for almost every m, ﬂ o(m) < ﬁa (m) and, by Lemma 3, for almost

every m, T{(o(m)) is -dense Therefore, by induction, for almost every m,

a(m
T(o(m)) is By (m)-dense. Thus, again by Lemma 3, T is a-dense. O

The following lemma is the key to the construction. We build trees, again by
induction, but with much stronger properties. (However, in the successor ordinal
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case, we lose a finite number of levels, so we can use this construction only for the
proof in the limit ordinal case.)

For the sake of convenience, for an arbitrary § < w{¥ with fixed ordinal notation,
define a sequence of predicates { P, }a<p

ke @@+ if o is an even ordinal
2 P,(k) — )
(23) a (k) { k ¢ @@t otherwise,

where « is an even ordinal if « = A+ 2n for A€ LORU{0} and n € w.

LEMMA 6 (STRONG REDUCTION LEMMA). For any recursive ordinal a,
there exists (uniformly in an ordinal notation for o) a uniformly recursive sequence
{T¢ }kew of trees TX C Fo such that

P,(k) — (a.e.ky)(a.e. k2)... (a.e.km)[p(T (0 (k1 k2s- -, km))) < A], and
Py (k) — T§ is a-dense,

where a =A+m, A€ LORU{0}, m e w.

(24)

PROOF. For o =0, use the construction from (A) above.
For o a successor ordinal, say, @ = #+ 1, assume without loss of generality that

o is even (the odd case is similar). Using (@(F+2), @(8+2)) <, (Finz(ﬂ),Cofg(B)),
there are recursive functions A and hg such that

Pa(k) — ke @8+D . W2 finite — {1]1 € W2, } finite
— {1| hk,1) e @B+V) } finite — (a.e.)[Ps(h(k,1))],
~Pa(k) — k ¢ @0+ W2 cofinite — {1] 1€ W2, } cofinite
— {1| h(k,l) € BBV} cofinite — (a.e.l)[~Ps(h(k,1))].

Fix k. At stage 0, put & into TZ,. At a stage s > 0, put {0°) and (0°~11) into
T2, and start the construction of Tf(kys_l) on top of (0°~11). The claim that this
works is immediate by (25) and Lemma 3.

For ¢ a limit ordinal, let @ = |3- 5%, an = |pz(n)|, s0 { @n }new is an increasing

sequence of ordinals with o = sup,, a,,. Slightly modify the function d from Lemma
1 so that

(25)

(26) (Vy) [y € 21TV (3n)[Pa, (d(y, n))]],
and, for simplicity,
(27) (V)[Pa, (d(y,n)) = Pa,,,(d(y,n+1))].

Given o € 2<%, we define the branch number b(¢c) = max{n | (0") C ¢}, and
the decision set D(o) = {7 C o | (37)[F7(1) =17]}. (b(o) will determine the main
strategy at o, the nodes of D(o) the secondary strategies from lower levels.)

The construction for a a recursive limit ordinal now proceeds as follows: Fix k.
At stage 0, put @ into T2, At astage s > 0, put (0°) and (0°~!1) into Tz ,; also
put any o € 2<% into T§¢, for which the following conditions are satisfied:

(i) lol=s,0M(s-1)eTg,_,,
(ii) o € F,, and
(iii) (Vr € D(0))(Vm < b(o))jam < BE*ANoceTF,, 6 —0E TAT;‘(';C"m)].
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(Notice here that the construction is arranged in such a way that to any
o(ki, ko, ..., kn), the construction above it looks the same as to a o(n) above
it. This will be an essential feature for the verification.)

Now suppose first that k& € @@tV ie., by the modification of Lemma 1,
P, (d(k,n)) holds for all n > some fixed ng. We then claim that p(T (0(n))) < an,
for all n, thus p(T¢) < an, +1 < o as desired. The proof requires induction on
ap,. (Of course, there is nothing to prove for a, < ap,.)
an, = 0: Let 7 = o(n). Then 77 F,, = {o(n)"(0™)|m € w}, so (0™) &
T:(';c‘?no) for some mg, and thus TF(77(0™°)) is finite. As for T¥(o(n,m)) for
m < mg, apply the same proof to 7 = o(n,m), etc. By Lemma 2, there is no
infinite sequence o(n), o(n,m), o(n,m,l), ... of such 7’s, so T¥(o(n)) is finite and
p(Tg(o(n))) < o, ‘ :

Opn, =  + 1: There is mo such that Pg(h(d(k, ng), m)) holds for all m > myp
where h is the function for a,, and # mentioned above in the proof for the successor
ordinal case. Now the oy -construction works at o(n), and thus the S-construction
at o(n, m) for all m, through condition (iii) of the construction (putting r = o(n)).
Thus by induction (replacing oy, and o, by § and ﬂ:('m)), there is some mg such
that p(TZ(c(n,m))) < B for all m > myg, so p(T&(o(n)"(0™0))) < ap,. As for
T2 (o(n,m)) for m < myg, apply the same proof with 7 = o(n,m), etc. By Lemma
2, there is no infinite sequence o(n), o(n,m), o(n,m,l), ... of such 7’s, so T (o(n))
consists of finitely many subtrees, each of rank < ay,,, and thus p(TZ (o(n))) < an,.

The above establishes p(T (0(n))) < an, < a for all n, so p(T¢) < ap, +1<
in the successor ordinal case of ap,.

an, € LOR: Then {ﬂ:("y‘:t) }mew 18 an increasing sequence with limit ay,,. There

is mg such that Pgano (d(d(k,no), m)) holds for all m > mq where d is the coun-
o(m)

terpart of f for oy, as a limit ordinal. Now the a,,-construction works at o(n),
and thus the ﬂ:(";;)—construction at o(n,m) for all m, through condition (iii) of
the construction (putting 7 = o(n)). Thus by induction (replacing a,, and a,
by ﬂj("y‘:l) and ﬂ:("m)), we have that p(T2(o(n,m))) < ﬂ:&%o) for all m > myg (this
part does not follow by induction for m with g‘("m) < ﬂ:("r‘;) but in that case it
is trivial anyway). Therefore, p(T¥(o(n)”(0™°))) < ap,. As for T (o(n,m)) for
m < myg, apply the same proof with 7 = o(n,m), etc. By Lemma 2, there is no
infinite sequence o(n), o(n,m), o(n,m,l), ... of such 7’s, so T¥(co(n)) consists of
finitely many subtrees, each of rank < o, so p(T(o(n))) < an,-

The above establishes p(T(0(n))) < an, < afor all n, so p(T¢) < an, +1< a
in the limit ordinal case of ay,.

On the other hand, assume that k ¢ @(@+1), Then P, (d(k,n)) does not hold
for any n. We claim that TQ is a-dense (and thus [D*(T@)] = {(0)}). We
proceed by induction on 8 = a,, using Lemma 3:

apn = 0: We have T (a(n)) = Tg(k,n) ={{0™) | mew} sop(T(c{n)) = ar.
oy > 0: We have

(28) Tg(o(n)) = {0 € Fa, | (¥6 C 0)(¥r € D(5) U {D})(Vm < n)
[am < B2 NG ETTF,, —d€ T Ty myl }
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Among these restrictions, we can distinguish three types:

(a) 7 # @ (and thus m < n);

(b) 7= and m = n; and

(¢c) T=@ and m < n.

Thus T(o(n)) is the intersection of the following three trees:

(a) Ty = {0 € F,, | (Vo C o)(Vr € D())(¥m < n)lam < 02" A G €
T°F,, 2 G€T T;"(’,'c'm 1}

(b) To={c€F,, | (Vo6 Co)lge T;‘(’,; n)] } =T, d(k.n); and

(¢) T3 = {0 € F,, | (V6 C 0)(Vm < n)[6 € F,,, -0 € Tyn =
Nm<nio € Fa, | (V7 C 0)[r € Fa,, — 7 € Ty )]} (Call these trees
T3,m for m < n.)

By Lemma 4, it suffices to show that each of Ty, T», and the T3 ,, is o,-dense.

(a) Recall again the remark that the construction above o(n) looks to oy, just
as it does to a above . For all [,

Tie())={o € Fﬁ:(’:) | (V& Co)(Vr e D(G)U{D})(Ym < n)
[am Sﬁ:("l)AT/\&ETAFa —GET To"" ]}

Therefore, by induction on 8 = a,, In (28) (with ﬂo‘" in place of a,, and
ﬂ:("l)AT in place of p2»), T1(o(l)) is a(l -dense for almost every [. Thus,
by Lemma 3, T} is a,-dense.);
(b) T3 is an-dense by induction on the overall construction; and
(c) each T3, is ap-dense by induction and Lemma 5.
This concludes the proof of Lemma 6. O
Lemma 6 now implies part (D) of the proof of the Reduction Lemma, and thus
Theorem B has been established. 0O

6. A IIl-complete index set. We can extend the above techniques to obtain
a II}-complete index set. (This follows up a suggestion by J. Steel.) We will use
the fact that Kleene’s set O of ordinal notations is a I1}-complete subset of w.

Call a map f from a partially ordered set (poset) X into a poset Y an order
embedding if

(30) (Vz,y € X)[z <x y = f(z) <y f(y)]-
(In particular, any order embedding is a 1-1 map.) Then we define:

DEFINITION. Let A C w be a hyperhypersimple or cofinite set. Then A is
B-atomic if there is no order embedding f from the countable atomless Boolean
algebra B into L£*(A), the lattice of r.e. supersets of A (modulo finite sets).

The following equivalent definition is easier to handle:

PROPOSITION. Let A C w be a hyperhypersimple or cofinite set. Then A is
B-atomic iff A is a-atomic for some ordinal .

PROOF. We will represent the countable atomless Boolean algebra B by certain
subsets of 2<%,

Giveno € 2<%, let U, = {r € 2<¥ | ¢ C 7 } be the “cone” above 0. Let T" C 2<%
be a tree. Call U C T a finite regular cut in T if:

(i) U is of the form U = T N{J,cgUs for some finite (possibly empty) set
S CT:and
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(i) for any ¢ € T — U, there is some 7 D o such that r€ T - U.

Then the set of finite regular cuts in T forms a Boolean algebra under the
following operations (see, e.g., Jech [Je78], for a similar construction):

(join) U V'V = least finite regular cut containing U UV
={oceT|(VreT)eCr—>UUV)NU, #9]},

(meet) UAV =UnYV,

(complement) — U = greatest finite regular cut disjoint from U
={oeT|UNU, =T},

(ordering) ULSVe-UCV

Let B be the set of finite regular cuts in 2<“. Then B is the countable atomless
Boolean algebra (since for any o € 2<%, U, D UaA(o) D).

First assume that A is not a-atomic for any ordinal . Then define the following
increasing sequence of filters in £*(A). Let % be the one-element filter, let 7,11 be
the filter in £*(A) generated by the coatoms in £L*(A)/7,, and let H = U, ., %
for A a limit ordinal. Since A is not a-atomic for any «, £L*(A)/7, is not finite for
any ordinal a. Since £*(A) is countable, %,, = %, 41 for some ag < wy. Therefore,
L*(A)/ %, is the countable atomless Boolean algebra. Fix an isomorphism ¢ from
B into £*(A)/ %, The idea is now to “lift” ¢ to an order embedding f from B into
L*(A). Let h be a map from L*(A)/%,, into L*(A), picking a representative for
each equivalence class. Now define

f(@) =A%,
(31) f(Ug) = h(i(Ug)),
f(UaAUC)) = f(Us)N h(i(UaA“c))) for 0 € 2<%, ke 2.

This obviously induces an order homomorphism from B8 into £*(A). It remains to
check that f is 1-1. But ¢ is 1-1, and A(U) = f(U) (mod #%,,); therefore f has to
be 1-1 also.

Conversely, assume that there is a hyperhypersimple set A which is a-atomic for
some « but not B-atomic. Pick ag to be the minimal such ordinal. We will reach
a contradiction by showing that ag cannot be minimal.

Let A be ag-atomic but not B-atomic. Let g be an order embedding from 3
into £*(A). If g(Uoy) is in the <agp-atomic filter ¥ then put Ao = g(Uo)), and
fMNUE€B|Uypy CU}is an order embedding of a countable atomless Boolean
algebra into £*(Ag). Otherwise, since A is ag-atomic (and thus |£*(Ag)/F| < 2),
we have that A = g(Ugy) (mod 7). So Ag = AU g(Up)) is <ap-atomic, and the
map {U € B |U C U(gy} — L*(Ao), U =~ AUg(U) is an order embedding of a
countable atomless Boolean algebra into £*(Ap).

In either case, we have a <ag-atomic (say, a fo-quasiatomic) set Ag and an order
embedding f from B into £*(Ag). Let % be the <fp-quasiatomic filter in L*(Ap).
Then L£*(Ag)/ % is finite since Ag is fo-quasiatomic. If |£*(Ag)/Fo| < 2 then Ag is
Bo-atomic, and we have already reached a contradiction. Otherwise, pick two sets
A C As, satisfying the following conditions:

(i) there are Uy, U € B such that f(U;) = A}, f(Us) = A3, and Uy C Us;
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(ii) Bp={U € B|U; CU CUs;} forms a countable atomless Boolean algebra;
and
(i) A} and Aj represent distinct equivalence classes ¢; and ce in £*(Ag)/%
such that there is no ¢ € £L*(Ag)/ % with ¢; < ¢ < ¢s.
Let h be the map W ~ W U Az. Then ho (f P {W* | A; CW C Ay re.})
is an order embedding from By into £*(A; U A3), and A; U A; is fBp-atomic, a
contradiction. O
Let Atg be the index set of B-atomic sets. We are now in a position to exhibit
a I1}-complete index set. Recall that Kleene's O, the set of ordinal notations, is
I1}-complete.

THEOREM C. O < Atp.
COROLLARY. The index set of B-atomic sets is I} -complete.

PROOF. It suffices to show that Atg is IT1. But
(32)
z € Atg « ~(3f : B — w)(YU,V € B)[W, C Wiy N(ULV & Wiy €° Wf(V))]'

(Of course, B can easily be coded by the integers.) DO
PROOF OF THEOREM C. Extending our machinery to II}, we again have to
prove a Correspondence Lemma and a Reduction Lemma.

CORRESPONDENCE LEMMA. Let T C 2<% be a ¥g-tree. Then p(T) < oo iff
At 1s B-atomic.

PROOF. By the Correspondence Lemma for Theorem B and the above propo-
sition, p(T) < oo iff (Fa)[p(T) < o} iff (3a)[AT is (1 4+ @)-quasiatomic] iff Ar is
B-atomic. O

Nowlet T={T C2<%|p(T) < o0 }.

REDUCTION LEMMA. There is a 1-1 reduction O <; indices of recursive trees
of T.

PROOF. Let us first analyze how we can “discover” that some integer z is not
an ordinal notation. We will illustrate this with the help of a partial map S,
(predecessor tree) from w<% to w. Define S, : w<“ — w by induction as follows:

S:(D) = =,
Yy if S;(0) =2Y and y # 0,
Sz(07 (1)) = {{z}(i) if S;(0) =357,

undefined otherwise.

(33)

Let P, (set of predecessor notations of x) be the set P, = {S;(0) || 0 € w<¥ —
{2}}
Then z is not an ordinal notation iff one of the following holds:

(i) S; contains an infinite path (i.e., there is an infinite descending chain of
predecessors of z);
(ii) for some o € w<* and some 7, S;(0) [ # 1 and S;(¢7(¢)) T; or
(iii) for some o € w<¥ and some ¢ < j, S;(o) is of the form 3-5% and Sz(c™ (7)) |
 Ps. o™i
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Now, given z, construct a recursive tree T, as follows. The tree will be recursive
by induction on the length of strings ¢ € 2<%. Define
(34)
{{(0*) |iew} ifr=1,
T, = T, U UiEw((OfIO)AY:y) U Uiew(<0112 )ATy) ifx=2Y and y # 0,
TLU Uiew((OZIO)ATZ’,-) U Uie‘d((ozl2 YT, ifz=3-5%
w

2 otherwise.
Here, f‘zﬂ- is defined as follows:
(35)
N 2°°U({0°) Tioyi)) if{z}s(d) | and, if i #0,
T,i= { {2}s(t = 1) | € P2y(4),s (with s minimal),
2<w otherwise.

First suppose that z is an ordinal notation. We prove by induction on |z| that
p(T;) = |z| < 00. There are three cases:

z =1: Then |[T;]| = 1 and p(T;) =0 < oo.

z =2¥: Then p(T;) = p(Ty) + 1 = |y| + 1 = |z]| < o0.

z =3-5% Then p(T,;) = |{z}(i)| and therefore p(T;) = SUpP;ey, |12} (2)] = |=|.

On the other hand, assume that z is not an ordinal notation. Then one of the
above conditions (i)-(iii) holds:

(i) There is an infinite descending chain of predecessors of z, say, = = zg, 21, Z2,

z3,.... Then, by construction, there is a sequence o,,09,03,... of binary strings
such that, for all 7 > 0,

(36) D# o1 (ki) o2 (ko) ...70, (ki) Ty, CT,

for any i-tuple (ky, ko,...,k;) € 2. Therefore

37) T o (7(1)) o2 (7(2))7 ... Top - (7 (7] = 1))

is a mapping from 2<% into a perfect subtree of T;, and so p(T;) = oo.

(ii) For some 0 € w<“ and some ¢ € w, Sz(0) | # 1 and Sz(67 (7)) 1. Then
7 Ts,(s) € Ty for some 7 € 2<“; and for the construction of Tg, (,), the second
clause of (35) or the fourth clause of (34) applies. Therefore, 7~(0'10)"2<% C T,
and so p(Ty) = oo.

(iii) For some 0 € w<* and some ¢ < 7, Sy(0) = 3-5% and Sz(07 (7)) | ¢
PS,(UA(J‘))' Then again 77T, (o) € Ty for some 7 € 2<%, and the second clause of
(35) applies for f‘z,j. Therefore, 77(0710)72<% C T, and so p(T;) = c0. O

This concludes the proof of Theorem C. O

7. An index set in major subsets. Lachlan [La68] defined the following
notion of two r.e. sets A Coo B being “close” to each other:
DEFINITION. Let A Co B be r.e. sets. Then A is major in B (A Cyy B) iff

(38) (VW re) BC*W —AC W]

(38) is equivalent to either of the following two conditions:
(38') (VW re)BCW — AC* W],
(38") L*(4) = L*(B),

where £*(X) is the lattice of r.e. supersets of X (modulo finite sets).
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The classification of the index set { {e,7) | W, Cyy W; } has been one of the open
questions in index sets for a while. The major obstacle here is that A C,, B implies
that B is nonrecursive. This makes the uniformity required for the classification
hard. We present below a partial result towards the classification of this index set:

THEOREM D. Let V be a nonrecursive r.e. set. Then the index set Maj, =
{k| Wi Cn V} is Ily-complete.

PROOF. It is easy to see that Maj,, is Il4:
WeCn Ve W Coo VAN VUW, #wV W UW, =" w]
(39) - II3 A (Ve)[E2 V 3]
— Il4.

We will build (uniformly in &) an r.e. set Ay Coo V such that Ay Cpy V iff
k ¢ @4, (We will usually suppress the index k on A from now on.)
We use the fact that there is a recursive function h such that

k ¢ @9 — (Vi) [Wh(x.i) cofinite],

(40) .
keo® - (34)[Wh(k,q) coinfinite].

Fix k from now on, and let Wy s = {hjo < hi; <hi, <---}.

The idea of the proof is now to have for each ¢ two conflicting strategies, a
positive strategy trying to establish (38') for W, and a negative strategy trying
to build a counterexample B to A Cp, V. Which strategy succeeds will depend
on whether Wy ;) is cofinite or not. (If Wy(4 ;) is coinfinite then the strategies
working on ¢/ > ¢ will not matter.)

For the basic module of the positive P.-strategy, we use a variant of Lachlan’s
strategy [La68] to construct a major subset. Let We s={zeWes|(Vy<z My €
Wes UV}, and let W, UWEs Then W, = W, if W, DV, and W, is finite
it W, 2 V. In the former case, we have to take action for the sake of W,; in the
latter case, the strategy will only have a finite effect on the rest of the construction.
Furthermore, let f be a 1-1 enumeration of V (recall that V has to be infinite).
Finally, let V, — A, = {d§,d3,d3,...,d;, } where the markers d; need not be in
order. (The markers d¢ will be undefined for n > n;.)

At stage 0, let Ag = &, let d3 = f(0), and let d% be undefined for n > 0. At a
stage s + 1, first determine if f(s+ 1) € We,s and di ¢ We’s for some 1 < ng. If
50, for the least such 7, put d} into A,y 1, let d%“ = f(s+1), and let d3*t! = d,
for all n # 7 (for the sake of A C* W,). Otherwise, let d5'}, = f(s + 1), and let
dst! = d2 for n # n, + 1 (for the sake of A Co V).

Since V is nonrecursive, V is not r.e. Suppose V C W, (and thus W, = We)
Since {z | (3s)[z € Wes Az €V,]} is r.e. and contains V we have that

(41) (3%s)(3z)|z € Vag1 — Vs Az € W 4.

Therefore, f (8 +1) € W, for infinitely many s, so any marker d2 will be moved
until it is in W,. and so 4 C We. (These strategies will later be combined using
e-states as first introduced by Friedberg in his maximal set construction [Fr58].)
The basic module for the negative N-strategy tries to build a set B refuting
AC,V,ie, such that V C B and that V — (AU B) is infinite. At the nth time
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the strategy acts, it will wait for |V — (A U B)| > n, then put min(V) into B (for
the sake of V C B) and restrain another element of V — (A U B) from entering A
(to make V — (A U B) infinite).

Suppose that A Co V. Then the strategy will act infinitely often (else B and
thus V — A would be finite). So V C B and V — (A U B) is infinite. (Notice that
we really only have to restrain forever from A an infinite subset of the restrained
elements of V — (AU B).)

We have to let the success (or failure) of the N-strategy depend on whether
Wh (ks is coinfinite (or cofinite). Recall that Wy (x¢),s = { hig < hi; <his <---}.
Let the N-strategy only restrain at stage s+1 at most m; = min{n | h? ,; # Al }
many elements. If Wy, ;) is coinfinite then limsms = oo, so the N-strategy can
eventually restrain more and more elements from A permanently. If Wy ;) is
cofinite then m = liminf;my; < o0, so the N-strategy can restrain at most m
elements permanently from A. (Notice that if one N-strategy is allowed to succeed
the lower-priority P-strategies will not matter since this N-strategy will satisfy the
overall requirement A ¢, V.)

Combining all strategies requires two minor changes:

First of all, a stronger P-strategy may injure a weaker N-strategy by putting
infinitely many elements into A that are restrained by the N-strategy. So the latter
has to be able to predict which elements the P-strategy will put into A. This is
done in a straightforward tree argument fashion.

Secondly, if a P-strategy is forced to always observe the current restraint of the
stronger N-strategies then a synchronization problem may arise. Good elements
(i.e., numbers f(s + 1) € We,s) may come up only when the restraint is high, so
the P-strategy may not achieve its objective even if the liminf of the restraint is
finite. To resolve this conflict, we will, roughly speaking, make the P-strategy only
observe (for d2) the lowest restraint since some d, with m < n moved. (This will
be done through the control function Q. An alternative way to resolve this conflict
would be to delay putting the elements into A.)

Before describing the full construction, we will define all the parameters. Let

A; = w and A; = 2 be the sets of outcomes of the N- and P-strategies, respectively.
Let

T={oce€ (At UA)Y | (Vi <|o])[( even — o(z) € A1) A (1 0dd — (i) € A2)]},

and let T; and T be the sets of nodes of even and odd length in T, respectively.
For each k, let { W) }icw be a uniformly r.e. sequence of sets such that k €
@4 iff (34)[Whk.s) coinfinite]. Without loss of generality, assume that Wy, (x4, s #
Wh(ki),s+1 for all k, ¢, s. The construction of A = Ay will be controlled by markers
h’z.s where Wh(k,i),s = {h?,s < hz{s < h?,s < }

Fix a recursive 1-1 enumeration f of V, and let Vy = { f(0), f(1), f(2),..., f(s) }.
Let We,s ={zeW,.s| (Vy < z)ly € W, s UV,]}, and let W, = U, We,s. Define
the e-states o(e,z,8) = {& < e |z € We/,s }, and o(e,z) = lim,o(e, z,s). De-
note the elements of the difference set V' — A by markers dj, so that V, — A; =
{dg,d3,d5,d...,d; }. The order of these markers will be determined by the con-
struction, and markers d;, will be undefined for n > n;.

Each N-strategy a € T} builds its own set B,, trying to disprove A C,, V by
B,. It has to take into account the action of stronger P-strategies in building B,
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and imposing restraint of A. So it will use

(42) Ua,s =def n We’.s NVe | ~ (As ) Ba,s)
2e' <|a|
a(2e'+1)=0

(instead of Vy — (As,UBy ) as in the basic module). Notice that U, =* V —(AUB,)
if a has a correct guess about the higher-priority P-strategies.

We define 6, (with |65] = 2s), the recursive approzimation to the true path, by
induction:
(43)

6s(2e) =min{n | hg, # hy o, } where s’ = max({0}U{t <s|6 |26 C 6 }),

0 if We,s # We,sr where
bs(2¢ + 1) = s =max({0}U{t<s|& ] (2e+1)C&}),
1 otherwise.

For P-strategies o = 37 (m) € Ty, define the restraint function by:

min{7 | [Us s N[0, r)]=mVr=1+max(Uss) }
(44)  rs(B(m)) = if BC 6, 0r s=0,
rs—1{87(m)) otherwise.

(Recall that restraint is imposed by N-strategies 8 € T,, but the restraint that 8

imposes depends on Wy ;y and thus differs below distinct outcomes m (the current

guess for [Wp 4)|) of 3.)

For P-strategies o € Ty, define the control function by

(45)

00 ifaCésora>p bésors=0,
Qsla)={n if @ <z 6s and o moved T',, at stage s (as defined below),

Qs—1(a) otherwise.

The construction of the r.e. set A and the r.e. sets B, (for all o € T1) now
proceeds as follows:

At stage 0, let Ay = B, = @ (for a € Ty), let dJ = f(0), and let d2 be
undefined for all n > 0.

At a stage s + 1, perform the following two steps:

For all N-strategies a € Ty with a C s, put min(Vs U B, s) into By st1 if
Uas| > |Bas|-

Secondly, for the sake of the P-strategies, choose ng to be the least n < n, such
that
(46) (Elegn)[a(e—l,f(s+1),s) 20’(6—1,(1:“8) A

f(s+1) EWes Ndsy g We s Ny, > max{ry(a) |a <yAaETy}
(where v < 65 is leftmost with |y| = 2e + 1 and Q4(v) > n))].

If ng exists then put d5 into Ayyy, let dit! = f(s + 1), and let d3*! = d5 for
n # ng. (We say v moved T, at stage s + 1.) Otherwise, let d3'}, = f(s + 1),

and let d3*t! =d3 for n # ns + 1.
This concludes the construction.
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LEMMA 1 (MARKER CONVERGENCE LEMMA). For all n, d, = lim,d2 is
defined. (Thus A Coo V'.)

PROOF. By induction on n: Suppose d,, is defined for all m < n, and d}, = dy,
for all s > s, say. Then df is defined for all s > sg and changes only finitely often
since it increases its n-state each time (and the n-state is nondecreasing between
these changes). O

LEMMA 2 (TRUE PATH EXISTENCE LEMMA). If Wy ;) is cofinite for all
1 < g, then ag = liminf &, | 24 exists.
PROOF. By the definition of 8,5, we have for ¢ < iq:
0(22) = [Whk,4l,
(47) w020 + 1) = {0 if W, is infinite,
1 otherwise. D
LEMMA 3 (OUTCOME LEMMA). Fiz 1p.

(i) If ap = liminfs &, | 249 exists, then V C By, , and
Bo = OtoA(m> A (3<°°S)[63 <r ﬂo] —
(48) (VB € T3)[B < Bo — r(B) = liminf ry(B) < 0o exists]
A IUao N [OaT(ﬂo)‘)l =m.
(i) If vo = liminf, s | (260 + 1) ezists, then either Wi, is finite (if o~ (1) =
liminf, 65 [ (269 +2)) or A C* Wy, (¢f 7% 7(0) = liminf, 65 | (20 + 2)).

PROOF. By simultaneous induction on %g:

(1) We first establish V C B,,. By the construction, it suffices to show that B,
is infinite (since we always put min(Vy U By, s) into Ba,). Suppose for the sake of
a contradiction that B,, is finite. Then for all s with ag C s, |Uay,s| < |Bag.sl-
But U,, is a difference of r.e. sets, so |Ua,| < |Ba,|- By (ii), 4 C* W, for i < 7o
with ag(2¢) = 0, and therefore Uy, =* V — (AU By, ). But then Uy, =*V — A is
finite, contradicting Lemma 1.

Let us now show (48). By induction on (i), choose s¢ such that

(49) (Vs > sp)(Va € To)[a < ag | (2ip — 1) — rs(a) = r(w)].

(This assumption is vacuous for g = 0.) Next, by our assumption on fp and the
definition of r (), pick s; > s such that

(50)  (Vs2si)(VBETR)[B<BoAB(Bl—1)# g — rs(B) = r(B)].

Furthermore, since by the construction Qs(83) cannot increase while 8 <, 65, and
since 8 has a correct guess about the P-strategies v C 3, pick sz > s; such that

(51) (Vs > s2)(VB € T2) [(B <1 Bo — Qs(B) = lim; Q¢ (8)) A
(VY C BN =2i+1ABo(20+1)=1—~
does not move any element at stage s]]
Finally, let o = {7 < 4o | W; infinite }. Then by (i),
(52) (Ino)(Yn > np)[o(ip — 1,dp) = o).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



582 STEFFEN LEMPP

Pick s3 > s such that
(53) (Vs > s3)(Vn < no)ld, = dnl.

We will now show (48) by induction on m (for fixed ag). For m = 0, trivially
7(Bo) =0. Let m > 0. Let r = 1 + max({r(ap™(m —1)) }U{d, | n < ng}). Pick
S84 2> sz such that
(54) (Vs 2 s4)[rs(ag”(m—1))=7r(ag " {(m—1)) A

X, Mr+1)=X ] (r+1)foral X =W, (for 1 < 1), V, A, and B,,).
By the first part of (i), we have llmsup{|Us,, s| | @p < és} = o0, so pick s5 > s4

such that ag C 85, and |Uqy,,s5| = m.
We claim that

(55) (VS > 35)[7'3(,30) > Ts—}—l(ﬂO) A IUao,s N [07rs(ﬂ0))| > m]

Suppose for the sake of a contradiction that for some s > s5, Uny.s N[0, 75(50)) €
Uao,s+1 N [0,75(8)). Then some z € U,, s entered By, or A. The former is
impossible by the construction of By, (since z € V). But z cannot enter A since:
(a) no ~ > By~ (m) can move z by the restraint imposed;
(b) no v <1 Bo"{m) can move z, or else Qs(7) > Qs+1(7), contradicting the
assumption on sg; and :
(¢) no vy C Bo will move z since either z ¢ W; ; (if |[7| = 20+ 1 and Go(2¢ +1) =
0), or 4 no longer moves any element (if |4} = 20+ 1 and §o(2{ + 1) = 1).
(Notice that r4(8p) may still drop a finite number of times as U,, gets new small
elements.)
Now (55) establishes (48).
(ii) By (i), pick sg such that

(56) (Vs > s0)(Vy € To)[y < 7o — () = rs()]

Let R(v) =max{r(y} [y <wAYET}. Since v C &, for infinitely many s, we
also have lim; Qs(v0) = co. Let 0 = {7 €1y | W; infinite }, and assume that W;, is
infinite. Then W, = ﬂiea W; D V. By induction on (ii), pick ng > g such that

(57) (Vn > ng)lo(ip — 1.dn) =0 — {1 }.
Since V is not recursive,
(58) (3%s)[f(s +1) € W, ].

Suppose that o(ig,dy,) = 0 — {4ip } for some n > ng with d, > R(~). Pick 81 > s
such that

(59) (Vs > 31)[Qs('70) >n A (Yo' <n)ldy, = dn’]]

Then d,, will be moved by (58), contradicting our assumption. Thus W;, = W;, D*
A. O

~ It is now easy to see that the lemmas imply Theorem D.
First suppose that k € @(*). Then Wjx ;) is coinfinite for some (least) 7. By
Lemma 2, ag = liminf, §, | 245 exists, and

(60) (Ym)(3<®s)[8s <1 oo~ (m)].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HYPERARITHMETICAL INDEX SETS IN RECURSION THEORY 583

Therefore, by Lemma 3 (i), V C B,,, and U,, is infinite. But then V — (AU Ba,)
is infinite, so By, witnesses that A ¢, V.

On the other hand, assume that k ¢ @), Then Wh(k,s) is cofinite for all :. By
Lemma 2, liminfs és | 27 exists for all 5. Therefore, by Lemma 3 (ii), either Wi
is finite or A C* W, = W; for all . Furthermore, by Lemma 1, A Coo V. Thus
ACnV.

This concludes the proof of Theorem D. O
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