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HYPERARITHMETICAL INDEX SETS IN RECURSION THEORY

STEFFEN LEMPP

ABSTRACT. We define a family of properties on hyperhypersimple sets and
show that they yield index sets at each level of the hyperarithmetical hierarchy.
An extension yields a nj-complete index set. We also classify the index set of
quasimaximal sets, of coinfinite r.e. sets not having an atomless superset, and
of r.e. sets major in a fixed nonrecursive r.e. set.

0. Introduction. The present paper deals with index sets, i.e., sets of indices of
partial recursive (p.r.) functions and recursively enumerable (r.e.) sets that are de-
fined through the p.r. functions or r.e. sets they code. The early results in index sets
used geometric arguments in one- or two-dimensional arrays: Rogers showed the
£3 and n3-completeness of the index sets of recursive and simple sets, respectively,
in a finite injury argument. Lachlan, D. A. Martin, R. W. Robinson, and Yates
(1968, unpublished, later appearing in Tulloss [Tu71]) showed the ^-completeness
of the index set of maximal sets in an infinite injury argument. Tulloss [ibid.] also
mentions for the first time the question whether the index set of quasimaximal sets
is E5-complete. However, the geometric method was too complex at higher levels
of the arithmetical hierarchy. During the 1970's, progress in index sets was mainly
made in other areas by several Russian mathematicians as well as L. Hay.

Schwarz [Schta] was the first to introduce induction into index set proofs (in the
r.e. degrees) and was able to show that the index sets of low„ and highn r.e. sets are
£„+3 and En+4-complete, respectively. Solovay [JLSSta] then extended Schwarz's
methods to show the £w+i-completeness of the index sets of low<w (lown for some
n) and of high<w (high„ for some n) r.e. sets as well as the H^+i-completeness of
the index set of intermediate degrees (degrees neither low<w nor high<w).

In this paper, we exhibit a family of algebraically invariant properties LWliW-
definable in £, that yields index sets at any level of the %perarithmetical hierarchy.
The proof is based on induction and Lachlan's theorem [La68] that any E3-Boolean
algebra is isomorphic to the lattice of r.e. supersets of some r.e. set (modulo finite
sets). It uses tree arguments and the fact that the Cantor-Bendixson rank of a
tree corresponds to certain properties of the lattice of r.e. supersets of the set
constructed. An extension yields a nj-complete index set. A corollary shows the
^-completeness of the index set of quasimaximal sets, thereby settling this long-
open question. Further results classify the index sets of atomic sets and of r.e. sets
major in a fixed nonrecursive r.e. set.

Our notation is fairly standard and generally follows Soare's forthcoming book
Recursively Enumerable Sets and Degrees [Sota].
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560 STEFFEN LEMPP

We consider sets and functions on the natural numbers u = { 0,1,2,3, ... }. For
a partial function <p, ¡p(x) j denotes that x E dovmp, otherwise we write <p(x) |.
We identify a set A with its characteristic function xa ■ /[i denotes / restricted
to arguments less than x, likewise for sets.

We let A C B denote that A Ç B but A ^ B; A E* B that A - B is finite;
and A Coo B that A E B and \B — A\ = oo. A will denote the complement of A,
A U B the disjoint union. For each n E w, we let ( ii, X25 • ■ •, xn ) denote the coded
n-tuple (where z¿ < ( xi, x2,..., xn ) for each i).

In a partial order, x | ;y denotes that x and y are incomparable, [k, I) denotes
the interval {n Eoj \ k < n < I}.

The logical connectives "and" and "or" will be denoted by A and V, respectively.
We allow as additional quantifiers (in the meta-language) (3°°x), (3<0°x), and
(a.e. x) to denote that the set of such x is infinite, finite, and cofinite, respectively.

{e} (or ipe) and We ({e}x (or $* ) and W*) denote the eth partial recursive
function and its domain (with oracle X) under some fixed standard numbering. <i
and <t denote one-one and Turing reducibility, respectively, and =i and =t the
induced equivalence relations.

In the context of trees, p,o,r,... denote finite strings; \o\ the length of tr; <r~r
the concatenation of a and r ; ( a ) the one-element string consisting of a; ( anbm ... )
the finite string consisting of n many o's, followed by m many 6's, ...; o Ç r (er c r)
that o is a (proper) initial segment of t; o <L t that for some i,o\-i = r[i and
<r(i) <A r(i) (where <a is a given order on A and T Ç A<UJ); and o < r (a < r)
that o <l t or o E t (a Et).

The set [T] of infinite paths through a tree T Ç A<w is {p E A" | (Vn)[p [■ n G
T] }. The extendible part of a tree T is {a E T | (3p E [T])[a E p]}. The parí of a
tree above o is T(a) = {r | o^t E T}.

We will first prove an easy warm-up theorem to demonstrate our technique for
index set classifications in a simple setting. It reproves previously known results
and classifies for the first time the index sets of quasimaximal sets and of coinfinite
r.e. sets not having atomless supersets (the so-called atomic sets) as E5- and Ylß-
complete, respectively.

First of all, however, we will explain the tree machinery needed to prove the
main results of this chapter. All trees using this machinery will from now on be
binary.

1. The machinery. Lachlan [La68] showed that any I¡3-Boolean algebra can
be represented as the lattice of r.e. supersets (modulo finite sets) of some hyperhy-
persimple set A. The proof uses an argument that can be generalized substantially.
From an arbitrary E2-tree T E 2<UJ (i.e., cr E T iff R(a), for some E2-predicate R),
Lachlan constructs a (hyperhypersimple) r.e. set At with a 1-1 correspondence
between nodes a ET and elements aa E A satisfying the following two properties:

(i)   (Ver e T)[A U Ca is r.e.], and
(ii)   (VVK D A r.e.)(3S Ç T finite)[W =* A U \JaeS Ca),

where Cff = { ar | t G T A r 3 it } is the "cone" of elements of A "above" a„.
The idea is now to reduce index set proofs to proofs about trees by the above

correspondence between trees T and r.e. sets At-
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HYPERARITHMETICAL INDEX SETS IN RECURSION THEORY 561

Using Lachlan's construction as a starting point, we can break up an index set
classification into easier parts. Suppose we are trying to show that (E„,n„) <i
(A, B) for certain disjoint index sets A and B which are closed modulo finite sets,
i.e., which satisfy

(1) e E A A We =* Wi -» t € A,

and likewise for B. (The technique works just as well if we replace the integer n by
a recursive ordinal a.) Then it suffices to establish the following two lemmas:

(I)  Correspondence Lemma:  The mapping index of T i—►   index of AT maps
the E2-trees of S into A, and the E2-trees of T into B, for certain disjoint
classes of index sets of binary A3-trees S, T.

(II)  Reduction Lemma: A recursive function / maps C into the set of recursive
trees of 5 and C into the set of recursive trees of T.

Here C is a Em-complete set (where 2 + m = n), and we require that membership
of T in 5 and T only depends on [T], namely, for A3-trees T and T,

(2) Te S a [T] = [T] — f e S,
and likewise for T.

Once we have established (I) and (II), we can complete the proof of the index
set classification as follows:

LEMMA, (i) We can relativize the construction of f to 0" to obtain a recursive
function f mapping a E^ -complete (i.e., Hn-complete) set C to the Af -
trees (i.e., A^-trees) of S, and the complement of C to the A^-trees of T.

(ii) We can approximate the A^-trees T obtained in (i) by E2-trees T with [T] =
[T], and denote this approximation of f by f.

PROOF, (i) Straightforward relativization of the construction of / first yields a
function g <t 0". Now it is easy to find the desired partial recursive function /
such that Wf    = W®, , (where these sets code the trees) by "pushing the oracle

/ \e) y\ j

of the index function into the main oracle". Since g is total, so is /.
(ii) Notice that for a A3-tree (i.e., Af -tree) T, there is a function h <t 0' such

that o E T iff linis h(o, s) = 1, and rr £ T iff lims h(o, s) = 0. Now enumerate T
(relative to 0') by putting a into T at stage s if

|tr| < s A (Vn < \o\)[h(a [ n,s) = 1].    G

Now the composition of / with the mapping index ofTi-» index of At yields
the desired reduction (En,n„) <i (A, B).     D

Three typical examples of a correspondence as in (I) are the following: A finite
tree T (i.e., [T] = 0) corresponds to a cofinite set AT. A E2-tree with exactly one
infinite path corresponds to a maximal set At- A perfect tree T is a tree such that
for all a ET, there are tx,t2eT such that o C tx, t2 and rj | r2. A perfect E2-tree
corresponds to an atomless hyperhypersimple set At- (We will give a proof below
for the latter two correspondences.)

In the Reduction Lemmas below, since the construction is recursive we will
ensure that the tree T constructed is recursive by letting Ts =Tf)2-s, where Ts is
the part of T constructed by the end of stage s.
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562 STEFFEN LEMPP

2. A warm-up theorem.
DEFINITION. Let A be a coinfinite r.e. set.

(i)  A is maximal if for all r.e. sets W D A, either W =* A or W =* u>.
(ii)  A is quasimaximal if it is a finite intersection of maximal sets,

(hi)  A is atomless if it has no maximal superset.
(iv)   A is atomic if it has no atomless superset.
(v)  A is hyperhypcrsimple if /¿(A), the lattice of r.e. supersets of A, forms a

Boolean algebra.   (By Lachlan [La68], this is equivalent to the original
definition.)

Notice that a coinfinite r.e. set having no atomic superset is the same as an
atomless set, so the hierarchy collapses at that level.

PROPOSITION. The index sets of maximal, quasimaximal, atomless, and atomic
sets are YI4, E5, YI5, andYlo, respectively.

PROOF. By the fact that Max is n4 and the usual Tarski-Kuratowski algorithm.
D

We denote these index sets by Max, QMax, Atomless, and Atomic, respectively.
Our machinery now allows an easy classification of these four index sets:

THEOREM A.   The following reductions hold:
(i)   (n4,E4) <i (Max, QMax-Max);

(ii)   (E5,n5) <i (QMax, Atomless); and
(iii)  Hß <i Atomic.

COROLLARY, (a) (Lachlan, D. A. Martin, R. W. Robinson, Yates (unpub-
lished); later appearing in Tulloss [Tu71]) The index set of maximal sets is
Ylji-complete.

(b) The index set of quasimaximal sets is Y,§-complete.
(c) (Jockusch) The index set of atomless sets is YI5-complete.
(d) The index set of atomic sets is H.Q-complete.      □

PROOF OF THEOREM A. We have to establish (I) and (II) above for our
machinery to apply. Call T essentially perfect if Ext(T) is a perfect tree, i.e., if
there is a 1-1 map e from 2<UJ into the extendible part Ext(T) ofT such that

(a) (V(T, re2<u)[uCT« e(cr) C e(r)], and
(b) (VpEExt(T))(3oE2<")[pEe(o-)].

We define four classes of trees:
Ti={TÇ2<"tree||[T]| = l},
T2 = { T Ç 2<w tree | [T] ¿ 0, finite },
T3 = { T E 2<¡jj tree | T is essentially perfect},
T4 = {T Ç 2<w tree | [T] / 0 A (Mo E T)[T(a) is not essentially perfect] }.

CORRESPONDENCE LEMMA.   Let T Ç 2<ÜJ be a Y,2-tree.  Then:
(i) IfTE Ti then At is maximal, and conversely.

(ii) IfTE T2 then At is quasimaximal.
(iii) IfTE T3 then At is atomless.
(iv) IfTE T4 then At is atomic, and conversely.
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HYPERARITHMETICAL INDEX SETS IN RECURSION THEORY 563

PROOF, (i) Let W D At be an r.e. superset. Then W =* AT UU^jC, for
some finite set SET. If S D Ext(T) = 0 then W =* AT, and, since |[T]| = 1,
if S n Ext(T) t¿ 0 then W =* w. So A^ is maximal. The converse is shown
analogously.

(ii) Similar to (i).
(iii) Suppose W D At is a maximal superset. Then W =* At U Uo-gs Co- for

some finite set SET. Since W is coinfinite there is some oo E Ext(T) such
that CCTo n W = 0. Let r0 E 2<M be such that a0 Ç e(r0). Then IV Coo W U
^e(T "(o)) c°° ^ U ^e(T0)i contradicting W's maximality.

(iv) Suppose W 2 At is an atomless superset. Then W =* At U Uo-es ^CT ̂ or
some finite set SET. Since IV is coinfinite there is some oq E Ext(T) such that
Cao n W = 0. Yet

W0 = ATU       (J       Ca.
M=kol

o-eT-{o-0}

Then IVo is coinfinite and Wo 2* W7, so Wo is also atomless. We will show that
T(fJo) is essentially perfect to reach a contradiction. Let To = Ext(T(oo))- It
suffices to show that, for all r E To, there exist ti,t2 E Tq such that r C ri,r2 and
Ti | r2- Suppose to E Tq does not admit such a splitting. Then

Wi=ATU       (J       Ca~r
|r|=|T0|

reTo-{r0}

is maximal by an argument similar to (i).
Conversely, assume that T(rjo) is essentially perfect for some oo- Then

W = AT U       (J       Ca
M=ko|

o-€T-{o-o}

is an atomless superset of At by (iii).     O

REDUCTION LEMMA. We have the following reductions (where all images of
the reducing maps are recursive trees):

(i) (n2,E2)<i(7i,T2-7i),
(ii) (E3,n3)<i (T2,T3), and

(iii) n4 <i T4.

PROOF, (i) We choose Inf and Fin, the index sets of infinite and finite r.e. sets,
respectively, as n2- and E2-complete index sets. We will build a reduction k h-+ Tk
such that k E Inf implies Tk E Ti, and k E Fin implies Tk E T2 — Ti. Fix k. At
stage 0, let Tkß = {0}; at stage 1, we put (0) and (1) into Tk^. At a stage
s > 2, if WktS ^ Wki3-i, we put (0s) and (0S-11) into TktS; otherwise, we put
r~(0) into TktS for the two r G Tfc,s_i with \t\ = s - 1. Then

k E Inf -+ (3°°8)[iVfc,s ̂  Wfc,_i] - [Tfc] = { <0W) }.-> Tk € Ti,
(4) * e Fin - (3<°°s)[Wfc,a ̂  VKM_i] - [Tk] = { (0" >, (0*-110w ) }

where s0 = max{ s | Wk<s ^ W^.s-i }•
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564 STEFFEN LEMPP

(ii) We choose Cof and Coinf, the index sets of cofinite and coinfinite r.e. sets,
respectively, as E3- and n3-complete index sets. We will again build a reduction
k y-y Tfc such that k E Cof implies Tk E T2, and k E Coinf implies Tk E T3. Fix
k and let Wk<s = {w^ s < wl s < w\s < • ••}. Let {pa }crg2«" be a sequence of
markers. At stage 0, let n0 = 0, let p<z>ß = 0, let all other markers be undefined,
and put 0 into Tk$- At a stage s > 0, let ns = min({ ns_i + 1} U { n | wk s_1 ^
wk,s})- For \a\ < n«' ^et f-c,s = Po-,s-i- For |ct| = ns, let p„>3 be equal to some
string t with |r| = s, t~ E Tk<s-i, and r D pG- a where p~ — p{ (\p\ - 1), and put
all these r into Tk,s. For |er| > ns, let p,a¡a be undefined.

Now assume that Wk is cofinite. Then there is some (least) ñ such that lims w% s
= 00, so lims |po-,s| = 00 for all o with |er| > ñ. But then lim inf s \Tk n 2S| = 2",
so [Tfc] is finite. [Tk] is nonempty by König's Lemma since for all s, Tk (~l 2s / 0.
Thus TkET2.

On the other hand, if Wk is coinfinite, then lims u>£ s < 00 exists for all n, so
limans = 00. We can thus define, for all n, a stage sn — max{ s \ ns = n}.
Therefore, lim^ pffS = p„ exists for all o E 2<w. The mapping o 1-+ pa now shows
that Tk is essentially perfect.

(iii) The final part of the proof is a first example of how the uniformity of the
construction can be used to yield more and more complicated index set results.

There is a recursive function g such that

k E 0(4) «-> (3i)\Wg(k^ coinfinite], and

fc£ 0(4) «-> (VOpVrfk.i) cofinite].
Fix fc. At stage 0, we let Tfc,0 = {0}- At a stage s > 0, put (0s) and (0S_11) into
TfcS and start the construction described in part (ii) but above (0S_11 ) in place of
0 and using Wg(fciS-i) in place of Wk.

Now, if k £ 0(4), then for all i, Wg{kti) is cofinite, so [Tfc((0ll ))] is finite for all i
by (ii), and therefore Tk(o) is not essentially perfect for any a ETk. Thus Tk E T4.

On the other hand, if A; G 0*4\ then Wg(k^ is coinfinite for some i, so, again by
(ii), [Tfc((0ll))] is essentially perfect. Thus Tk <£ T4.     D

This establishes Theorem A by our machinery.      D

3. The main theorem. Call a set A Ç u¡ 0-atomic iff |A| < 1. Then a set B
is cofinite iff B is in the filter generated by the 0-atomic sets. A set C is maximal
iff its equivalence class is a coatom of the lattice of r.e. sets modulo the cofinite
filter. A coinfinite set D is quasimaximal iff D is in the filter in £ generated by
the maximal sets, etc. This alternation of generating a filter and considering the
coatoms leads to the following definition:

DEFINITION. Let A be a hyperhypersimple or cofinite set, a an ordinal, and A
a limit ordinal. Then:

(i)  A is 0-atomic if |A| < 1;
(ii)  A is a-quasiatomic if A is a finite intersection of cv-atomic sets, i.e., if A is

in the filter generated by the a-atomic sets;
(iii)  A is (a + l)-atomic if for all r.e. sets W 3 A, W or A U W is a-quasiatomic,

i.e., if A is a-quasiatomic or its equivalence class is a coatom of the lattice of
r.e. sets modulo the a-quasiatomic filter (notice here and in (v) that A U W
is r.e. if A is hyperhypersimple);
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HYPERARITHMETICAL INDEX SETS IN RECURSION THEORY 565

(iv)  A is <\-atomic if A is a-atomic for some a < A, i.e., if A is in the filter
generated by the a-atomic sets for a < A;

(v)  A is X-atomic if for all r.e. sets W D A, W or AliW is < A-quasiatomic, i.e.,
if A is < A-quasiatomic or its equivalence class is a coatom of the lattice of
r.e. sets modulo the <A-quasiatomic filter.

The notions of a-atomic, a-quasiatomic, and <A-atomic are natural generaliza-
tions of the notions of cofinite sets, maximal sets, and quasimaximal sets. Namely,
A is cofinite iff A is O-quasiatomic; A is maximal (or cofinite) iff A is 1-atomic; and
A is quasimaximal (or cofinite) iff A is 1-quasiatomic.

Let AtQ, QAtQ, and At<A denote the index sets of a-atomic, a-quasiatomic, and
<A-atomic sets, respectively.

The importance of the above definition lies in the correspondence of these prop-
erties with the Cantor-Bendixson rank of binary trees, as explained below. This
correspondence allows the classification of their index sets, yielding a family of in-
dex sets of properties LWl)W-definable over £, which goes all the way through the
/lyperarithmetical hierarchy.

In the following, we will use ordinal arithmetic to compute expressions like 2a+2,
etc. A set of integers is EA+n (nA+„) (for A a recursive limit ordinal, n E u> — { 0 })
iff it is E® (Iljf ). We use Rogers's book [Ro67] for the background on recursive
ordinals. He defines a system of ordinal notations | • | : 0 —y wf14 from Kleene's
0 E u into the set of recursive ordinals as well as a partial order <o on 0 by

|1|=0,
|x| = a —y \2X\ — a + 1, and 2<0i^z<0 2X,

^ ' { fy(n) }ngw a <o-increasing sequence and sup|^y(n)| = a
n

-» |3 • 5y\ = a, and (3n)[z <0 <py(n)\ ->• z <0 3 ■ 5y.

The hyperarithmetical hierarchy H : 0 —> 2W is then defined by

H(1) = 0,
(7) 7/(2*) = (H(x))',

H(3-5y) = {(u,v)\uE H(v) A»<03-5V}.

Now \x[ < [y\ implies H(x) <t H(y). In particular, the Turing degree of H(2> ■ 5y)
does not depend upon the specific notation for a limit ordinal A = |3 • 5y\. Thus the
definition of EA+n and Yl\+n does not depend upon which H(3-5y) with |3-5y| = A
we use for 0^x\ (Recall also that for any y E 0, { x | x <o y} is r.e. uniformly in
V-)

The following theorem generalizes Theorem A (i) and (ii) to the hyperarith-
metical hierarchy. We can do so by bounding the Cantor-Bendixson rank of the
associated trees more carefully.

THEOREM B.   Let a be a recursive ordinal and A a recursive limit ordinal. Then:

(i)   (Yl2a+2,'E2a+2) <i (AtQ,QAta - AtQ);
(ii)   (E2c<+3,Il2a+3) <i (QAtQ,AtQ+i -QAtJ; and

(iii)   (EA+i,nA+1) <i (At<A,AtA - At<A).
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COROLLARY 1.   (a)  AtQ is Yl2a+2-complete;
(b) QAta is Ti2a+3-complete; and
(c) At<A is T,\+i-complete.

PROOF. By Theorem B and the fact that AtQ, QAtQ, and At<A are Yl2a+2,
E2q+3, and EA+i, respectively, by the Tarski-Kuratowski algorithm. E.g.,

x E At0 «-» (V») [yeWxv (Vz >y)[zE Wx]]

~ (Vy)[Ex V n2],
and

x E At<w <-> (3n)[x E Atn] <-> (3n)i?(a:,n),

where i? is a 0^w^-recursive predicate.     G

COROLLARY 2. (a) (Lachlan, D. A. Martin, R. W. Robinson, Yates (unpub-
lished); later appearing in Tulloss [Tu71]) The index set of maximal sets is
Yli-complete.

(b)   The index set of quasimaximal sets is ^-complete.

PROOF. Set a = l in Corollary 1.     D
PROOF OF THEOREM B. The proof for the 0-atomic case does not fit into our

machinery but follows easily from (E2,n2) <i (Fin,Tot). Using the machinery, we
again have to prove a Correspondence Lemma and a Reduction Lemma.

. Recall the definitions of Cantor-Bendixson derivative and Cantor-Bendixson
rank. The Cantor-Bendixson derivative of a tree T Ç 2<u is T minus its isolated
paths, i.e.,

(8) D(T) = {oE Ext(T) | (3tut2 E Ext(T))[<7 C n,T2 A n | r2] }.

We also define its iterates:
D°(T) =T,

(9) Da+1(T) = D(Da(T)),

DX(T) = p| Da(T),

where a is an ordinal, A is a limit ordinal. Then the Cantor-Bendixson rank of T is

{-1 if T is finite,
min{ a \ Da+X(T) finite } if T is infinite

= min{ a | |[-DQ(T)]| finite } and this ordinal exists,
oo otherwise.

It is a well-known fact that Da (T) = D@ (T) for any uncountable ordinals a and ß;
and that Dx (T) finite for some limit ordinal A implies Da (T) finite for some a < X
by compactness.

These definitions lead to the

CORRESPONDENCE LEMMA. Let a be a recursive ordinal, T E 2<u) a E2-<ree.
Then:

(i)  p(T) = —1 iff At is O-quasiatomic;
(ii)   |[£>a(T)]| < 1 iff AT is (1 +a)-atomic; and

(iii)  p(T) < a iff At is (1 + a)-quasiatomic.
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PROOF. By induction on a:
(i). p(T) = —1 iff T is finite iff At is cofinite iff At is O-quasiatomic.
(ii)a=o- By (i) and the Correspondence Lemma for Theorem A.
(ii)a->(iii)a- Assume (ii) for an ordinal a.
Suppose first that p(T) < a. Then [Da(T)] is finite, say,

[Da(T)]E{pi,p2,...,Pn}.

Yet k be large enough such that i ^ j implies p%[ k ^ pj \ k. Then |[.Da(fj~T(cr))]|
< 1 for all a E T n 2k. By induction,

(H) ACT=defArU       (J       CT
|r| = k|,T#o-

rgT

is (1 + a)-atomic, thus At =* nCTgrn2* ̂ a is (1 + a)-quasiatomic.
On the other hand, if At is (1 + a)-quasiatomic then At = n"=i ^¿ f°r a finite

set of (1 -r-a)-atomic sets Ai, A2, ..., An. For each i, let A, =* AT UU^gs C„ for
some finite set Sx E T, and let T¿ = T - [jaeSi o~T(o). Then U"=J T¿ =* T, and,
by induction, [L>a(Tt)] ç {Pl } for some Pi E 2". Thus [Da(T)[ E {Pi,p2,... ,p„ }
is finite, and p(T) < a.

(iii)<Q—y(ii)a. Assume a > 0, and that (iii) holds for all ordinals less than a.
Without loss of generality, let a be a successor ordinal and put ß + 1 = a (if a is
a limit ordinal, replace ß by <a throughout this part of the proof).

Suppose first that |[Da(T)]| < 1, say, [Da(T)] C {p}. If W D AT is r.e. then
W =* At U UCTgs Co for some finite set S E T (assume that all a E S are of the
same length, say, Ac). Let S0 = (2k - S)f)T, and put W0 = AT U UCTgs0 Co- Then
Wo is the relative complement (w.r.t. AT) of W (modulo a finite set). Without
loss of generality, suppose that p [• k E So (the other case is symmetric). Then
To = T — Uo-gs Co, the tree associated with Wo, satisfies [DQ(To)] =* 0, and so
Wo is (1 + /3)-quasiatomic. Thus At is (1 + a)-atomic.

On the other hand, let At be (1 + a)-atomic. Suppose for the sake of contradic-
tion that [Da(T)] contains two distinct infinite paths, say, pi and p2- Let k be large
enough that pi [ k ^ p2 [ k; let Si and S2 be such that SiUS2 = 2kC\T, pi [■ k E Si,
and p2 [ k E S2; and let Wx = AT U (XgSi Co and W2 = AT U (Joes2 C<r- Thus
Wi and W2 are relative complements (w.r.t. A) to each other (modulo a finite
set). Then for both Tj = T - \Jtr€Sl Ca and T2 = T - [J(TeS2 Co, [-Da(Ti)] and
[Da(T2)] are nonempty (namely, px E [Da(T2)] and p2 E [Da(Ti)]), and thus, by
induction, neither of their associated r.e. sets Wi and W2 is (1 + /3)-quasiatomic, a
contradiction.     D

4. The Reduction Lemma for the main theorem. Let a be a recursive
ordinal. We define

5Q = {TG2<wtree||[DQ(T)]|<l},

nos Ta = { T E 2<w tree | p(T) < a } (allow a
(12)

T<a - IJ Tß.
ß<a

-1),
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It remains to prove the

REDUCTION LEMMA. Let a be a recursive ordinal and X a recursive limit or-
dinal.  Then:

(Í)   (II2q-|-2,E2q + 2) <i (Sa,Ta — Sa)',
(ii)   (E2a+3!n2Q+3) <i (Ta, Sa+i - Ta) (also allow a = -1); and

(iii)  (EA+1,nA+1)<i (T<A,SA-T<A).

Notice that this lemma is an extension of the Reduction Lemma for Theorem A.
Let LOR be the class of limit ordinals.

PROOF. All constructions will be uniform in an ordinal notation for a (or A),
so we can use transfinite induction and the following four statements for a, A > 0:

(A) (Ei,ni)<i(T_i,5o-T_i);
(B) (E2a+i, n2Q+i) <i (T<Q, Sa — T<a) —y (E2a+3,n2Q+3) <i (Ta, Sa+i — Ta);
(C) (E2a + l,n2a+i)  <i   (T<Q, Sa — T<a) —* (H2Q + 2, E2Q + 2)  <1   (Sa,Ta — Sa)',

and
(D) (EA+i,nA+i)<i (T<A,SA-T<A).

Then (ii) for a = —1 follows from (A); (ii) for a > 0 and (i) follow from (ii) for
a— 1 (if a ^ LOR) or from (iii) (if a E LOR) by (B) and (C), respectively; and (iii)
follows by (D). (Notice that the proof of (D) will require an induction argument
separate from the successor ordinal case (B)-(C), as explained later.)

We will now prove (A)-(D):
(A) Given k, we will construct a recursive tree Tk such that

kE0' ^Tk finite,

(13) k£0'^\[Tk]\ = l.

At any stage s, put (0s ) into TktS iff {k}s(k) }. This construction obviously satisfies
the claim.

(B) By (A) (for a = 0), (B) (for a £ LORU {0}), or (D) (for a E LOR), we
have a uniformly recursive sequence of trees { T¡ }¡ew satisfying

/e0(2a + l) _>[/?o(f,)] = 0,
(14) i£0(2a+1)-+|[£>a(fi)]| = l.

Now 0(2a+3' =j Cof0      , so, given k, it suffices to uniformly build a recursive
tree Tk such that

k E Cof0(2Q> -> ]Da(Tk)] finite,

A;£Cof0<2Q, -» \[Da+1(Tk)]\ = 1.

Define a recursive function / such that f(k,l) E 0<2q+1) iff / G wf*^. Fix k.
At stage 0, put 0 into Tfcj0- At any stage s > 0, put (0s) and (0S_11) into Tfc,5
and start the construction of T¡(kjS_i) on top of (0S_11 ).

If k E Cof0 " then f(k,l) ^ 0<2q+1) for only finitely many /, say, /0 is greater
than all such I. Then [Da(Tk((0ll )))] = 0 for all / > l0, so [£>a(Tfc((0'° )))] ç
{ (0") }. Also [Da(Tk((0ll)))] is finite for all / < Z0, so [Da(Tk)] is finite.
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On the other hand, if k (£ Cof0'2"' then f(k, I) (£ 0(2q+1) for infinitely many I,
so ^(^((O'l)))]! = 1 for infinitely many /. Thus [Da+x(Tk)] = { (0U) }.

(C) The proof is similar to the proof for (B). We use the fact that (n2Q+2, E2Q+2)
<i (Tot0 ,Cotwo0 ), where Tot* and Cotwox are the index sets of total
functions recursive in X and functions recursive in X undefined for exactly two
integers, respectively.

Given k and { T¡ }¡eu; as in the proof of (B), we have to uniformly build a recursive
tree Tk such that

fcGTot0(2Q> ^\[Da(Tk)]\<l,

fcGCotwo0       -K|[öa(Tt)]|<!io.

The construction is the same as in (B).

If A G Tot0<2a) then f(k,l) E 0(2q+1) for all /, so [Da(Tk((Oll )))] = 0 for all /.
Thus[L>Q(T*)]C{(0")}.

On the other hand, if k € Cotwo0l2< ' then f(k,l) <£ 0(2q+1) for exactly two
distinct /, say, ¿i and l2, and so DQ(T^((0'1 ))) has exactly one infinite path for
I = li or l2, and none for all other /. Thus 2 < |[£>a(Tfc)]| < 3 (since possibly
(0")E[Da(Tk)]).

Part (D) is much harder to prove and requires some preparation.

5. The Reduction Lemma: The limit ordinal case. The first lemma
generalizes a lemma by Solovay for A = w [JLSSta] to arbitrary recursive limit
ordinals:

LEMMA l (APPROXIMATION LEMMA). Let X be a recursive limit ordinal and
{ an }„gw the increasing sequence with sup„ an = X given by our ordinal notation
for X (i.e., A = |3 • 5X\, |^I(n)| = an). Then there is a recursive function d
(uniformly in a notation for X) such that

(17) (\/y) [y E 0(x+x) <-» (3n)[d(y,n) E 0<Q" + 1)]].

Here 0^x+x) = (H(3 ■ bx))', and 0(<*- + 1) = (H(<px(n)))'.

PROOF. Recall that there are recursive functions ha¿ (uniformly in a, b) and
r.e. sets Pa (uniformly in a) such that

H(a) <i H(b) via ha¿ (for a <o b), and,
(18)

Pa = {b \ b <o a} for a EÛ.

(See Rogers [Ro67] for details.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



570 STEFFEN LEMPP

Now
(19)
2/G0(A+l)

~{2/}"(3-5l)ü/)i

~ (3«, v, s) [{y}{Du'D^(y) }ADuEH(3-5x)ADvn H(Z ■ 5X) = 0]

~ (3u,v,s)[{y}sD»'D»Hy) IA (V(zuz2 ) E Du)[zi E H(z2) A z2 <0 3 - 51] A

(V(*i,*a ) € A0[*i £ ff(«a) V ¿2 <o 3 • 5*]]
~(3u,t;,«,n)[{y}<IÏ-'I>"'>(y)iA

(V(2i,z2) € Du)[hZ2^x(n)(zi) EH(ipx(n)) A z2 G i^l(n),s A z2 E P3.5*] A

(V(zi,22) e L»t,)[(/i22,¥,i(„)(0i) £ i/(^(n)) A22€ P<px(n),s) V Z2Í Pz-sA]

«-» (3n)(3«,«,S)[Ai A (Q)[Af(^(n)) A Aj A Ex] A (Q)[(Af (^(n)) A Aj) V Hi]]
where (Q) denotes a bounded quantifier, and {y}(D"<D») that the computation uses
from the oracle set X at most that z E X for z E Du and that z $l X for z E Dv.

Now the matrix of the last expression is recursive in H(<px(n)) © 0', and thus
the expression following (3n) is recursive in (H(ipx(n + 1)))' = 0(ai+i + 1). This
establishes the claim of the lemma.     D

The first try at the construction of Tk at a limit ordinal level A satisfying (D)
would be to build T£,nk   , on top of (0nl ). However, we only know p(T¿A „)) = »„

or < an, so supn p(T¿7l n7) = A is possible independent of whether k E 0^x+x\
Our second try is to let the level an at which we "discover" that k E 0^x+x^

by Lemma 1, stop the higher levels by some kind of "permission" for extending
branches above (0ml) for m > n. However, this is hard since TÍ£> looks very
different from TZnk ,, so we have to introduce a very strong kind of permission at
all branchings of the much bigger tree Tí^ .. Keeping this in mind should make
the following construction seem less mysterious. This also requires a new induction
argument at the successor ordinal level.

For the sake of convenience, let a(kuk2,... ,kn) = (0kl10kn ... 0k"l) E 2<U1.
For a a recursive ordinal, the field of the a-strategy Fa (i.e., the largest possible
tree that Tk could be) is defined by

Fo = {(0n)|n€w},

Fa+i = {o-(n)~cr\cTEFa,nEuj}[JFo,

Fx = { o(n)~o I o G Fan, n G w } U F0

for A G LOR, A = |3 • 5»|, an = \<Py(n)\.
(Notice that the Fa's are all recursive sets, and that they do depend upon the
particular ordinal notation chosen. However, since we will always fix an ordinal
notation in advance this will not matter in the following.)

The ordinal ß% associated with a branching node o on Fa is defined by

(2l) f/£-l for/?££LORU{0},
P>o(k) = {^k for ^ = 7 € LOR, 7 = |3 ■ 5*|, ln = [<pz(n)\,

I undefined    for /?£ = 0.
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(Thus ß° is defined exactly for all nodes o E Fa of the form cr = o(ki ,k2,...,kn).
The ordinals /?" will determine the strategy above the node cr.)

The following lemma will be essential later:

Lemma 2 (Finite Exceptions Lemma). For any subtree S ç Fa and any
infinite path p E[S], {i\ p(i) = 1 } is finite.

PROOF. Otherwise there are ni,n2,n^,... Ew such that 0 C cr(m) E o(ni,n2)
E (ni,n2,ns) E • • • C p, so that all these nodes are in S and thus in Fa, but then
#0> /£(«,)< /£(»„n2)> ^(m.na.n,)' • • •is an infinite descending sequence of ordinals.
D

We call a tree T E Fa a-dense (for a a recursive ordinal) iff

(22)    (Vn G w n (a + l))(a.e. fci)(a.e. k2)... (a.e. kn)

[p(T(a(ki,k2,...,kn))) = ßZ{kuk2.fcn)].

I.e., in an a-dense tree, all appropriate subtrees of T have maximal rank possible.
For example, the only 0-dense tree is Fo itself; a tree T E Fi is 1-dense iff T(rj(n)) =
Fo for almost all n, etc.

LEMMA 3 (DENSITY LEMMA). Let a > 0 be a recursive ordinal, T Ç Fa a
tree.  Then T is a-dense iff (a.e. m)[T(a(m)) is ß",mydense].

PROOF.  (->) Trivial by definition.
(<— ) We only need to show (20) for n — 0. Suppose that for all m > m0,

p(T(o(m))) = /£(m). Since /?«(m) = a - 1 (for a $ LOR) or a = supm %{m) (for
a G LOR), we obtain p(T) = a.     D

LEMMA 4 (INTERSECTION LEMMA). Let a be a recursive ordinal. IfT and
T are a-dense, then so is T (IT.

PROOF. By induction on a: For a = 0, note that T = T = { (0m ) | m G w }.
For a > 0, use Lemma 3 and the fact that ß",m\ < a.     D

Notice that this would be false, for example, if we had defined a-dense just as
having rank a. For example, then the intersection of T,T Ç i\, both of rank 1,
could have rank 0.

The following lemma will be essential later for showing that the nesting of trees
works properly. (It is the first example of the property of trees that the subtree
above a certain node cr(ki,k2,... ,kn) looks exactly as if it were constructed by
itself.)

LEMMA 5 (NESTING LEMMA). Let ß < a be two recursive ordinals, and let
T Ç F0 be a ß-dense tree. Then f = {o G Fa \ (Vr Ç <j)[t E Fß -► r G T] } is
a-dense.

PROOF. By induction on ß: If ß = 0 then T = { ( 0m ) | m G w }, and f = Fa.
If ß > 0 then for almost every m, ß^,m) < /?"(m) > an<^' by Lemma 3, for almost

every m, T(o(m)) is /3^(m)-dense.   Therefore, by induction, for almost every m,

T(cr(m)) is /?",   --dense. Thus, again by Lemma 3, T is a-dense.     O
The following lemma is the key to the construction. We build trees, again by

induction, but with much stronger properties.  (However, in the successor ordinal
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case, we lose a finite number of levels, so we can use this construction only for the
proof in the limit ordinal case.)

For the sake of convenience, for an arbitrary ß < wfK with fixed ordinal notation,
define a sequence of predicates { Pa }a<ß

(0o\ p tir\      ) k E 0(Q+1'    if a is an even ordinal,
(ó) ^W~tfc£0("+1)    otherwise,
where a is an even ordinal if a = X + 2n for A G LOR U { 0 } and n Eu.

Lemma 6 (Strong Reduction Lemma). For any recursive ordinal a,
there exists (uniformly in an ordinal notation for a) a uniformly recursive sequence
{ T% }keul of trees T% Ç Fa such that

lnt,     pa(k) -y (a.e.ki)(a.e.k2)...(a.e.km)[p(TkD!(a(ki,k2,...,km))) < A], and
(24) -*Pa(k) —y Tk  is a-dense,

where a = X + m, XE LOR U { 0 }, m E ui.

PROOF. For a = 0, use the construction from (A) above.
For a a successor ordinal, say, a — ß + 1, assume without loss of generality that

a is even (the odd case is similar). Using (0("+2), 0(0+2)) <j (Fin^^Cof0'"'),
there are recursive functions h and ho such that

Pa(k) - k E 0^+2> - <<(1)) finite - {/ | / G W^l) } finite
-> {11 h(k, I) E 0{0+1) } finite -> (a.e. l)[Pg(h(k, /))],

-.Ptt(jfc) - k i 0^+2) -y w$k\ cofinite -» {/11 € W$k\ } cofinite
-► {I | h(k,I) E 0(ß+x) } cofinite -* (a.e.l)[->Pß(h(k,I))].

Fix k. At stage 0, put 0 into T£0. At a stage s > 0, put (0s ) and (0S_11 ) into
Tks and start the construction of T^,k sl, on top of (0S_11 ). The claim that this
works is immediate by (25) and Lemma 3.

For a a limit ordinal, let a = |3 ■ 52|, an = \<px(n)\, so { an }„ew is an increasing
sequence of ordinals with a = sup„ an. Slightly modify the function d from Lemma
1 so that

(26) (Vt/)[yG0<a+1> ^ (3n)[Pan(d(y,n))]],

and, for simplicity,

(27) (Vn)[Pa„-(d(y,n))^Pan+I(d(y,n + l))].

Given o E 2<u, we define the branch number b(o) = max{n | (0™) Ç o}, and
the decision set D(o) = { r Ç o \ (3f)[f~( 1 ) = r] }. (b(o) will determine the main
strategy at a, the nodes of D(a) the secondary strategies from lower levels.)

The construction for a a recursive limit ordinal now proceeds as follows: Fix k.
Àt stage 0, put 0 into T£0. At a stage s > 0, put (0s ) and (0S_11 ) into T£s; also
put any o E 2<u" into Tks for which the following conditions are satisfied:

(i)  M = *, er N«-l) €!£._!,
(ii) a E Fa, and

(iii)   (Vr G D(cr))(Vm < b(o))[am < ß? A a E T~Fam - o E r^(™m)].
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(Notice here that the construction is arranged in such a way that to any
a(ki,k2,... ,km), the construction above it looks the same as to a o(n) above
it. This will be an essential feature for the verification.)

Now suppose first that k E 0^a+x\ i.e., by the modification of Lemma 1,
Pan(d(k,n)) holds for all n > some fixed no- We then claim that p(Tk(o(n))) < ano
for all n, thus p(Tk) < ano + 1 < a as desired. The proof requires induction on
ano. (Of course, there is nothing to prove for an < ano.)

ano = 0: Let f = a(n). Then f~Fano = {<r(n)~(0m) | m E w }, so (0m° ) <£

Td(kn0) for some m°> and thus Tk{T~(0mo)) is finite. As for T£(o(n,m)) for
m < mo, apply the same proof to f = cr(n,m), etc. By Lemma 2, there is no
infinite sequence o(n), a(n, m), o(n, m, /), ... of such f's, so Tk(a(n)) is finite and
p(T?(o(n)))<ano.

Qn0 = ß + 1: There is mo such that Pß(h(d(k,no),m)) holds for all m > mo
where h is the function for ano and ß mentioned above in the proof for the successor
ordinal case. Now the a„0-construction works at a(n), and thus the /3-construction
at <j(n, m) for all m, through condition (hi) of the construction (putting r = o(n)).
Thus by induction (replacing ano and an by ß and ß"Pm)), there is some mo such
that p(T%((j(n,m))) < ß for all m > m0, so p(T^(a(ny(Om° ))) < ano. As for
Tk(o(n,m)) for m < mo, apply the same proof with r = a(n, m), etc. By Lemma
2, there is no infinite sequence <r(n), tr(n,m), a(n,m,l), ... of such r's, so Tk(cr(n))
consists of finitely many subtrees, each of rank < a„0, and thus p(Tk(a(n))) < a„0.

The above establishes p(Tk(o(n))) < ano < a for all n, so p(Tk) < ano +1 < a
in the successor ordinal case of ano.

ano E LOR: Then {/?CT(^\ jmgw is an increasing sequence with limit ano. There

is mo such that PRa"o (d(d(k,no),m)) holds for all m > mo where d is the coun-

terpart of / for ano as a limit ordinal. Now the ano-construction works at a(n),
and thus the ßa?^-construction at a(n,m) for all m, through condition (hi) of
the construction (putting r = o(n)). Thus by induction (replacing ano and an
by ßaolm) and ßo(m))^ we have that P{T^(o(n,m))) < ß£fco) for all m > m0 (this
part does not follow by induction for m with /?"(nm) < ßS^) but in that case it
is trivial anyway). Therefore, p(Tj?(a(n)~(Om° ))) < ano. As for Tg(a(n,m)) for
m < mo, apply the same proof with r = o(n,m), etc. By Lemma 2, there is no
infinite sequence cr(n), a(n,m), a(n,m,l), ... of such r's, so Tk(o(n)) consists of
finitely many subtrees, each of rank < a„0, so p(Tk(o(n))) < ano.

The above establishes p(Tk(o(n))) < ano < a for all n, so p(Tk) < ano +1 < a
in the limit ordinal case of ano.

On the other hand, assume that k $. 0^a+x\ Then Pa„(d(k,n)) does not hold
for any n. We claim that T£ is a-dense (and thus [Da(T%)] = { (0W) }). We
proceed by induction on ß = an, using Lemma 3:

an = 0: We have T?(o(n)) = T°(fcn) = { (0m ) \ m E u, }, so p(T(a(n))) = an.
an > 0: We have

(28)    7£(<r(n)) = {^ S Fan \ (Vr> E a)(Vr G D{à) U { 0 })(Vm < n)

[am < ß?" A à G T~Fam - b G T~T«Ckm)] }.
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Among these restrictions, we can distinguish three types:
(a) T ^ 0 (and thus m < n);
(b) r = 0 and m = n; and
(c) r = 0 and m < n.

Thus T(a(n)) is the intersection of the following three trees:
(a) Ti = {o E Fan | (Va Ç a)(Vr G D(b))(Vm < n)[am < ß?« A à E

T~Fam-yÖET~T^m)]};
(b) T2 = {oE Fan | (Va E o)[b G T-n)] } = T^n); and
(c) T3 = {o- G Fa„ | (Va Ç a)(Vm < n)[b G FQm -> b G T*£m)]} =

nm<„{^ e PQ„ | (Vr Ç o)[r G FQm - r G T^m)] }. (Call these trees
T3¡m for m < n.)

By Lemma 4, it suffices to show that each of Xi, T2, and the T3,m is a„-dense.
(a) Recall again the remark that the construction above <r(n) looks to an just

as it does to a above 0. For all /,

(29)
Ti(o(l)) = {oEF0an   | (Va Ç CT)(Vr G D(b) U {0})(Vm < n)

»(o
k<j3a"-   Aff€r'Fa    -»íGrT"™    ,] }.

Therefore, by induction on ß = an in (28) (with /?^,";, in place of an, and
/?a" ~   in place of /?""), Ti(a(/)) is /?";*„-dense for almost every Z.  Thus,

by Lemma 3, Ti is an-dense.);
(b) T2 is a„-dense by induction on the overall construction; and
(c) each T3iTO is a„-dense by induction and Lemma 5.

This concludes the proof of Lemma 6.      D
Lemma 6 now implies part (D) of the proof of the Reduction Lemma, and thus

Theorem B has been established.     □

6. A nj-complete index set. We can extend the above techniques to obtain
a n}-complete index set. (This follows up a suggestion by J. Steel.) We will use
the fact that Kleene's set 0 of ordinal notations is a n}-complete subset of u>.

Call a map / from a partially ordered set (poset) X into a poset Y an order
embedding if

(30) (V*,y e X)[x <x y ~ f(x) <Y f(y)].
(In particular, any order embedding is a 1-1 map.) Then we define:

DEFINITION. Let A C u be a hyperhypersimple or cofinite set.   Then A is
B-atomic if there is no order embedding / from the countable atomless Boolean
algebra S into C*(A), the lattice of r.e. supersets of A (modulo finite sets).

The following equivalent definition is easier to handle:

PROPOSITION. Let A C <j be a hyperhypersimple or cofinite set. Then A is
B-atomic iff A is a-atomic for some ordinal a.

PROOF. We will represent the countable atomless Boolean algebra B by certain
subsets of 2<CJ.

Given a E 2<w, let Ua = { r E 2<w | o E t } be the "cone" above a. Let T E 2<UJ
be a tree. Call U ET a finite regular cut in T if:

(i)  U is of the form U = T n Uo-gs Ua for some finite (possibly empty) set
SET; and
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(ii)  for any a E T — U, there is some r D o such that r E'T — U.

Then the set of finite regular cuts in T forms a Boolean algebra under the
following operations (see, e.g., Jech [Je78], for a similar construction):

(join) U \/V = least finite regular cut containing U U V
= {aGT| (Vt E T)[cr E t -^ (U 1>V) nUT ¿ 0]},

(meet) U A V = U n V,
(complement) — U = greatest finite regular cut disjoint from U

= {<jET[UC\Uo = 0},
(ordering) U < V *-+ U E V.

Let B be the set of finite regular cuts in 2<w. Then B is the countable atomless
Boolean algebra (since for any o E 2<u, Ua D U ~, „, D 0).

First assume that A is not a-atomic for any ordinal a. Then define the following
increasing sequence of filters in Z*(A). Yet 70 be the one-element filter, let 7a+i be
the filter in Z*(A) generated by the coatoms in Z*(A)/7a, and let 7\ = UQ<A 7a
for A a limit ordinal. Since A is not a-atomic for any a, Z*(A)/7a is n°t finite for
any ordinal a. Since Z*(A) is countable, Iao = Jao + i for some a0 < wi- Therefore,
Z*(A)/7ao is the countable atomless Boolean algebra. Fix an isomorphism i from
B into Z*(A)/7ao- The idea is now to "lift" i to an order embedding / from B into
C*(A). Yet h be a map from Z*(A)/7ao into Z*(A), picking a representative for
each equivalence class. Now define

f(0) = A*,
(31) f(U0) = h(i(U0)),

f(Uo~(k)) = f(U°) n h^Uo~{k))) for CT e 2<W' k e 2-

This obviously induces an order homomorphism from B into Z*(A). It remains to
check that / is 1-1. But i is 1-1, and h(U) = f(U) (mod7Qo); therefore / has to
be 1-1 also.

Conversely, assume that there is a hyperhypersimple set A which is a-atomic for
some a but not B-atomic. Pick ao to be the minimal such ordinal. We will reach
a contradiction by showing that ao cannot be minimal.

Let A be ao-atomic but not B-atomic. Let g be an order embedding from B
into £*(A). If g(U/o)) is in the <ao-atomic filter 7 then put Ao = g(U/o)), and
f { {U E B \U(o) Ç[/}isan order embedding of a countable atomless Boolean
algebra into £*(Ao). Otherwise, since A is ao-atomic (and thus [Z*(Aq)/7\ < 2),
we have that A = g(U^o)) (mod7). So Ao = AU g(U(0)) 1S <ao-atomic, and the
map {U E B \U E U,0)} ^ £*(A0), U t-^ AU g(U) is an order embedding of a
countable atomless Boolean algebra into C*(A0).

In either case, we have a <ao-atomic (say, a /Jo-quasiatomic) set Ao and an order
embedding / from B into £*(A0). Let 7q be the </?0-quasiatomic filter in Z*(Aq).
Then Z*(Aq)/7o is finite since Ao is /3o-quasiatomic. If [Z*(Ao)/7q\ < 2 then Ao is
/?o-atomic, and we have already reached a contradiction. Otherwise, pick two sets
Ai C A2, satisfying the following conditions:

(i)  there are Ui,U2 E B such that f(Ui) = A\, f(U2) = A*2, and <7i C U2;
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(ii)   So = {U E B | Ui Ç U Ç U2} forms a countable atomless Boolean algebra;
and

(iii)  A* and A2 represent distinct equivalence classes ci and c2 in Z*(A0)/7o
such that there is no c G Z*(Aq)/7o with Ci < c < C2.

Let h be the map W ^ W U A~2. Then h oJJ [ { W* | Ax E W Ç A2 r.e.})
is an order embedding from fl0 into Z*(Ai U A2), and Ai U A2 is pVatomic, a
contradiction.      D

Let Atß be the index set of B-atomic sets. We are now in a position to exhibit
a n}-complete index set. Recall that Kleene's 0, the set of ordinal notations, is
nj-complete.

THEOREM C.   0 <i AtB-

COROLLARY.   The index set of B-atomic sets is Yl{-complete.

PROOF. It suffices to show that AtB is nj. But
(32)
leAtß« -(3/ : B -* w)(VÍ7, V E B)[WX E Wf{u) A (U < V «-» W/m E* Wnv))].

(Of course, B can easily be coded by the integers.)      D
PROOF OF THEOREM C. Extending our machinery to Yl\, we again have to

prove a Correspondence Lemma and a Reduction Lemma.

Correspondence Lemma. Let T ç 2<u' be a T,2-tree. Then p(T) < oo iff
At is B-atomic.

PROOF. By the Correspondence Lemma for Theorem B and the above propo-
sition, p(T) < oo iff (3a)[p(T) < a] iff (3a)[Ar is (1 + a)-quasiatomic] iff AT is
B-atomic.     G

Now let 7 = { T E 2<bJ \ p(T) < oo }.

REDUCTION LEMMA. There is a 1-1 reduction 0 <i indices of recursive trees
ofT.

PROOF. Let us first analyze how we can "discover" that some integer x is not
an ordinal notation.   We will illustrate this with the help of a partial map Sx
(predecessor tree) from oj<uj to w. Define Sx : w<c" nuby induction as follows:

Sx(0) = x,
(33) [y if Sx(o) = 2y and y ¿0,

Sx(<r~(i)) = l {z}(i) if Sx(a) = 3-5*,
y undefined   otherwise.

Let Px (set of predecessor notations of x) be the set Px — { Sx(o) J. | o E w<ÜJ —
{0}}-

Then x is not an ordinal notation iff one of the following holds:

(i)  Sx contains an infinite path (i.e., there is an infinite descending chain of
predecessors of x);

(ii)  for some a E w<w and some i, Sx(o) | # 1 and Sx(a~(i)) Î; or
(iii)  for some a E lo<u and some i < j, Sx(a) is of the form 3-52 and Sx(a~(i)) |

ëps,(<T(j)y
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Now, given x, construct a recursive tree Tx as follows. The tree will be recursive
by induction on the length of strings a E 2<u\ Define
(34)

{(0*)|t€w} ifx=l,

Tx= <
TiUlJieJ(OnorTy)U\JieJ(On*rTy)        if x = 2y andy^O,
^UUg.((0î10)'f^)UUîg.((0n2)-f2,î)    ifx = 3-5*,

. 2<UJ otherwise.

Here, Tz ¿ is defined as follows:
(35)

f2<sU((0srr{2}(l))    if {z}s(i)[ and, ifi^O,
Tz¿ = < {z}s(i - 1) I G P{z}(i),s (with s minimal),

12<UJ otherwise.
First suppose that x is an ordinal notation. We prove by induction on |x| that

p(Tx) = |x| < oo. There are three cases:
x = 1: Then |[TX]| = 1 and p(Tx) = 0 < oo.
x = 2y: Then p(Tx) = p(Ty) + 1 = |y| + 1 = \x\ < oo.
x = 3 • 5Z: Then p(Ttti) = \{z}(i)\ and therefore p(Tx) = sup¿€w \{z}(i)\ = |x|.
On the other hand, assume that x is not an ordinal notation. Then one of the

above conditions (i)-(iii) holds:
(i) There is an infinite descending chain of predecessors of x, say, x = xo,xi,X2,

X3,_  Then, by construction, there is a sequence ci,02,(73, • • • of binary strings
such that, for all i > 0,

(36) 0 / af( ki )>T< k2y... ~ar{ kt )~T„ Ç Tx
for any ¿-tuple (ki, k2,..., fc¿) G 2%. Therefore

(37) T~or(T(i)ro-2~(T(2)r..ralTl_r(T([T\-i))
is a mapping from 2<w into a perfect subtree of Tx, and so p(Tx) — op.

(ii) For some a E co<w and some i E w, Sx(o) 1^1 and Sx(cr'~(i)) j. Then
T^Tgx(a) Ç Tx for some r G 2<w; and for the construction of T§x(o), the second
clause of (35) or the fourth clause of (34) applies. Therefore, t~(0110)~2<uj Ç Tx,
and so p(Tx) = 00.

(iii) For some a E u)<UJ and some i < j, Sx(o) — 3 • bz and Sx(o~(i)) J. ̂
Ps , ■-»,   ,,. Then again t^Tqx(o) Q Tx for some r G 2<w, and the second clause of

(35) applies for fz>j. Therefore, t~(V>10)~2<u E Tx, and so p(Tx) = 00.      D
This concludes the proof of Theorem C.     D

7. An index set in major subsets. Lachlan [La68] defined the following
notion of two r.e. sets A Coo B being "close" to each other:

DEFINITION. Let A Cœ B be r.e. sets. Then A is major in B (A cm B) iff

(38) (VW r.e.)[ßC* W->A~E*W].

(38) is equivalent to either of the following two conditions:

(38') (VW r.e.)[B EW ^ÄE* W],
(38") Z*(Ä) = Z*(B),
where Z*(X) is the lattice of r.e. supersets of X (modulo finite sets).
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The classification of the index set { ( e, i ) \We Cm Wt } has been one of the open
questions in index sets for a while. The major obstacle here is that A Cm B implies
that B is nonrecursive. This makes the uniformity required for the classification
hard. We present below a partial result towards the classification of this index set:

THEOREM D. Let V be a nonrecursive r.e. set. Then the index set Maj^ =
{ k | Wk cm V } is Yin-complete.

PROOF. It is easy to see that Majv is n4:

Wk Cm V «-» Wk Coo V A (Ve)[V U We ¿ to V Wk U We =* w]
(39) ~ n3 A (Ve)[E2 V E3]

^n4.

We will build (uniformly in k) an r.e. set Ak Coo V such that Ak Cm V iff
A; ̂  0*4^. (We will usually suppress the index A; on A from now on.)

We use the fact that there is a recursive function h such that

* i 0(4) - (Vi)[Wfc(*,<) cofinite],
fc G 0(4) -> (3t)[Wfc(*,¿) coinfinite].

Fix fc from now on, and let Wh(k,i),a = { hsQ < hf1 < h*2 < •■•}•
The idea of the proof is now to have for each i two conflicting strategies, a

positive strategy trying to establish (38') for W¡, and a negative strategy trying
to build a counterexample B to A Cm V. Which strategy succeeds will depend
on whether Wn(k^ is cofinite or not. (If Wh^k^ is coinfinite then the strategies
working on i' > i will not matter.)

For the basic module of the positive Pe-strategy, we use a variant of Lachlan's
strategy [La68] to construct a major subset. Let We<a = {x G We^a \ (Vy < x)[y G
We,a U Vs]}, and let We = Us We<a. Then We = We if We D V, and We is finite
if We 2 V. In the former case, we have to take action for the sake of We; in the
latter case, the strategy will only have a finite effect on the rest of the construction.
Furthermore, let / be a 1-1 enumeration of V (recall that V has to be infinite).
Finally, let Va — As = { dg, df, d2,..., d*s } where the markers dan need not be in
order. (The markers d* will be undefined for n > na.)

At stage 0, let A0 = 0, let d% = /(0), and let d° be undefined for n > 0. At a
stage 5+1, first determine if f(s + 1) E WeiS and d| ^ We¡a for some ñ < na. If
so, for the least such ñ, put cr~ into As+i, let d?+1 = f(s + 1), and let d^+1 = dan
for all n ^¿ ñ (for the sake of A C* We). Otherwise, let d^^ = f(s + 1), and let
d£+1 = dsn for n ^ na + 1 (for the sake of A Coo V).

Since V is nonrecursive, V is not r.e. Suppose V E We (and thus We = We).
Since { x | (3s) [x E Wet3 A x E Va] } is r.e. and contains V we have that

(41) (3°°s)(3x)[x G Va+i -VaAx€ WeJ.

Therefore, f(s + l) G We,a for infinitely many s, so any marker d* will be moved
until it is in We, and so A E We. (These strategies will later be combined using
e-states as first introduced by Friedberg in his maximal set construction [Fr58].)

The basic module for the negative A/-strategy tries to build a set B refuting
A cm V, i.e., such that V Ç B and that V - (A U B) is infinite. At the nth time
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the strategy acts, it will wait for \V — (A U B)\ > n, then put min(V) into B (for
the sake of V Ç B) and restrain another element of V — (A U B) from entering A
(to make V - (A U B) infinite).

Suppose that A Coo V. Then the strategy will act infinitely often (else B and
thus V - A would be finite). SoFcñ and V - (A U B) is infinite. (Notice that
we really only have to restrain forever from A an infinite subset of the restrained
elements of V - (A U B).)

We have to let the success (or failure) of the A/-strategy depend on whether
Wfc(fc,t) is coinfinite (or cofinite). Recall that Wh(k¿)¡a = { hs 0 < hf t < hs 2 < ■ ■ ■}■
Yet the A/-strategy only restrain at stage s + 1 at most ma = min{ n \ h™s+1 ^ /i"s }
many elements. If Wn(k¿) is coinfinite then lims ms = oo, so the A/-strategy can
eventually restrain more and more elements from A permanently. If Wh(k<i) is
cofinite then m = lim inf s 77173 < 00, so the A/-strategy can restrain at most m
elements permanently from A. (Notice that if one ^/-strategy is allowed to succeed
the lower-priority P-strategies will not matter since this A/-strategy will satisfy the
overall requirement A £m V.)

Combining all strategies requires two minor changes:
First of all, a stronger P-strategy may injure a weaker A/-strategy by putting

infinitely many elements into A that are restrained by the A/-strategy. So the latter
has to be able to predict which elements the P-strategy will put into A. This is
done in a straightforward tree argument fashion.

Secondly, if a P-strategy is forced to always observe the current restraint of the
stronger A/-strategies then a synchronization problem may arise. Good elements
(i.e., numbers f(s + 1) E We,a) may come up only when the restraint is high, so
the P-strategy may not achieve its objective even if the lim inf of the restraint is
finite. To resolve this conflict, we will, roughly speaking, make the P-strategy only
observe (for d*) the lowest restraint since some d^ with m < n moved. (This will
be done through the control function Q. An alternative way to resolve this conflict
would be to delay putting the elements into A.)

Before describing the full construction, we will define all the parameters. Let
Ai = oj and A2 = 2 be the sets of outcomes of the M- and P-strategies, respectively.
Let
T = { o G (Ai U A2)<a; | (Vï < |<r|)[(» even -> o(i) G Ai) A (i odd -» a(i) G A2)] },

and let Ti and T2 be the sets of nodes of even and odd length in T, respectively.
For each k, let { Wn^k^ }¿eu, be a uniformly r.e. sequence of sets such that k E
0(4) iff (3i)[Wn(k¿) coinfinite]. Without loss of generality, assume that Wh(kli)<a ̂
Wh(k,i),a+i for all k, i, s. The construction of A = Ak will be controlled by markers
hls where W^~^s = {/i°s < hxs < h}s <••■}.

Fix a recursive 1-1 enumeration / of V, and let Vs = {/(0),/(l),/(2),... ,/(s) }.
Let We,s = { x E We,a I (Vy < x)[y G W6jS U Va] }, and let We = ljs We,8. Define
the estates a(e,x,s) = {e' < e \ x E We',a }, and cr(e,x) — limso-(e,x,s). De-
note the elements of the difference set V — A by markers d8^ so that Vs — As =
{ dg, d|, d2, d..., d* }. The order of these markers will be determined by the con-
struction, and markers d* will be undefined for n > na.

Each ^/-strategy a G Ti builds its own set Ba, trying to disprove A Cm V by
Ba ■ It has to take into account the action of stronger P-strategies in building Ba
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and imposing restraint of A. So it will use

(( \

(42) Ua P|       We,,s    nVs     -(AsUBa,
2e'<\a\

\V»(2e'+1)=o       J       J
(instead of Vs — (AsUBa,s) as in the basic module). Notice that Ua =* V-(AuBa)
if a has a correct guess about the higher-priority P-strategies.

We define <5S (with |<5S| = 2s), the recursive approximation to the true path, by
induction:
(43)

<5s(2e) = min{ n | K¡s ¿ h^s, } where s' = max({ 0 } U { t < s \ 6S [ 2e E 6t }),

( 0   if We,s # We,„. where
6s(2e + 1)= I s> = max({ 0 } U { t < s \ 6S r (2e + 1) Ç 6t }),

y 1    otherwise.
For P-strategies a = ß~(m) E T2, define the restraint function by:

{min{ r | \Ua,s fl [0, r) | = m V r = 1 + max(i7a)S) }
if ß E 6S or s = 0,

rs-i(ß~(m))    otherwise.

(Recall that restraint is imposed by A/-strategies ß E Ti, but the restraint that ß
imposes depends on Wh^k^ and thus differs below distinct outcomes m (the current
guess for \Wh{k^\) of ß.)

For P-strategies a G T2, define the control function by
(45)

{00 if a Ç 6S or a >¿ 6S or s = 0,
n if a <l Ss and a moved Yn at stage s (as defined below),
Qs_i(a)    otherwise.

The construction of the r.e. set A and the r.e. sets Ba (for all a E Ti) now
proceeds as follows:

At stage 0, let A0 = Ba,o = 0 (for a E Ti), let dg = /(0), and let d°n be
undefined for all n > 0.

At a stage s + 1, perform the following two steps:
For all A/-strategies a E Ti with a E 6S, put min(Vs U ßQ,s) into Ba,s+i if

|c^oi,sI ^ \-t>a,s\-
Secondly, for the sake of the P-strategies, choose no to be the least n <ns such

that
(46)    (3e < n)[a(e - 1, f(s + 1), s) = o(e - 1, d*, s) A

f(s + 1) G We,s A d* g VKe,s A<> max{rs(a) \ a < 7 A a G T2 }
(where 7 < <5S is leftmost with | —y| = 2e +1 and Qs(l) > n)].

If no exists then put d*0 into As+i, let df+x — f(s + 1), and let d^+1 = dsn for
n ^ n0.  (We say 7 moved Yno at stage s + 1.)  Otherwise, let d^"^ = f(s + 1),
and let d£+1 = dsn for n^ns + l.

This concludes the construction.
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Lemma l (Marker Convergence Lemma). For all n, dn = limsd* is
defined. (Thus A Coo V.)

PROOF. By induction on n: Suppose dm is defined for all m < n, and d^ = dm
for all s > so, say. Then d* is defined for all s > so and changes only finitely often
since it increases its n-state each time (and the n-state is nondecreasing between
these changes).      D

Lemma 2 (True Path Existence Lemma). If Wh(k<i) is cofinite for all
i < io, then ao — lim infs 6S [■ 2z'o exists.

PROOF. By the definition of 6S, we have for i < io:

a0(2i) = |Wh(fc,i)|,

0 if Wi is infinite,
1 otherwise .    D

Lemma 3 (Outcome Lemma). Fixi0.
(i)  If ao = lim inf s Sa f- 2io exists, then V E Bao, and

ßo = öo'(m) A (3<°°s)[6s <L ß0] -

(48) (V/3 G T2)[ß < ß0 -y r(ß) = lim inf rs(ß) < oo exists]

A\Uaon[0,r(ßo))\=m.

(ii)  If 7o = lim infs 6a [ (2io + 1) exists, then either Wi0 is finite (if 7o~( 1 ) =
liminfsAs { (2io + 2)) orÄE* Wl0 (if lo~(0) = lim inf s Ss [ (2i0 + 2)).

PROOF.  By simultaneous induction on io'-
(i) We first establish V C Bao- By the construction, it suffices to show that Bao

is infinite (since we always put min(Vs U BaQtS) into Bao)- Suppose for the sake of
a contradiction that Bao is finite. Then for all s with ao Q 6S, \Uao,s\ < |ßa0,sl-
But Uao is a difference of r.e. sets, so \Uao\ < \Bao\. By (ii), A Ç* Wi for i < i0
with a0(2z) = 0, and therefore Uao =* V - (A U Bao). But then Uao =* V - A is
finite, contradicting Lemma 1.

Let us now show (48). By induction on (i), choose so such that

(49) (Vs > s0)(^a G T2)[a < a0 [ (2»0 - 1) - rs(a) = r(a)].

(This assumption is vacuous for io = 0.) Next, by our assumption on ßo and the
definition of rs(ß), pick si > so such that

(50) (Vs > Sl)(V/? G T2)[ß < /îo A /? ̂  (1^1 - 1) ^ ao - rs(ß) = r(ß)].
Furthermore, since by the construction Qs(ß) cannot increase while ß <¿ ôs, and
since ß has a correct guess about the P-strategies 7 C ß, pick s2 > si such that

(51) (Vs > s2)(V/? G Ta) [(ß <L ßo -► Qs(ß) = hmt Qt(ß)) A
(V7 C /?o)[|7l = 2i + 1 A ß0(2i + 1) = 1 - 7

does not move any element at stage s]].

Finally, let o = {i < io | W% infinite}. Then by (ii),

(52) (3n0)(Vn > no)[<r(t'o " l,d„) = a].

(47) a0(2t + l) ■
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Pick S3 > S2 such that

(53) (Vs>s3)(Vn<n0)K = d„].

We will now show (48) by induction on m (for fixed ao). For m = 0, trivially
r(ßo) =0. Yet m > 0. Let r = 1 -r-max({r(a0~{m - 1)) } U {dn | n < n0}). Pick
«4 > S3 such that

(54) (Vs>s4)[rs(a0~(m-l)) = r(a0~(m-l)) A

Xu[{r + l)=X[{r + 1) for all X = Wi (for i < i0), V, A, and Bao].

By the first part of (i), we have limsup{ |f/Q0)a| | ao < 6S } = 00, so pick S5 > s4
such that ao Ç SS5 and li/ao.ssl — m-

We claim that

(55) (Vs > s5)[rs(ß0) > rs+i(ß0) A \Uao,s n [0,rs(ß0))\ > m].

Suppose for the sake of a contradiction that for some s > «5, Uao,s f~l [0, rs(ßo)) %
Ua0,s+i H [0,rs(ßo)). Then some x G Ua0yS entered Bao or A. The former is
impossible by the construction of Bao (since x EVS). But x cannot enter A since:

(a) no 7 > ßo^(m) can move x by the restraint imposed;
(b) no 7 <l ßo"(m) can move x, or else Qs(l) > Qs+i(l), contradicting the

assumption on S2; and
(c) no 7 C ßo will move x since either x d¿ Wi¡s (if |7| = 2i+l and ßo(2i +1) =

0), or 7 no longer moves any element (if |7| = 2i + 1 and ßo(2i + 1) = 1).
(Notice that rs(ßo) may still drop a finite number of times as Uao gets new small
elements.)

Now (55) establishes (48).
(ii) By (i), pick so such that

(56) (Vs > S0HV7 G T2)[7 < 7o - rfr) = ra{~t)].
Yet i?(7o) = max{ r(7) | 7 < 70 A 7 G T2 }. Since 70 Ç 6a for infinitely many s, we
also have lims Qa(io) = 00. Let o = {i < io \ W% infinite }, and assume that Wl0 is
infinite. Then WG = C\ieo Wi DV. By induction on (ii), pick no > io such that

(57) (Vn > n0)H¿o - l,dn) = <r - { i0 }].

Since V is not recursive,

(58) (3°°s)[f(s + l)eWo,s].

Suppose that o(io, dn) = a — {io } for some n > no with dn > R(io). Pick si > so
such that

(59) (Vs > si)[gs(7o) > n A (Vn' < n)[dsn, = dn.]].

Then dn will be moved by (58), contradicting our assumption. Thus Wl0 = Wi0 D*
A.     D

It is now easy to see that the lemmas imply Theorem D.
First suppose that A; G 0'4'. Then Wh(kjio) is coinfinite for some (least) z'o- By

Lemma 2, ao = liminfs 6S f 2io exists, and

(60) (Vm)(3<oos)[¿s<La0~(m)].
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Therefore, by Lemma 3 (i), V E Bao, and Uao is infinite. But then V — (A U Bao)
is infinite, so Bao witnesses that A <£m V.

On the other hand, assume that k d¿ 0(4). Then Wh{^k^ is cofinite for all i. By
Lemma 2, liminfs<5s \ 2i exists for all t. Therefore, by Lemma 3 (ii), either Wi
is finite or A Ç* Wi = Wi for all i. Furthermore, by Lemma 1, A Coo V. Thus
AcmV\

This concludes the proof of Theorem D.     D
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