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Abstract

Background: Combined assessment of leaf reflectance and transmittance is currently limited to spot (point)

measurements. This study introduces a tailor-made hyperspectral absorption-reflectance-transmittance imaging

(HyperART) system, yielding a non-invasive determination of both reflectance and transmittance of the whole leaf.

We addressed its applicability for analysing plant traits, i.e. assessing Cercospora beticola disease severity or leaf

chlorophyll content. To test the accuracy of the obtained data, these were compared with reflectance and

transmittance measurements of selected leaves acquired by the point spectroradiometer ASD FieldSpec, equipped with

the FluoWat device.

Results: The working principle of the HyperART system relies on the upward redirection of transmitted and

reflected light (range of 400 to 2500 nm) of a plant sample towards two line scanners. By using both the

reflectance and transmittance image, an image of leaf absorption can be calculated. The comparison with the

dynamically high-resolution ASD FieldSpec data showed good correlation, underlying the accuracy of the HyperART

system. Our experiments showed that variation in both leaf chlorophyll content of four different crop species, due to

different fertilization regimes during growth, and fungal symptoms on sugar beet leaves could be accurately estimated

and monitored. The use of leaf reflectance and transmittance, as well as their sum (by which the non-absorbed

radiation is calculated) obtained by the HyperART system gave considerably improved results in classification of

Cercospora leaf spot disease and determination of chlorophyll content.

Conclusions: The HyperART system offers the possibility for non-invasive and accurate mapping of leaf transmittance

and absorption, significantly expanding the applicability of reflectance, based on mapping spectroscopy, in plant

sciences. Therefore, the HyperART system may be readily employed for non-invasive determination of the spatio-temporal

dynamics of various plant properties.
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Background
Breeding of stress resistant crops for sustainable agricultural

purposes is coupled with the identification of targeted traits

and their genetic background [1-4]. In this content, the de-

velopment and application of non-invasive systems becomes

of outmost importance for plant phenotyping applications

[4,5]. For this purpose, imaging techniques hold a prominent

position in estimating various plant characteristics, ranging

from pigment content to infection from diseases.

Light arriving on the leaf surface can be reflected,

transmitted, or absorbed by the leaf. Quantifying the

spectral characteristics of these components, by employ-

ing hyperspectral cameras can be very informative for the

physiological status of the plants under research. Such

spectroscopic retrieval of plant traits is recently gaining

attention in the phenotyping community [6,7], not only

due to their explicit connection with the leaf function and

composition, but also due to the prospect of applying the

method as imaging spectroscopy. This methodology offers

the acquisition of information for the plants under study,

without making physical contact with them. For instance,

by using reflectance data, chlorophyll content of Arabi-

dopsis thaliana [8] and disease symptoms’ incidence of

Beta vulgaris [9-13] were recently monitored. Previous

studies, however, are mostly limited to find optimal reflect-

ance wavelengths (combination of those in form of indices)

or methods that use reflectance signatures related to leaf

characteristics such as chlorophyll content, nutritional sta-

tus, or infection by diseases. This may be explained by the

limited possibilities to measure transmittance in a rapid

fashion. Despite diverse attempts in this field the technical

possibilities still stay unexhausted. Measurements based

only on reflectance or only on transmittance obviously neg-

lect a part of the existing spectral information. Currently

there are no known imaging approaches that can meas-

ure reflectance and transmittance simultaneously and

derive absorption of plant leaves. We hypothesize that

plant properties will be better estimated when both re-

flectance and transmittance are taken into account. Their

simultaneous quantification will be highly advantageous

for academic and industry-oriented research purposes as

demonstrated in our results presented below.

Currently available instruments to quantify hyperspec-

tral plant reflectance and transmittance (e.g., integrating

sphere and leaf clip) operate in the spot scale (i.e., a few

cm2) [14-16]. Therefore, several spots per leaf need to

be assessed, in order to have an average value that is

representative for the whole leaf. In this way, scaling

plant reflectance and transmittance measurements to

the entire leaf level will enable a more comprehensive

assessment of a larger number of plants. More import-

antly, whole-leaf measurements offer spatial resolution

allowing non-invasive observation of changes in leaf tissue

owing to stressors.

Here we present a novel tailor-made instrument,

named HyperART (Hyper = hyperspectral and ART

Absorption, Reflectance, Transmittance), which quan-

tifies simultaneously reflectance and transmittance at

the whole-leaf scale. Firstly, we compare the data,

obtained by the newly-introduced equipment, with a well-

established high-performance spot-scale device (ASD- Field-

Spec equipped with FluoWat; [17,18]). The FluoWat leaf-

clip provides the possibility to record both reflection and

transmission spectra of a single-point (i.e., limited in size)

on a leaf. Secondly, we evaluated whether Cercospora beti-

cola disease progression, a wide-spread pathogen, is more

accurately derived by using the Cercospora Leaf Spot Index

(CLSI) calculated from both reflectance and transmittance,

as compared to the estimation that is solely based on reflect-

ance. The CLSI index is computed by using wavelengths

that were identified to be sensitive to the C. beticola disease

symptoms [13]. Further, we tested the additional advantage

of the HyperART in the estimation of leaf chlorophyll

content of four species (i.e., maize, barley, rapeseed, tomato),

based on twenty two commonly-used optical indices.

This paper introduces a novel tailor-made device, called

HyperART. It can measure simultaneously spatially- and

spectrally- resolved reflection and transmission, allowing

the calculation of the spectral absorption image. This

additional layer of information is expected to improve the

quantification of plant traits. The above-mentioned mea-

surements were performed with a comparable accuracy as

with clip-on devices. The HyperART system also provides

spatial information that can be potentially used to quantify

spatial or temporal dynamics of leaf tissue changes. This is

important as almost all processes or changes occurring in

a leaf do not take place simultaneously throughout the

whole tissue, but have initial points, from where they start

spreading. The two employed case studies highlight the

possibilities and advantages of the instrument. These are

mainly the improved accuracy of results and the upscal-

ing from the spot to the leaf level, encouraging its

employment in future phenotyping studies.

HyperART a novel measurement system

The HyperART system is a novel imaging system devel-

oped for non-invasive evaluation of leaf properties, based

on recordings of reflectance, transmittance and absorption.

In contrast to commercially-available instruments that

allow point measurements (i.e., limited to only few cm2),

this new equipment offers mapping of the whole leaf. For

highest precisions, a geometrically precise system and flat

samples deserve careful consideration, as described below.

Currently, two prototypes of the HyperART system are

available (Figure 1a, b). The first prototype (Figure 1a)

was used for the first case study (sugar beet), while the

second prototype (Figure 1b) was employed for the mea-

surements of the second case study (rapeseed, tomato,
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maize and barley). The main components of both proto-

types include: i) a custom-made rectangular clip to hold

and flatten the leaves (Figure 1K), ii) two mirrors which re-

direct both the reflected and transmitted light (Figure 1I),

iii) an illumination system (Figure 1D), iv) an imaging sys-

tem, composed by two hyperspectral cameras (together

offering a spectral range of 400–2500 nm; Figure 1B), and v)

a slide bar which moves the imaging system (first

prototype; Figure 1a A) or the custom-made rectangu-

lar clip holding the sample (second prototype; Figure 1b

M). The main difference between the two prototypes

relies on the position of the light source (relative to the

mirror) and the scanning procedure (i.e., movement of the

imaging system or the clip). The different components of

the HyperART system will be described firstly, followed by

its working principle.

A

C

D
E

F
G

K

J

I

L

45°

a) b)

B

H

M

c)

Figure 1 Two prototypes of the HyperART system with an image example. (a, b) Schematics of the hyperspectral absorption reflectance

transmittance imaging (HyperART) system, employed for simultaneous recording of both reflectance (ρ) and transmittance (τ). In the first

prototype (a) the camera is moving, whereas in the second one (b) the samples are moved. A, scan direction; B, line scanner; C, field of view;

D, illumination source; E, light beam; F, reflected light; G, transmitted light; H, black painted metal sheets (to avoid direct illumination of the mirror from

the light source and to reduce light scattering in the scanning process); I, mirrors; J, plant, of which leaves are fixed in the clip; K, clip, where leaf sample

is placed; L, framework; M, slide bar. (c) Calculation of absorption (α) in the hyperspectral cube (acquired by the HyperART system), based on ρ and τ.
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Custom-made rectangular clip

It consisted of two frames that were connected at the

top (Figure 1K). The frames had dimensions of length ×

width × depth equal to 32 × 41 × 0.5 cm (inner dimensions

28 × 20 cm), and can host samples as large as 560 cm2.

The clip keeps the leaf samples as flat as possible. In the

first prototype, the frames were made from metal. More-

over, a metal wire, at a distance of 1.5 cm in the horizontal

direction of the frame, was used to position the leaves. The

frames and the wire were painted with black mat colour

(Dupli Color, MOTIP DUPLI GmbH, Haßmersheim,

Germany). In the second prototype, the frames were manu-

factured from cast polymethylmethacrylat sheet (Plexi-

glas®GS, Evonik Industries AG, Essen, Germany), and were

also painted with black mat colour (described above). Leaf

positioning was performed by tight black fishing lines

at a distance of 2 cm in both horizontal and vertical

(frame) directions.

Mirror

A flat surface mirror (gertenbach.info e. K., Wölltein,

Germany) was employed, having a minimum of 85% spec-

tral reflectance performance (in the range of 400–700 nm)

at 45° angle relative to illumination. The first prototype

contains two (rectangular) mirrors with dimensions of

length × width × depth equal to 28 × 20 × 0.5 cm. The sec-

ond prototype employs four (rectangular) mirrors with

the following dimensions: length × width × depth equal to

25.5 × 0.5 × 0.3 cm. In both prototypes, the mirrors were

placed exactly at 45° relative to both the leaf clip (thus the

leaf sample) and camera planes.

Illumination system

In the first prototype, sample illumination was offered

by two double-ended halogen lamps (OMNILUX®

230 V/4000 W R7s 118 mm, OMNILUX, Waldbüttelbrunn,

Germany), placed in a halogen spotlight reflector. In the

second prototype, similar lamps (OMNILUX® 230 V/120 W

R7s 117 mm, OMNILUX, Waldbüttelbrunn, Germany)

were placed into a custom made tube reflector from a

polished-sheet metal. The lamps were covered with frosted

quartz glass, which diffuses the light in order to avoid

shadows and enhance the quality of the acquired hyperspec-

tral data. A custom-made converter was employed to trans-

form (rectify) alternating current to direct current (residual

ripple ≤ 5%). This was a three-phase power supply unit,

manufactured by a company (J.Schneider Elektrotechnik

GmbH, Offenburg, Germany). Direct current was pref-

erable for obtaining hyperspectral data by using a line

scanner, since it prevents the fluctuation of the halogen

lamp emission, which would take place under alternating

current. In both prototypes, the lamps were placed in

order to illuminate one side of the leaves.

Hyperspectral imaging system

The HyperART system hosted two hyperspectral cam-

eras employed on sequence, and together offering a

spectral range between 400 and 2500 nm. Both devices

work as push broom line scan cameras. The first hyper-

spectral camera (PS V10E, Spectral Imaging Ltd., Oulu,

Finland) employs a high speed interlaced CCD detector.

It is sensitive in the 400 to 1000 nm range, and offers a

spatio-spectral resolution of 1392 × 1040 pixels. The

nominal spectral resolution is 2.8 nm full width half

maximum (FWHM). The spectral sampling interval de-

pends on the spectral binning and varies between 0.63

and 5.06 nm. In our experiments with the first proto-

type, a binning of 4 (spectral resolution) and 1 (spatial

resolution) was employed. In the experiments with the

second prototype, a binning of two (spectral resolution)

by two (spatial resolution) was employed. The second

hyperspectral camera (SWIR, Spectral Imaging Ltd., Oulu,

Finland) uses a cooled, temperature-stabilized MCT de-

tector, which is sensitive to the spectral range between

1000 and 2500 nm. The sensor can acquire 320 spatial

pixels’ and 256 spectral bands’ images. The spectral sam-

pling rate is 6.3 nm, combined with a nominal spectral

resolution of 10 nm (FWHM).

Scanning procedure

At the first prototype, the two hyperspectral cameras were

fixed on a slide bar (BiSlide, Velmex Inc., Bloomfield, NY,

USA) that moves along an 1.5 m path at a constant speed

(≈15 mm sec−1). The cameras were moved in parallel to

the middle line and between the opposite standing mir-

rors. As the hyperspectral cameras were moved along the

slide bar, they recorded the reflected and transmitted light

of the whole leaf sample, which was placed in the clip, as

explained above. In the second prototype, the hyperspec-

tral cameras were fixed on a framework over the mid-

dle point and between the opposite standing mirrors

(Figure 1b L). In this case, the clip (holding the leaf

sample) was moved along the middle line, between the

mirrors that were fixed on the slide bar (Figure 1b M).

The working principle of the HyperART system was

identical for both prototypes, and enabled the upward

redirection of transmitted and reflected light from the

leaf sample towards the hyperspectral camera system

through the mirrors. Thus, the unique advantage of the

HyperART system is that a reflectance and transmittance

image of a leaf can be recorded simultaneously by a single

hyperspectral camera. For measurements, leaves must be

positioned into the clip (Figure 1K), which can be done

without excising them from the plant, since the pot (≤17 cm

height) can be placed below the clip frame (Figure 1a J).

Placing the leaves between the frames directs the leaf surface

into a flat plane. Inside the clip, the leaves were illuminated

from one side, while the leaf was positioned between the
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two mirrors (Figure 1I). Each mirror faced a different side of

the clip (thus the sample). In the first prototype, the light

source was placed behind one mirror, and opposite to the

sample at an angle of 45° (Figure 1a D). In the second proto-

type, the light source was placed from the sides of mirrors

(Figure 1b D) that allowed nearly direct illumination of the

sample. The mirrors posed both the clip window with the

sample, and the camera, at a 45° angle. One mirror

redirected the reflected light (Figure 1a F) to the two

line scanners (i.e., upwards; Figure 1B), while the other

mirror did the same for the transmitted light (Figure 1a

G). The distance of the upper mirror edge to the two

line scanners was set to 0.85 m for both prototypes.

To determine the incoming electromagnetic radiation

by the first prototype, a 99% reflective white standard

(Spectralon, Labsphere Inc., North Dutton, NH, USA)

was placed instead of the clip. This was done before and

following the measurements. In the second prototype, the

transmitted light was determined by placing a white diffuser

lambertian transmission sheet (Zenith Polymer® ≈ 50%

transmission, SphereOptics GmbH, Uhldingen, Germany)

between the mirrors.

Image processing

Hyperspectral images were processed by using ENVI

4.8 (Exelis Visual Information Solutions, Inc., Boulder,

CO, USA) and MatLab R2012b (MathWorks®, Natick,

Massachusetts, USA) Software. Different protocols were

used for image pre-processing obtained from the first and

second prototype.

First prototype

Firstly, a dark frame image was subtracted from both the

leaf and white reference images (Fastspec extension of

ENVI). Secondly, images were cut to separate the reflection

and transmission images. The transmission image was

flipped to overlay the reflection image, and co-registered

by the corresponding points in order to correct slight dis-

tortions, produced by image acquisition (VLFeat toolbox in

MatLab; [19]). In the next step, each image pixel was

divided by the corresponding pixel within the white refer-

ence image, and multiplied by a correction factor for white

reference material (provided by Labsphere Inc.), aiming at

both correcting for illumination differences and achieving

relative values (Spectral Math tool of ENVI).

Second prototype

In this prototype images needed modified processing

steps since the scan procedure was different as com-

pared to the first prototype. Additionally to the white

standard, we here measured a white diffuser lambertian

transmission sheet, before scanning the plant samples.

By mosaicking both white references we got a white ref-

erence image with the same numbers of lines as the

sample image. The sample image was normalized by this

white reference image for reflection and transmission

sides line by line using a normalisation tool from SPECIM

(Spectral Imaging Ltd., Oulu, Finland) implemented in

ENVI. The transmission image was then flipped and co-

registered. With the objective to obtain correct relative

values, a correction factor was applied to the reflection

and transmission images (provided by Labsphere Inc. and

SphereOptics GmbH, respectively).

Absorption mapping

Based on the assumption that the sum of absorption (α),

reflectance (ρ) and (flipped) transmittance (τ) equals to 1

(Figure 2), α was calculated by subtracting ρ and τ from

the unit (i.e., α = 1 – ρ + τ) for images acquired by using

both prototypes. The α contains the information about

leaf components and is not sensitive to light scattering

effects, caused by leaf surface properties [20]. However,

it is not practical to apply different vegetation indices on

α, because these indices were developed for approaches

based on ρ measurements. To highlight the advantage of

the newly-introduced HyperART system and make the

data comparison clear, a ρ comparable spectral signature

ought to be employed. Therefore, the non-absorbed

radiation ρ + τ images (that are equal to inverted α because

ρ + τ = 1 – α) were used in analysis.

Results and discussion
Validation of HyperART spectral data

Reflectance and transmittance spectral signatures of sugar

beet leaves were recorded by using either the HyperART

system or the FieldSpec spectoradiometer, equipped with

a FluoWat device (Figure 2a). In order to validate the

HyperART-obtained measurements, reflectance (ρ), trans-

mittance (τ), and the sum of reflectance and transmittance

spectra (non-absorbed radiation, ρ + τ) were compared to

the FluoWat spectra (Figure 2).

A similar ρ and τ spectrum acquired by either device

was found (Figure 2a). Over the full ρ spectral range

(except 1400–1500 nm), relative values acquired by the

HyperART system were 1–5% lower than those of Fluo-

Wat. For the τ spectra, the HyperART system data yielded

either higher (>800 nm) or lower (550 nm) values than

those of the FluoWat data. However, the difference in the

τ spectra was minor (≈1%), as compared to the difference

in the ρ spectrum. In the FluoWat device, there was an

overlap between the ρ and τ spectra at the near infrared

region (NIR, 736–1100 nm) (Figure 2a). HyperART ρ and

τ spectra were overlapping in the 1012–1031 nm region.

Because of this overlap, the normalized α spectrum is not

presented. The noted differences between the values, ob-

tained by the two devices, might be due to the fact that

the leaf regions measured by the FluoWat device, are not

exactly identical as the selected (for comparison) areas in
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the images obtained by using the HyperART system. The

gap of the values observed at 1000 nm at both ρ and τ

spectra, is due to the configuration of the FieldSpec and

the hyperspectral imaging system. Both devices combine

two different sensors, where the first one covers the region

up to 1000 nm, while the second one includes longer

wavelengths (i.e., ≥ 1000 nm).

For the ρ, τ, and ρ + τ HyperArt normalized spectra

(Figure 2b) the highest deviations were observed in the

photosynthetic active radiation region (PAR, 420–

730 nm) and around the water absorption band at

1450 nm. For the whole spectrum (420–1700 nm),

standard deviations of 0.07 (ρ), 0.19 (τ) and 0.07 (ρ + τ)

were found. These low standard deviation values indicate

that the data obtained with the HyperART system are

comparable to those taken by using FluoWat.

The coupling of two hyperspectral cameras (i.e., VNIR

and SWIR) might be important for future work, where

additional traits, from those studied here, are of interest.

For instance, the spectral region, offered by the SWIR

camera (i.e., 1000–2500 nm), is often employed to detect

senescence and water stress symptoms [21,22]. We were

able to show that the HyperART system performs well

with the SWIR camera, though its potential in detecting

plants characteristics is not dealt in the current study.

The SWIR images and the VNIR images can be matched

together using corresponding points. This matching of

VNIR and SWIR images may assist extended spectral

signature for every pixel in only one image. However

the spatial resolution in the VNIR image needs to be

adjusted to the SWIR image or vice versa.

Cercospora beticola symptoms

Following the data comparison between the HyperART

system and FluoWat device we tested if the HyperART

is suitable for the detection of Cercospora leaf spot

Figure 2 Comparison of spectral signatures obtained by FluoWat and HyperART devices. (a) Reflectance (ρ) and transmittance (τ) spectra

of sugar beet leaves acquired by using FluoWat or the hyperspectral absorption reflectance transmittance imaging (HyperART) system. Data are

expressed as relative values. Dashed areas indicate SEM (n = 5). (b) Quotients of ρ, τ and sum of ρ with τ (i.e., ρ + τ) of spectral data acquired by

using FluoWat and the HyperART system.
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disease. Therefore normalized histograms (Figure 3) of

the CLSI images with the leaves of one infected and

one non-infected sugar beet plant were analysed and

compared among each other. Additionally the precision

of the unsupervised classification on the ρ, τ and ρ + τ

CLSI images of the infected leaves were verified

(Figure 4).

Three leaves of the infected sugar beet plant (shown

in Figure 4) can be described by visual inspection as: i)

symptom-free leaf (lower leaf in Figure 4), ii) leaf
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Figure 3 Values difference in normalized histograms of Cercospora Leaf Spot Index (CLSI) images. Normalized histograms (estimated

probability functions PDF) of the calculated CLSI values based on (a) reflectance (ρ), (b) transmittance (τ) or (c) combination of ρ with τ (i.e., ρ + τ).

Spectra were acquired by using the hyperspectral absorption, reflectance, transmittance (HyperART) imaging system. Measurements were conducted

on three leaves of an infected sugar beet plant, and on three leaves of another non-infected (control) sugar beet plant. The two leaves of the former

plant showed visual symptoms of infection, whereas the third one was symptom-free.
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Figure 4 (See legend on next page.)
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with ≈ 30% infected area (upper leaf in Figure 4), and iii)

leaf with ≈ 50% necrotic area (middle leaf in Figure 4). In

order to assess the CLSI value changes induced by patho-

gen infection, the CLSI histogram from three leaves of the

non-infected control plant was also computed.

The CLSI shows similar bimodal distribution when

calculated from ρ (ρCLSI), τ (τCLSI), or ρ + τ (ρ + τCLSI)

images of leaves with infection symptoms. The normalized

histogram of the leaves attached on the control plant, or

the symptom-free leaf, attached on the infected plant, were

clearly different (Figure 3). Furthermore there is a differ-

ence between the normalized histogram of inoculated but

still symptom-free leaf and the normalized histogram of

control leaves. They both show a single maximum only,

however, the distribution of the symptom-free leaves show

a heavy right tail, whereas the control leaves are normally

distributed. As a right tail is an index shift towards

infection symptoms, this indicates that pre-symptomatic

fungal development changed leaf spectral properties.

Therefore the CLSI offers a perspective for using the

method in early detection of fungal infection stages.

The normalized histograms of the symptomatic leaves

showed a shift from the right peak that is related to the

degree of leaf infestation. While the normalized ρ and

ρ + τ histograms are Gaussian-like, the normalized τ his-

tograms were sharper, indicating a lower noise influence.

Peak locations varied for the different measurement mo-

dalities. The distance between the peak locations were

larger in τCLSI and largest in ρ + τCLSI compared to

ρCLSI. This might enable a better assignment of the

pixels into the categories infected or non-infected. The

bimodal amplitude (Ab) was equal to 0.45, 0.48 and 0.43

for ρCLSI, τCLSI and ρ + τCLSI, respectively, being in

accordance with our observation of sharper peaks in the

normalized τCLSI-histogram. Considering all CLSI histo-

grams, it can be stated that over 90% of the pixels in the

index images were distributed between −1.7 and −0.2.

Higher values indicate increasing disease severity and

vice-versa.

The computed CLSI value range in this study differs

due to variation in plant properties and measurement

method from the range (−0.45 to 0.3) reported in the lit-

erature [13,23]. For instance, leaf pigment content, as well

as leaf internal and external structure have been shown to

affect plant reflectance properties [24]. In addition, illu-

mination conditions (e.g., shadow or illumination angle)

during measurement or measurement methodology (e.g.,

point measurements, leaf scale or canopy scale) can also

raise differences in the CLSI values’ range. The differences

in CLSI value may be explained by the use of 698 nm and

734 nm wavelengths in CLSI equation. These wavelengths

are located in the red edge spectral region, and are sensi-

tive to chlorophyll content [25-28]. The sensitivity at

698 nm is translated to decreased reflectivity (thus lower

CLSI values in the normalized part of equation), as

chlorophyll content increases. When we subtract lower re-

flectance value (due to chlorophyll absorption at 734 nm)

from the normalised part of equation then this might pro-

duce slightly higher CLSI values of the leaves attached on

the control plant, as compared to the symptom-free leaf

attached to the infected plant.

To investigate the classification performance, the tissue

having CLSI values lower than the lower peak center was

categorized as ‘non-infected’ (≈27%, 14%, and 21% of the

pixels for ρCLSI, τCLSI, and ρ + τCLSI, respectively), while

tissue giving higher values than the higher peak center is

termed as ‘infected’ (≈14%, 19%, and 36% of the pixels for

ρCLSI, τCLSI, and ρ + τCLSI, respectively). The remaining

pixels (≈59%, 67%, and 43% for ρCLSI, τCLSI, and

ρ + τCLSI, respectively) between the peaks allow the pres-

ence of classification errors. This observation leads to the

conclusion that the separation of infected from non-

infected leaf tissue is better done with the ρ + τCLSI image,

since most of the tissue area is unambiguously classified.

In the RGB τ image, the reddish colour may be an in-

dication of anthocyanin production in the (sugar beet)

leaves, due to infection (Figure 4). The CLSI images have

a rainbow colour code, ranging from −1.7 (blue) to −0.2

(red) (Figure 4), which is similar to the histograms in

Figure 3. The ρCLSI image seems to have a slightly

higher noise level, as compared to the other images. The

τCLSI image shows a better contrast between extremes,

while the ρ + τCLSI image differentiates the initial symp-

tom and its growing borders. The unsupervised classifi-

cation yields 93.4%, 92.3% and 94.7% overall accuracy

(automatically calculated in ENVI using contingency

matrix which did compare supervised classification with

unsupervised classification) for the whole ρCLSI, τCLSI

and ρ + τCLSI images respectively, being well in accord-

ance with our previous observation. In total, the ρCLSI

index classification quantifies 33.9% of the tissue as

infected (i.e., 66.1% non-infected), while the τCLSI index

(See figure on previous page.)

Figure 4 RGB, colour coded Cercospora Leaf Spot Index (CLSI) and total classification error images. Images were calculated from

reflectance (ρ), transmittance (τ) and combination of ρ with τ (i.e., ρ + τ) of sugar beet leaves infected by Cercospora beticola. The classification

was performed by supervised SVM (support vector machine) classification on hyperspectral images, and unsupervised K-Mean (on CLSI images)

using two classes (visible symptoms and plat tissue without visible symptoms). Images were acquired by using the hyperspectral absorption

reflectance transmittance imaging (HyperART) system. The rectangular panels in the images show the enlargement of red bordered infected

leave surface.
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classification led to an estimation of 29.3% infected tis-

sue area (i.e., 70.7% non-infected). The ρ + τCLSI image

classification results in 31.8% infected leaf area, and gave

the best overall accuracy, as explained below.

The total classification error images (Figure 4) suggest

that the noise in the ρCLSI image leads to an overesti-

mation of infected area. This overestimation may be due

to the leaf veins or shadow parts, as a result of leaf wavi-

ness. Another error source is an overlay of leaves by the

black wire taut in the leaf clip. The opposite is noted for

the τCLSI image classification, where the non-infected

area seems to be overestimated. This overestimation of

the non-infected area might be due to both the overlap-

ping region between the two leaves, which were together

placed in the clip, and an underestimation of the symptom

border. The τCLSI was found to feature comparably low

noise, being also in accordance with the sharper peaks in

the respective histogram (Figure 3). The ρ + τCLSI image

gave the best class separation, supressed noise and counted

overlapping regions that led to the most precise estimation

of disease severity. In the ρ + τCLSI image, the unsuper-

vised classification gave a 99.4% of non-infected tissue area

in the symptom-free leaf. The infected leaves were clas-

sified to have 38.7% and 44.6% infected areas, respectively.

In general, our visual estimation had an error between

5.4% and 8.7%, as compared to the image classification

results. Therefore, the machine-based classification

method (in our case the HyperART system) was found

to be more precise and reliable in quantifying disease

severity, as compared to assessments based on visual

inspection [29].

Leaf chlorophyll content estimation

Leaves of four species (maize, rapeseed, barley and to-

mato), grown under two different nitrogen regimes, were

analysed for chlorophyll content. The relationships be-

tween 22 optical indices (summarized in Table 1), calcu-

lated from 3 source HyperART images (ρ, τ, and ρ + τ) and

destructively-assessed chlorophyll content were analysed

(i.e., 66 indices = 22 optical indices × 3 HyperART source

images). Both logarithmic (Table 2) and linear (Table 3)

regression models were employed for the analysis.

Out of 66 indices, a significant and positive correlation

(P < 0.001; R2
≥ 0.5) between calculated chlorophyll con-

tent and destructively measured content was found in

25 and 18 indices for logarithmic and linear regression,

respectively (bold highlighted in Tables 2 and 3).

Importantly, 23 (out of the 25) and 17 (out of the 18) indi-

ces for logarithmic and linear regressions, respectively,

were computed from τ and ρ + τ source images (bold italic

highlighted in Tables 2 and 3). These results indicate that

the additional τ measurements per se or in combination

with ρ (i.e., ρ + τ) result in higher correlation coefficients

between measured and estimated chlorophyll content.

Logarithmic regressions always gave higher correlation

coefficients, as compared to linear regression models

(Tables 2 and 3). Previous work also reports that indices

are non-linearly related to chlorophyll content [31]. The

highest correlation coefficients (i.e., 0.63 ≤ R2
≤ 0.72) were

noted in the logarithmic regression models of the follow-

ing five indices: ρ + τEVI, τmND, ρ + τmND, τVOG, and

ρBGI2 (Table 2, and Additional file 1: Figure S1). Import-

antly, the good correlation of these five indices with the

destructively-measured values was driven by differences

in chlorophyll concentration, owing to both the growth

nitrogen regime and species.

Indices developed for carotenoids’ pigment changes

(i.e., SIPI, PSRI) showed a poor relationship with chloro-

phyll content (i.e., R2
≤ 0.52; Tables 2 and 3). Indices,

traditionally used for vegetation monitoring (i.e., NDVI,

SR, mSR), did not obtain as good results as red edge and

combined indices (Tables 2 and 3). For NDVI specific-

ally, its low performance might be explained by the fact

that it changes only when chlorophyll concentration do

not exceeds the value of 10 μg cm−2 [31,46]. In this

study, chlorophyll concentration was eight- to nine-fold

higher than this value. Indices developed for maximal sen-

sitivity to leaf area index (i.e., MACRI, TCARI, TCARI/

OSAVI) presented low correlation coefficients (i.e., R2
≤

0.44; Tables 2 and 3). This is because the aforementioned

indices are not sensitive to changes in chlorophyll content

at low leaf area index values [43], as those of this study

where a set of a few leaves were assessed.

Interestingly, indices based on the off-chlorophyll absorp-

tion centre wavebands (690–730 nm; e.g., mND, VOG)

seemed to perform better than indices based on the main

chlorophyll and carotenoids’ absorption regions (450–550

and 670–680 nm, respectively; e.g., NDVI, MCARI) [47,48].

Besides the optical indices, employed here, there are

also other approaches to estimate chlorophyll content by

using spectral signature [49-51]. In this paper, we look

into the first methodology, due to the simplicity of com-

putation and implementation in studying plant proper-

ties. However, the performance of the HyperART, when

using the aforementioned more elaborate approach,

stays unexhausted and necessitates further work.

Conclusion
The HyperART system was designed to provide data with

high spectral and spatial resolution, which can be readily

employed for phenotypic measurements, such as disease

detection and quantification of chlorophyll content. The

newly-introduced HyperART system scans entire leaves,

attached to the plants, whereas currently-used instruments

(e.g., FluoWat) are limited to spot (point) measurements.

The system measures both reflectance (ρ) and transmit-

tance (τ) data, by which the absorption (α) spectrum

can be calculated, with one sensor. In this study we
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demostrated that HyperART measurements were consist-

ent with data acquired with the well-established FluoWat

device. We were able to show that the estimation of

chlorophyll content of entire leaves, sampled from four dif-

ferent crops, was reasonably accurate. Moreover, it was

shown that the system leads to an improved detection and

quantification of disease symptoms (model plant-pathogen

interaction Cercospora beticola and Beta vulgaris spp. vul-

garis). Finally, it was noted that the non-absorbed radiation

signal (i.e., ρ + τ) reduced data noise in disease detection

and significantly improved the estimation of leaf chloro-

phyll content across species with different leaf structure.

Based on our results, we suggest that the HyperART

system holds a high potential for studying plant responses

to both biotic and abiotic stressors at the entire leaf level.

Methods
Plant material and growth conditions

Two experiments were conducted, each case study focused

on another set of species. Both experiments took place in a

greenhouse located in the western part of Germany

(Jülich, 50°N; 6°E).

Experiment I: Cercospora beticola infection

Two single plants of a sugar beet line (Beta vulgaris ssp.

vulgaris; identification number 8RF5006 (HS) KWS SAAT

AG, Einbeck, Germany) were cultivated. During growth,

air temperature and relative air humidity were 20.9 ± 6.9°C

(range: 8.5–47.6) and 59.6 ± 21.7% (range: 8.2–96.9),

respectively. Supplementary light was provided by high-

pressure sodium lamps (SON-T Agro, 250 W, Philips,

Table 1 Formulas and abbreviations of the employed vegetation indices

Index Equation Indicator (Scale) Reference

Area under continuum-
removed curve

ANCB650 − 720 : Continuum removal based method Chlorophyll a & b content (Canopy) [30]

Blue/Green index BGI2 ¼
R450
R550

Chlorophyll content (Canopy) [31]

Chlorophyll green index Chlgreen ¼ R790
R550

− 1 Chlorophyll (Leaf) [32]

Chlorophyll red edge index Chlred edge ¼ R790
R705

− 1 Chlorophyll (Leaf) [32]

Enhanced vegetation index EVI ¼ 2:5 � R800−R670
R800þ6 � R670−7:5 � R400þ1

Chlorophyll (Canopy) [33]

Modified chlorophyll
absorption reflectance index

MCARI ¼ R701 − R670ð Þ− 0:2 � R701 − R550ð Þð Þ � R701
R670

Chlorophyll (Leaf, Canopy) [34]

Modified normalized
difference index

mND ¼ R750−R705
R750þR705−2 � R445

Chlorophyll (Leaf) [35]

Modified simple ratio mSR ¼ R750 − R445
R705 − R445

Green biomass Chlorophyll (Leaf) [35]

Normalized difference index ND ¼ R750 − R705
R750 þ R705

Chlorophyll (Leaf) [36]

Normalized difference
vegetation index

NDVI ¼ R800−R670
R800þR670

Biomass, leaf area (Canopy) [37]

Structure insensitive pigment
index

SIPI ¼ R800−R455
R800þR680

Carotinoid/chlorophyll a ratio (Leaf) [38]

Simple ratio 1 SR750=710 ¼ R750
R710

Chlorophyll (Canopy) [39]

Simple ratio 2 SR ¼ R800
R670

Green biomass (Canopy) [40]

Pigment specific normalized
difference a

PSNDa ¼ R800−R680
R800þR680

Chlorophyll a (Leaf) [41]

Pigment specific normalized
difference b

PSNDb ¼ R800 − R635
R800 þ R635

Chlorophyll b (Leaf) [41]

Plant senescence index PSRI ¼ R680 − R500
R750

Plant senescence (Leaf) [42]

Pigment specific simple ratio a PSSRa ¼ R800
R680

Chlorophyll a (Leaf) [41]

Pigment specific simple ratio b PSSRb ¼ R800
R635

Chlorophyll b (Leaf) [41]

Transformed chlorophyll
absorption in reflectance
Index

TCARI ¼ 3 � R700−R670ð Þ−0:2 � R700−R550ð Þ � R700
R670

� �� �

Chlorophyll (Canopy) [43]

Transformed chlorophyll
absorption in reflectance
Index/Optimized soil-Adjusted
vegetation index

TCARI
OSAVI

¼ 3 �
R700−R670ð Þ−0:2 � R700−R550ð Þ � R700

R670ð Þ
1þ0:16ð Þ � R800−R670

R800þR670þ0:16

Chlorophyll (Canopy) [43]

Triangular vegetation index TVI = 0.5 * (120 * (R750 − R550) − 200 * (R670 − R550)) Leaf area and chlorophyll content (Canopy) [44]

Vogelmann VOG ¼ R740
R720

Chlorophyll (Leaf) [45]

The scale (leaf or canopy), at which these are commonly used, is also presented.
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Eindhoven, The Netherlands), at 200 μmol m−2 s−1

photosynthetic photon flux density for 16 h per day.

Plants were grown in 1 L pots, filled with soil mixture

(1:1, v/v) of Hawita Dachstaudensubstrat (HAWITA

GRUPPE GmbH, Vechta, Germany) and Pikiererde

(Einheitserde Typ P Pikier, Balster Einheitserdewerk

GmbH, Frödenberg, Germany). Plants were kept well-

watered, and were weekly provided with nutrient solu-

tion (0.2%; Hakaphos Blau, COMPO GmbH & Co. KG,

Münster, Germany) starting from the second week fol-

lowing emergence. The amount of nutrient solution was

60 mL per plant (up to 4 weeks following emergence), and

was subsequently increased to 80 mL. Plants were grown

for six weeks (starting from 17th of July, 2012) up to the

developmental stage 18 of the BBCH scale [52].

Before inoculation, the pathogen Cercospora beticola

was grown on agar plates (1.5%; Sigma-Aldrich Chemie

GmbH, Taufkirchen, Germany), containing 50% vegetable

Table 2 Vegetation indices performance based on a logarithmic regression model

Index Rank Source COR R2 F P Index Rank Source COR R2 F P

ANCB 8 ρ + τ 0.80 0.64 66.94 0.00 PSNDb 7 τ 0.80 0.64 67.86 0.00

13 τ 0.77 0.60 56.98 0.00 20 ρ + τ 0.75 0.56 48.48 0.00

26 ρ 0.71 0.50 37.60 0.00 43 ρ 0.55 0.30 16.15 0.00

BGI2 9 ρ 0.80 0.63 65.65 0.00 PSRI 53 τ 0.37 0.14 6.02 0.02

27 τ −0.69 0.48 34.56 0.00 54 ρ + τ 0.35 0.12 5.41 0.03

48 ρ + τ 0.46 0.22 10.41 0.00 61 ρ 0.15 0.02 0.82 0.37

Chlg 38 ρ + τ 0.60 0.36 21.10 0.00 PSSRa 23 τ 0.74 0.55 45.88 0.00

41 ρ 0.56 0.31 17.32 0.00 49 ρ + τ 0.45 0.20 9.49 0.00

57 τ 0.25 0.06 2.58 0.12 65 ρ 0.08 0.01 0.23 0.64

Chlre 15 τ 0.77 0.59 54.90 0.00 PSSRb 12 τ 0.78 0.61 58.42 0.00

22 ρ + τ 0.75 0.56 47.42 0.00 21 ρ + τ 0.75 0.56 48.36 0.00

33 ρ 0.63 0.40 25.60 0.00 51 ρ 0.41 0.17 7.64 0.01

EVI 1 ρ + τ 0.85 0.72 99.16 0.00 SR1 10 τ 0.80 0.63 65.28 0.00

34 τ 0.62 0.38 23.21 0.00 17 ρ + τ 0.76 0.58 53.06 0.00

44 ρ 0.54 0.29 15.88 0.00 31 ρ 0.66 0.44 30.07 0.00

MCARI 36 ρ −0.61 0.37 22.07 0.00 SIPI 24 τ 0.72 0.52 41.39 0.00

46 τ 0.51 0.26 13.02 0.00 52 ρ + τ 0.38 0.14 6.38 0.02

47 ρ + τ −0.49 0.24 12.24 0.00 66 ρ −0.03 0.00 0.03 0.86

mND 3 τ 0.83 0.69 85.43 0.00 SR2 18 τ 0.76 0.58 51.62 0.00

4 ρ + τ 0.82 0.67 76.13 0.00 45 ρ + τ 0.53 0.29 15.16 0.00

28 ρ 0.69 0.47 34.36 0.00 63 ρ 0.10 0.01 0.42 0.52

mSR 14 τ 0.77 0.60 56.46 0.00 TCARI 37 ρ −0.60 0.36 21.16 0.00

40 ρ + τ −0.57 0.32 18.27 0.00 42 ρ + τ −0.56 0.31 17.09 0.00

56 ρ −0.29 0.08 3.46 0.07 64 τ 0.09 0.01 0.32 0.57

ND 2 τ 0.84 0.70 90.52 0.00 TCARI/OSAVI 30 ρ −0.67 0.44 30.36 0.00

6 ρ + τ 0.80 0.65 69.52 0.00 32 ρ + τ −0.66 0.43 29.11 0.00

29 ρ 0.69 0.47 34.36 0.00 59 τ −0.21 0.04 1.71 0.20

NDVI 16 τ 0.77 0.59 54.01 0.00 TVI 50 ρ + τ 0.43 0.19 8.68 0.01

35 ρ + τ 0.62 0.38 23.20 0.00 55 τ 0.29 0.09 3.57 0.07

58 ρ 0.23 0.05 2.16 0.15 62 ρ 0.14 0.02 0.81 0.37

PSNDa 19 τ 0.76 0.57 50.71 0.00 VOG 5 τ 0.82 0.66 75.39 0.00

39 ρ + τ 0.57 0.33 18.40 0.00 11 ρ + τ 0.78 0.61 60.69 0.00

60 ρ 0.18 0.03 1.22 0.28 25 ρ 0.71 0.50 37.91 0.00

Determination (R2) and correlation (COR) coefficients, as well as significance level of the relation between the 22 vegetation indices (abbreviations in Table 1) and

destructively-measured chlorophyll content. Vegetation indices were calculated based on reflectance (ρ), transmittance (τ) or combination of ρ with τ (i.e., ρ + +τ)

source images. Indices were ranked based on the R2 value (all three source images were included in the ranking). The entire leaf surface was averaged (n = 40). All

four species (maize, rapeseed, barley and tomato) were plotted together (examples are shown in Additional file 1: Figure S1). Plants were grown under control or

deficient nitrogen levels. Bold text indicates R2 values greater or equal to 0.5.
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juice (Gemüsemix, Eckes-Granini Deutschland GmbH,

Nieder-Olm, Germany). Pathogen cultivation took place

in a growth chamber, set at 60% relative air humidity and

26°C air temperature. The pathogen was kept on the agar

plates for 3 weeks. To stimulate conidia production, plates

were placed under ultraviolet light (340–400 nm) for

3 days before conidia collection. Subsequently, conidia

were scraped with a slide, and were suspended to an aque-

ous solution containing Tween20 (0.1%; Sigma-Aldrich

Chemie GmbH, Taufkirchen, Germany). The solution

concentration was set to 3 × 104 conidia mL−1 using a

hemocytometer (Thoma chamber, Carl Roth GmbH+Co.

KG, Karlsruhe, Germany). Plant inoculation was con-

ducted, as previously described by Schmidt et al. (2008)

[53]. Following inoculation, plants were kept at 80–100%

relative air humidity for one week. During that time, air

temperature was 24 ± 0.3°C (range: 15–35). Light intensity

was set to 300 μmol m−2 s−1 one day after inoculation.

Table 3 Vegetation indices performance based on a linear regression model

Index Rank Source COR R2 F P Index Rank Source COR R2 F P

ANCB 12 τ 0.75 0.56 49.14 0.00 PSNDb 17 τ 0.73 0.53 42.17 0.00

15 ρ + τ 0.74 0.55 45.75 0.00 23 ρ + τ 0.65 0.43 28.49 0.00

28 ρ 0.62 0.39 24.20 0.00 49 ρ 0.45 0.20 9.53 0.00

BGI2 5 ρ 0.78 0.61 59.78 0.00 PSRI 52 τ 0.34 0.12 4.97 0.03

31 τ −0.60 0.36 21.79 0.00 56 ρ + τ 0.27 0.07 3.05 0.09

42 ρ + τ 0.50 0.25 12.68 0.00 64 ρ 0.05 0.00 0.09 0.77

Chlg 37 ρ + τ 0.55 0.30 16.15 0.00 PSSRa 18 τ 0.71 0.51 39.52 0.00

43 ρ 0.49 0.24 11.86 0.00 50 ρ + τ 0.37 0.14 6.16 0.02

57 τ 0.23 0.05 2.12 0.15 66 ρ 0.02 0.00 0.02 0.88

Chlre 13 τ 0.75 0.56 47.68 0.00 PSSRb 9 τ 0.76 0.58 52.50 0.00

19 ρ + τ 0.71 0.50 38.59 0.00 20 ρ + τ 0.70 0.48 35.76 0.00

34 ρ 0.59 0.34 19.80 0.00 53 ρ 0.33 0.11 4.67 0.04

EVI 1 ρ + τ 0.83 0.70 87.37 0.00 SR1 6 τ 0.78 0.60 57.58 0.00

24 τ 0.65 0.42 27.30 0.00 16 ρ + τ 0.73 0.54 43.81 0.00

40 ρ 0.52 0.27 13.72 0.00 29 ρ 0.62 0.39 23.97 0.00

MCARI 35 ρ −0.58 0.34 19.23 0.00 SIPI 30 τ 0.61 0.37 22.38 0.00

39 ρ + τ −0.52 0.27 14.32 0.00 55 ρ + τ 0.29 0.08 3.39 0.07

48 τ 0.46 0.21 10.01 0.00 63 ρ −0.08 0.01 0.27 0.60

mND 4 τ 0.80 0.64 67.83 0.00 SR2 14 τ 0.74 0.55 45.79 0.00

7 ρ + τ 0.77 0.59 55.58 0.00 47 ρ + τ 0.46 0.21 10.05 0.00

26 ρ 0.63 0.39 24.65 0.00 65 ρ 0.04 0.00 0.06 0.81

mSR 10 τ 0.75 0.57 49.85 0.00 TCARI 38 ρ −0.54 0.29 15.61 0.00

33 ρ + τ −0.59 0.35 20.20 0.00 45 ρ + τ −0.48 0.23 11.14 0.00

54 ρ −0.31 0.10 4.15 0.05 60 τ 0.13 0.02 0.67 0.42

ND 3 τ 0.80 0.64 68.15 0.00 TCARI/OSAVI 32 ρ −0.59 0.35 20.27 0.00

11 ρ + τ 0.75 0.56 49.16 0.00 36 ρ + τ −0.56 0.31 17.12 0.00

27 ρ 0.63 0.39 24.65 0.00 59 τ −0.13 0.02 0.68 0.41

NDVI 22 τ 0.66 0.43 28.78 0.00 TVI 44 ρ + τ 0.48 0.23 11.46 0.00

41 ρ + τ 0.51 0.26 13.30 0.00 51 τ 0.35 0.12 5.35 0.03

58 ρ 0.16 0.03 1.00 0.32 61 ρ 0.13 0.02 0.67 0.42

PSNDa 25 τ 0.64 0.41 26.88 0.00 VOG 2 τ 0.80 0.64 68.85 0.00

46 ρ + τ 0.47 0.22 10.87 0.00 8 ρ + τ 0.76 0.58 52.70 0.00

62 ρ 0.12 0.01 0.56 0.46 21 ρ 0.68 0.46 32.31 0.00

Determination (R2) and correlation (COR) coefficients, as well as significance level of the relation between the 22 vegetation indices (abbreviations in Table 1) and

destructively-measured chlorophyll content. Vegetation indices were calculated based on reflectance (ρ), transmittance (τ) or combination of ρ with τ (i.e., ρ + +τ)

source images. Indices were ranked based on the R2 value (all three source images were included in the ranking). The entire leaf surface was averaged (n = 40). All

four species (maize, rapeseed, barley and tomato) were plotted together. Plants were grown under control or deficient nitrogen levels. Bold text indicates R2 values

greater or equal to 0.5.
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The control plants were inoculated with an aqueous solu-

tion containing only Tween20 (0.1%). Measurements were

conducted about three weeks after inoculation, when

symptoms of Cercospora beticola infection were visible.

Experiment II: Nitrogen deficit

Two dicotyledonous crops [rapeseed (Brassica rapa cv.

Campino) and tomato (Lycopersicon esculentum cv.

Harzfeuer)] and two monocotyledonous crops [maize

(Zea mays cv. Gelber) and barley (Hordeum vulgare cv.

Barke)] were grown under controlled conditions in a

greenhouse. During growth period, air temperature and

relative air humidity were 21.1 ± 0.3°C (range: 19.7–23.9)

and 51 ± 1% (range: 43–60), respectively. Supplementary

light was provided by high-pressure sodium lamps, as

described above, at 50 μmol m−2 s−1 photosynthetic pho-

ton flux density for 16 h per day (from 0600 to

2200 hours). The average daily light integral, including

natural light, was 9.6 ± 0.5 mol m−2 day−1. Seeds were

sown and germinated in small pots until plants were grown

up to the cotyledons’ stage (i.e. fully open cotyledons and

before the appearance of the first leaf for dicotyledonous

species and the second leaf stage for monocotyledonous

species). Subsequently, seedlings were transplanted into

17.4 L rectangular boxes containing a ready-made soil

mixture (‘Nullerde’ Archut Erzeugnisse GmbH, Vechta,

Germany) with low nitrogen content (50 mg L−1). A plant-

ing density of five plants per box was used. Boxes were

randomly distributed on a glasshouse table.

After planting, plants were exposed to different levels

of nitrogen fertilisation. For this, eight boxes, containing

five plants each, were separated into two different treat-

ments: control (10 mM nitrogen concentration) and

nitrogen deficit (15% of the control). Once a week, each

box received 500 mL of nutrient solution [54]. The

experiment lasted for 23 days, following planting (start-

ing from 25th of April, 2013).

Point measurements

The spectral signature of selected leaves was also obtained

by using a high spectral resolution point spectroradi-

ometer (ASD FieldSpec® 3, Analytical Spectral Devices,

Boulder, CO, USA), operating at a spectral range between

350 and 2500 nm. The nominal spectral resolution is 3

and 10 nm FWHM in the 350–1050 and 1050–2500 nm

regions, respectively. The sampling interval is 1.4 and

2 nm in the 350–1050 and 1050–2500 nm regions, re-

spectively. The FieldSpec fibre optic was connected to a

FluoWat leaf clip [17,18]. The FluoWat leaf clip offers the

possibility to measure both reflectance and transmittance

of either sample side. Illumination was provided by a cold

light source (Schott KL 1500 LCD 150 W, Lighting and

Imaging SCHOTT AG, Mainz, Germany). Due to the

spectral output of the illumination source, spectral

readings were limited to the 400 to 1700 nm range. The

intensity of the electromagnetic radiation emission was

determined by using a 99.9% reflective white standard

(Spectralon, Labsphere Inc., North Dutton, NH, USA).

The spectra of the samples were divided by the white

standard spectra and multiplied by a correction factor

(provided by Labsphere Inc.) for calculation of the rela-

tive values. In all measurements, leaf reflectance was

assessed on the adaxial (upper) surface.

Spectra comparison

To assess the validity of the spectral data acquired using

the HyperART system (first prototype), simultaneous mea-

surements using both this and the FluoWat device were

performed on three disease-free sugar beet leaves from

the control plant. Five FluoWat point measurements were

averaged, and these were tested against five comparable

points that were selected in the hypespectral image ob-

tained by using the HyperART system. In this study we

combine the spectra of two cameras by selecting nearly

the same regions in both hyperspectral images and aver-

aging them. Since the investigated plant tissue was homo-

geneous, and thus signal changes spatially smooth, we

assume that the spectral differences do not change much

when the regions of interest do not fit perfectly.

The sensors of these two compared instruments have

similar spectral resolution, whereas spectral sampling dif-

fers. For comparison of the spectra obtained by the two in-

struments, the data were converted to a similar spectral

sampling. This was done by reducing the FieldSpec spectral

sampling to the one of the line scanners, by matching the

wavelength.

Quantification of Cercospora beticola symptoms

The potential of the HyperART system in detecting and

quantifying the symptoms of Cercospora beticola infection,

on sugar beet leaves was evaluated. Three leaves of an in-

fected plant and three leaves of an infection-free plant, were

placed in the leaf clip between the mirrors of the Hyper-

ART system (first prototype). Two leaves of the infected

plant had necrotic areas, whereas the third one did not

have any disease symptoms. Disease severity was also esti-

mated visually (expressed in percentage) for each leaf.

The background of the hyperspectral image was masked

out using a threshold in the EVI image. After image

processing, a disease specific index ðCercospora leaf spot

index CLSIð Þ ¼ ρ698−ρ750
ρ698þρ750

−ρ734; [13]) was calculated from

the ρ, τ and ρ + τ data, respectively. Low values indicate

low disease severity, and vice-versa. From the CLSI im-

ages, histograms with a binning of 0.01 were computed

and divided by overall number of pixels. By this the

normalized histograms represent estimated probability

density function of CLSI values. As an indicator of
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how well the two modes can be distinguished, we calcu-

lated the so-called bimodal amplitude (referred as Ab).

The bimodal amplitude equation (Ab ¼
Am−Av

Am
; [55]) was

used to analyse the CLSI histograms. For calculating Ab,

the smaller peak amplitude (referred as Am) and the amp-

litude of the minimum between the two peaks (referred as

Av) were computed. Peak heights (normalized frequencies)

and locations were 0.021 at ρCLSI −1.21 value, 0.022 at

τCLSI −1.32 value and 0.014 at ρ + τCLSI −1.42 value.

The minima normalized frequencies were 0.005 at −0.75

value, 0.004 at −0.75 value, and 0.004 at −0.75 value for

ρCLSI, τCLSI and ρ + τCLSI, respectively. Ab values

close to one indicate a better double peak distinction.

In order to evaluate the separability performance in

the index images of ρCLSI, τCLSI and ρ + τCLSI, these

were firstly classified by using the K-Means unsupervised

classification (ENVI 4.8; [56]). The automatic algorithm

was set to separate the data in the following two classes:

infected and non-infected leaf tissue. The same classes

were used for a supervised classification performed by

support vector machine on the ρ, τ and ρ + τ hyper-

spectral images. Therefore, symptomatic and symptom-

free regions were selected manually in the hyperspectral

images. After all images were classified, the validity of

unsupervised classification performance was evaluated

using post classification. Unsupervised classification

results for the index images of ρCLSI, τCLSI and ρ + τCLSI

were compared by confusion matrix with the respective

supervised classification (ENVI 4.8). The supervised classifi-

cation results were used as ground true images.

Vegetation indices

Twenty two commonly-used indices for chlorophyll

content estimation at both leaf and canopy levels

(Table 1) were applied to ρ, τ, and ρ + τ pre-processed

hyperspectral images. Throughout the paper, the letters ρ,

τ, and ρ + τ before an index indicate the source of the

hyperspectral image, which was used for the calculation.

Sixty six outcomes (i.e., 22 indices × 3 sources) were ob-

tained. Both a simple linear regression and a logarithmic

model were applied to the relationships between predicted

(by the indices) and destructively-measured (described

below) chlorophyll content.

Assessment of chlorophyll content

Sampling for biochemical assessment of chlorophyll con-

tent was conducted 23 days after planting. The third and

fourth (counting from the apex) fully-expanded leaves were

collected for rapeseed, barley and tomato (two leaves per

plant; n = 10). The middle portion of the third fully-

expanded was sampled for maize (one leaf per plant; n = 5).

Chlorophyll concentration was assessed in the same

leaves, where hyperspectral measurements were done.

Non-destructive (hyperspectral imaging) and destructive

(chlorophyll content) measurements were performed

within 24 h.

Collected plant material was immediately frozen in li-

quid nitrogen, and stored at −80°C for further analysis.

Plant material was homogenized by grinding the tissue in

liquid nitrogen. About 50 mg of the homogenized sample

were ground in 6 ml acetone (100% pure solvent), by using

a mortar and pestle. Since chlorophyll is light sensitive, ex-

traction took place in a dark room. Liquid nitrogen was

continuously used to cool down the sample. The resulting

homogenate was centrifuged in test tubes for 6 min for

precipitation of the cell debris. Absorption spectra of the

supernatants were recorded. Chlorophyll content was

calculated by equations described by Lichtenthaler [57].

Additional file

Additional file 1: Figure S1. Logarithmic relationships between

calculated indices and destructively-measured chlorophyll content.

The leaves were sampled from four different crop species. The green

colour indicates control plants, while the red colour refers to the

nitrogen-deficient plants. Indices were calculated based on reflectance

(ρ), transmittance (τ) or combination of ρ with τ (i.e., ρ + +τ). Spectra were

acquired by using the hyperspectral absorption reflectance transmittance

imaging (HyperART) system. Abbreviations are explained in Table 1.
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