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Abstract

Performance of machine learning algorithms depends critically on identifying a good set of
hyperparameters. While recent approaches use Bayesian optimization to adaptively select
configurations, we focus on speeding up random search through adaptive resource allocation
and early-stopping. We formulate hyperparameter optimization as a pure-exploration non-
stochastic infinite-armed bandit problem where a predefined resource like iterations, data
samples, or features is allocated to randomly sampled configurations. We introduce a novel
algorithm, Hyperband, for this framework and analyze its theoretical properties, providing
several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian
optimization methods on a suite of hyperparameter optimization problems. We observe
that Hyperband can provide over an order-of-magnitude speedup over our competitor set
on a variety of deep-learning and kernel-based learning problems.

Keywords: hyperparameter optimization, model selection, infinite-armed bandits, online
optimization, deep learning

1. Introduction

In recent years, machine learning models have exploded in complexity and expressibility at the
price of staggering computational costs. Moreover, the growing number of tuning parameters
associated with these models are difficult to set by standard optimization techniques. These
“hyperparameters” are inputs to a machine learning algorithm that govern how the algorithm’s
performance generalizes to new, unseen data; examples of hyperparameters include those
that impact model architecture, amount of regularization, and learning rates. The quality of
a predictive model critically depends on its hyperparameter configuration, but it is poorly
understood how these hyperparameters interact with each other to affect the resulting model.

c©2018 Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh and Ameet Talwalkar.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/16-558.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/16-558.html


Li, Jamieson, DeSalvo, Rostamizadeh and Talwalkar

(a) Configuration Selection (b) Configuration Evaluation

Figure 1: (a) The heatmap shows the validation error over a two-dimensional search space
with red corresponding to areas with lower validation error. Configuration selection
methods adaptively choose new configurations to train, proceeding in a sequential
manner as indicated by the numbers. (b) The plot shows the validation error as
a function of the resources allocated to each configuration (i.e. each line in the
plot). Configuration evaluation methods allocate more resources to promising
configurations.

Consequently, practitioners often default to brute-force methods like random search and
grid search (Bergstra and Bengio, 2012).

In an effort to develop more efficient search methods, the problem of hyperparameter
optimization has recently been dominated by Bayesian optimization methods (Snoek et al.,
2012; Hutter et al., 2011; Bergstra et al., 2011) that focus on optimizing hyperparameter
configuration selection. These methods aim to identify good configurations more quickly than
standard baselines like random search by selecting configurations in an adaptive manner; see
Figure 1(a). Existing empirical evidence suggests that these methods outperform random
search (Thornton et al., 2013; Eggensperger et al., 2013; Snoek et al., 2015b). However,
these methods tackle the fundamentally challenging problem of simultaneously fitting and
optimizing a high-dimensional, non-convex function with unknown smoothness, and possibly
noisy evaluations.

An orthogonal approach to hyperparameter optimization focuses on speeding up configu-
ration evaluation; see Figure 1(b). These approaches are adaptive in computation, allocating
more resources to promising hyperparameter configurations while quickly eliminating poor
ones. Resources can take various forms, including size of training set, number of features,
or number of iterations for iterative algorithms. By adaptively allocating resources, these
approaches aim to examine orders-of-magnitude more hyperparameter configurations than
approaches that uniformly train all configurations to completion, thereby quickly identifying
good hyperparameters. While there are methods that combine Bayesian optimization with
adaptive resource allocation (Swersky et al., 2013, 2014; Domhan et al., 2015; Klein et al.,
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2017a), we focus on speeding up random search as it offers a simple and theoretically
principled launching point (Bergstra and Bengio, 2012).1

We develop a novel configuration evaluation approach by formulating hyperparameter
optimization as a pure-exploration adaptive resource allocation problem addressing how to
allocate resources among randomly sampled hyperparameter configurations.2 Our procedure,
Hyperband, relies on a principled early-stopping strategy to allocate resources, allowing it
to evaluate orders-of-magnitude more configurations than black-box procedures like Bayesian
optimization methods. Hyperband is a general-purpose technique that makes minimal
assumptions unlike prior configuration evaluation approaches (Domhan et al., 2015; Swersky
et al., 2014; György and Kocsis, 2011; Agarwal et al., 2011; Sparks et al., 2015; Jamieson
and Talwalkar, 2015).

Our theoretical analysis demonstrates the ability of Hyperband to adapt to unknown
convergence rates and to the behavior of validation losses as a function of the hyperparameters.
In addition, Hyperband is 5× to 30× faster than popular Bayesian optimization algorithms
on a variety of deep-learning and kernel-based learning problems. A theoretical contribution
of this work is the introduction of the pure-exploration, infinite-armed bandit problem in
the non-stochastic setting, for which Hyperband is one solution. When Hyperband is
applied to the special-case stochastic setting, we show that the algorithm comes within log
factors of known lower bounds in both the infinite (Carpentier and Valko, 2015) and finite
K-armed bandit settings (Kaufmann et al., 2015).

The paper is organized as follows. Section 2 summarizes related work in two areas:
(1) hyperparameter optimization, and (2) pure-exploration bandit problems. Section 3
describes Hyperband and provides intuition for the algorithm through a detailed example.
In Section 4, we present a wide range of empirical results comparing Hyperband with
state-of-the-art competitors. Section 5 frames the hyperparameter optimization problem as
an infinite-armed bandit problem and summarizes the theoretical results for Hyperband.
Finally, Section 6 discusses possible extensions of Hyperband.

2. Related Work

In Section 1, we briefly discussed related work in the hyperparameter optimization literature.
Here, we provide a more thorough coverage of the prior work, and also summarize significant
related work on bandit problems.

2.1 Hyperparameter Optimization

Bayesian optimization techniques model the conditional probability p(y|λ) of a configuration’s
performance on an evaluation metric y (i.e., test accuracy), given a set of hyperparameters λ.

1. Random search will asymptotically converge to the optimal configuration, regardless of the smoothness or
structure of the function being optimized, by a simple covering argument. While the rate of convergence
for random search depends on the smoothness and is exponential in the number of dimensions in the search
space, the same is true for Bayesian optimization methods without additional structural assumptions
(Kandasamy et al., 2015).

2. A preliminary version of this work appeared in Li et al. (2017). We extend the previous paper with a
thorough theoretical analysis of Hyperband; an infinite horizon version of the algorithm with application
to stochastic infinite-armed bandits; additional intuition and discussion of Hyperband to facilitate its
use in practice; and additional results on a collection of 117 multistage model selection tasks.
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Sequential Model-based Algorithm Configuration (SMAC), Tree-structure Parzen Estimator
(TPE), and Spearmint are three well-established methods (Feurer et al., 2014). SMAC uses
random forests to model p(y|λ) as a Gaussian distribution (Hutter et al., 2011). TPE is
a non-standard Bayesian optimization algorithm based on tree-structured Parzen density
estimators (Bergstra et al., 2011). Lastly, Spearmint uses Gaussian processes (GP) to model
p(y|λ) and performs slice sampling over the GP’s hyperparameters (Snoek et al., 2012).

Previous work compared the relative performance of these Bayesian searchers (Thornton
et al., 2013; Eggensperger et al., 2013; Bergstra et al., 2011; Snoek et al., 2012; Feurer
et al., 2014, 2015). An extensive survey of these three methods by Eggensperger et al.
(2013) introduced a benchmark library for hyperparameter optimization called HPOlib,
which we use for our experiments. Bergstra et al. (2011) and Thornton et al. (2013) showed
Bayesian optimization methods empirically outperform random search on a few benchmark
tasks. However, for high-dimensional problems, standard Bayesian optimization methods
perform similarly to random search (Wang et al., 2013). Recent methods specifically designed
for high-dimensional problems assume a lower effective dimension for the problem (Wang
et al., 2013) or an additive decomposition for the target function (Kandasamy et al., 2015).
However, as can be expected, the performance of these methods is sensitive to required
inputs; i.e. the effective dimension (Wang et al., 2013) or the number of additive components
(Kandasamy et al., 2015).

Gaussian processes have also been studied in the bandit setting using confidence bound
acquisition functions (GP-UCB), with associated sublinear regret bounds (Srinivas et al.,
2010; Grünewälder et al., 2010). Wang et al. (2016) improved upon GP-UCB by removing
the need to tune a parameter that controls exploration and exploitation. Contal et al.
(2014) derived a tighter regret bound than that for GP-UCB by using a mutual information
acquisition function. However, van der Vaart and van Zanten (2011) showed that the learning
rate of GPs are sensitive to the definition of the prior through an example with a poor
prior where the learning rate degraded from polynomial to logarithmic in the number of
observations n. Additionally, without structural assumptions on the covariance matrix of
the GP, fitting the posterior is O(n3) (Wilson et al., 2015). Hence, Snoek et al. (2015a) and
Springenberg et al. (2016) proposed using Bayesian neural networks, which scale linearly
with n, to model the posterior.

Adaptive configuration evaluation is not a new idea. Maron and Moore (1997) and Mnih
and Audibert (2008) considered a setting where the training time is relatively inexpensive
(e.g., k-nearest-neighbor classification) and evaluation on a large validation set is accelerated
by evaluating on an increasing subset of the validation set, stopping early configurations that
are performing poorly. Since subsets of the validation set provide unbiased estimates of its
expected performance, this is an instance of the stochastic best-arm identification problem
for multi-armed bandits (see the work by Jamieson and Nowak, 2014, for a brief survey).

In contrast, we address a setting where the evaluation time is relatively inexpensive and
the goal is to early-stop long-running training procedures by evaluating partially trained
models on the full validation set. Previous approaches in this setting either require strong
assumptions or use heuristics to perform adaptive resource allocation. György and Kocsis
(2011) and Agarwal et al. (2011) made parametric assumptions on the convergence behavior
of training algorithms, providing theoretical performance guarantees under these assumptions.
Unfortunately, these assumptions are often hard to verify, and empirical performance can
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drastically suffer when they are violated. Krueger et al. (2015) proposed a heuristic based
on sequential analysis to determine stopping times for training configurations on increasing
subsets of the data. However, the theoretical correctness and empirical performance of this
method are highly dependent on a user-defined “safety zone.”

Several hybrid methods combining adaptive configuration selection and evaluation have
also been introduced (Swersky et al., 2013, 2014; Domhan et al., 2015; Kandasamy et al.,
2016; Klein et al., 2017a; Golovin et al., 2017). The algorithm proposed by Swersky et al.
(2013) uses a GP to learn correlation between related tasks and requires the subtasks as
input, but efficient subtasks with high informativeness for the target task are unknown
without prior knowledge. Similar to the work by Swersky et al. (2013), Klein et al. (2017a)
modeled the conditional validation error as a Gaussian process using a kernel that captures
the covariance with downsampling rate to allow for adaptive evaluation. Swersky et al.
(2014), Domhan et al. (2015), and Klein et al. (2017a) made parametric assumptions on the
convergence of learning curves to perform early-stopping. In contrast, Golovin et al. (2017)
devised an early-stopping rule based on predicted performance from a nonparametric GP
model with a kernel designed to measure the similarity between performance curves. Finally,
Kandasamy et al. (2016) extended GP-UCB to allow for adaptive configuration evaluation
by defining subtasks that monotonically improve with more resources.

In another line of work, Sparks et al. (2015) proposed a halving style bandit algorithm
that did not require explicit convergence behavior, and Jamieson and Talwalkar (2015)
analyzed a similar algorithm originally proposed by Karnin et al. (2013) for a different
setting, providing theoretical guarantees and encouraging empirical results. Unfortunately,
these halving style algorithms suffer from the “n versus B/n” problem, which we will
discuss in Section 3.1. Hyperband addresses this issue and provides a robust, theoretically
principled early-stopping algorithm for hyperparameter optimization.

We note that Hyperband can be combined with any hyperparameter sampling approach
and does not depend on random sampling; the theoretical results only assume the validation
losses of sampled hyperparameter configurations are drawn from some stationary distribution.
In fact, subsequent to our submission, Klein et al. (2017b) combined adaptive configuration
selection with Hyperband by using a Bayesian neural network to model learning curves and
only selecting configurations with high predicted performance to input into Hyperband.

2.2 Bandit Problems

Pure exploration bandit problems aim to minimize the simple regret, defined as the distance
from the optimal solution, as quickly as possible in any given setting. The pure-exploration
multi-armed bandit problem has a long history in the stochastic setting (Even-Dar et al.,
2006; Bubeck et al., 2009), and was recently extended to the non-stochastic setting by
Jamieson and Talwalkar (2015). Relatedly, the stochastic pure-exploration infinite-armed
bandit problem was studied by Carpentier and Valko (2015), where a pull of each arm i yields
an i.i.d. sample in [0, 1] with expectation νi, where νi is a loss drawn from a distribution
with cumulative distribution function, F . Of course, the value of νi is unknown to the player,
so the only way to infer its value is to pull arm i many times. Carpentier and Valko (2015)
proposed an anytime algorithm, and derived a tight (up to polylog factors) upper bound
on its error assuming what we will refer to as the β-parameterization of F described in

5



Li, Jamieson, DeSalvo, Rostamizadeh and Talwalkar

Section 5.3.2. However, their algorithm was derived specifically for the β-parameterization
of F , and furthermore, they must estimate β before running the algorithm, limiting the
algorithm’s practical applicability. Also, the algorithm assumes stochastic losses from the
arms and thus the convergence behavior is known; consequently, it does not apply in our
hyperparameter optimization setting.3 Two related lines of work that both make use of an
underlying metric space are Gaussian process optimization (Srinivas et al., 2010) and X-
armed bandits (Bubeck et al., 2011), or bandits defined over a metric space. However, these
works either assume stochastic rewards or need to know something about the underlying
function (e.g. an appropriate kernel or level of smoothness).

In contrast, Hyperband is devised for the non-stochastic setting and automatically
adapts to unknown F without making any parametric assumptions. Hence, we believe our
work to be a generally applicable pure exploration algorithm for infinite-armed bandits. To
the best of our knowledge, this is also the first work to test out such an algorithm on a real
application.

3. Hyperband Algorithm

In this section, we present the Hyperband algorithm. We provide intuition for the algorithm,
highlight the main ideas via a simple example that uses iterations as the adaptively allocated
resource, and present a few guidelines on how to deploy Hyperband in practice.

3.1 Successive Halving

Hyperband extends the SuccessiveHalving algorithm proposed for hyperparameter
optimization by Jamieson and Talwalkar (2015) and calls it as a subroutine. The idea
behind the original SuccessiveHalving algorithm follows directly from its name: uniformly
allocate a budget to a set of hyperparameter configurations, evaluate the performance of
all configurations, throw out the worst half, and repeat until one configuration remains.
The algorithm allocates exponentially more resources to more promising configurations.
Unfortunately, SuccessiveHalving requires the number of configurations n as an input
to the algorithm. Given some finite budget B (e.g., an hour of training time to choose a
hyperparameter configuration), B/n resources are allocated on average across the configura-
tions. However, for a fixed B, it is not clear a priori whether we should (a) consider many
configurations (large n) with a small average training time; or (b) consider a small number
of configurations (small n) with longer average training times.

We use a simple example to better understand this tradeoff. Figure 2 shows the validation
loss as a function of total resources allocated for two configurations with terminal validation
losses ν1 and ν2. The shaded areas bound the maximum deviation of the intermediate losses
from the terminal validation loss and will be referred to as “envelope” functions.4 It is
possible to distinguish between the two configurations when the envelopes no longer overlap.
Simple arithmetic shows that this happens when the width of the envelopes is less than
ν2−ν1, i.e., when the intermediate losses are guaranteed to be less than ν2−ν1

2 away from the

3. See the work by Jamieson and Talwalkar (2015) for detailed discussion motivating the non-stochastic
setting for hyperparameter optimization.

4. These envelope functions are guaranteed to exist; see discussion in Section 5.2 where we formally define
these envelope (or γ) functions.
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Figure 2: The validation loss as a function of total resources allocated for two configurations
is shown. ν1 and ν2 represent the terminal validation losses at convergence. The
shaded areas bound the maximum distance of the intermediate losses from the
terminal validation loss and monotonically decrease with the resource.

terminal losses. There are two takeaways from this observation: more resources are needed
to differentiate between the two configurations when either (1) the envelope functions are
wider or (2) the terminal losses are closer together.

However, in practice, the optimal allocation strategy is unknown because we do not
have knowledge of the envelope functions nor the distribution of terminal losses. Hence, if
more resources are required before configurations can differentiate themselves in terms of
quality (e.g., if an iterative training method converges very slowly for a given data set or if
randomly selected hyperparameter configurations perform similarly well), then it would be
reasonable to work with a small number of configurations. In contrast, if the quality of a
configuration is typically revealed after a small number of resources (e.g., if iterative training
methods converge very quickly for a given data set or if randomly selected hyperparameter
configurations are of low-quality with high probability), then n is the bottleneck and we
should choose n to be large.

Certainly, if meta-data or previous experience suggests that a certain tradeoff is likely
to work well in practice, one should exploit that information and allocate the majority of
resources to that tradeoff. However, without this supplementary information, practitioners
are forced to make this tradeoff, severely hindering the applicability of existing configuration
evaluation methods.

3.2 Hyperband

Hyperband, shown in Algorithm 1, addresses this “n versus B/n” problem by considering
several possible values of n for a fixed B, in essence performing a grid search over feasible
value of n. Associated with each value of n is a minimum resource r that is allocated to all
configurations before some are discarded; a larger value of n corresponds to a smaller r and
hence more aggressive early-stopping. There are two components to Hyperband; (1) the
inner loop invokes SuccessiveHalving for fixed values of n and r (lines 3–9) and (2) the
outer loop iterates over different values of n and r (lines 1–2). We will refer to each such
run of SuccessiveHalving within Hyperband as a “bracket.” Each bracket is designed
to use approximately B total resources and corresponds to a different tradeoff between n
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Algorithm 1: Hyperband algorithm for hyperparameter optimization.

input :R, η (default η = 3)
initialization : smax = ⌊logη(R)⌋, B = (smax + 1)R

1 for s ∈ {smax, smax − 1, . . . , 0} do
2 n = ⌈BR

ηs

(s+1)⌉, r = Rη−s

// begin SuccessiveHalving with (n, r) inner loop

3 T =get hyperparameter configuration(n)
4 for i ∈ {0, . . . , s} do
5 ni = ⌊nη−i⌋
6 ri = rηi

7 L = {run then return val loss(t, ri) : t ∈ T}
8 T =top k(T, L, ⌊ni/η⌋)
9 end

10 end
11 return Configuration with the smallest intermediate loss seen so far.

and B/n. Hence, a single execution of Hyperband takes a finite budget of (smax + 1)B;
we recommend repeating it indefinitely.

Hyperband requires two inputs (1) R, the maximum amount of resource that can
be allocated to a single configuration, and (2) η, an input that controls the proportion of
configurations discarded in each round of SuccessiveHalving. The two inputs dictate
how many different brackets are considered; specifically, smax + 1 different values for n are
considered with smax = ⌊logη(R)⌋. Hyperband begins with the most aggressive bracket
s = smax, which sets n to maximize exploration, subject to the constraint that at least one
configuration is allocated R resources. Each subsequent bracket reduces n by a factor of
approximately η until the final bracket, s = 0, in which every configuration is allocated
R resources (this bracket simply performs classical random search). Hence, Hyperband

performs a geometric search in the average budget per configuration and removes the need
to select n for a fixed budget at the cost of approximately smax + 1 times more work than
running SuccessiveHalving for a single value of n. By doing so, Hyperband is able to
exploit situations in which adaptive allocation works well, while protecting itself in situations
where more conservative allocations are required.

Hyperband requires the following methods to be defined for any given learning problem:

• get hyperparameter configuration(n) – a function that returns a set of n i.i.d.
samples from some distribution defined over the hyperparameter configuration space.
In this work, we assume uniformly sampling of hyperparameters from a predefined
space (i.e., hypercube with min and max bounds for each hyperparameter), which
immediately yields consistency guarantees. However, the more aligned the distribution
is towards high quality hyperparameters (i.e., a useful prior), the better Hyperband

will perform (see Section 6 for further discussion).
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s = 4 s = 3 s = 2 s = 1 s = 0
i ni ri ni ri ni ri ni ri ni ri
0 81 1 27 3 9 9 6 27 5 81
1 27 3 9 9 3 27 2 81
2 9 9 3 27 1 81
3 3 27 1 81
4 1 81

Table 1: The values of ni and ri for the brackets of Hyperband corresponding to various
values of s, when R = 81 and η = 3.

• run then return val loss(t, r) – a function that takes a hyperparameter configu-
ration t and resource allocation r as input and returns the validation loss after training
the configuration for the allocated resources.

• top k(configs, losses, k) – a function that takes a set of configurations as well
as their associated losses and returns the top k performing configurations.

3.3 Example Application with Iterations as a Resource: LeNet

We next present a concrete example to provide further intuition about Hyperband. We
work with the MNIST data set and optimize hyperparameters for the LeNet convolutional
neural network trained using mini-batch stochastic gradient descent (SGD).5 Our search
space includes learning rate, batch size, and number of kernels for the two layers of the
network as hyperparameters (details are shown in Table 2 in Appendix A).

We define the resource allocated to each configuration to be number of iterations of SGD,
with one unit of resource corresponding to one epoch, i.e., a full pass over the data set. We
set R to 81 and use the default value of η = 3, resulting in smax = 4 and thus 5 brackets of
SuccessiveHalving with different tradeoffs between n and B/n. The resources allocated
within each bracket are displayed in Table 1.

Figure 3 shows an empirical comparison of the average test error across 70 trials of
the individual brackets of Hyperband run separately as well as standard Hyperband.
In practice, we do not know a priori which bracket s ∈ {0, . . . , 4} will be most effective
in identifying good hyperparameters, and in this case neither the most (s = 4) nor least
aggressive (s = 0) setting is optimal. However, we note that Hyperband does nearly as
well as the optimal bracket (s = 3) and outperforms the baseline uniform allocation (i.e.,
random search), which is equivalent to bracket s = 0.

3.4 Different Types of Resources

While the previous example focused on iterations as the resource, Hyperband naturally
generalizes to various types of resources:

5. Code and description of algorithm used is available at http://deeplearning.net/tutorial/lenet.html.
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Figure 3: Performance of individual brackets s and Hyperband.

• Time – Early-stopping in terms of time can be preferred when various hyperparameter
configurations differ in training time and the practitioner’s chief goal is to find a good
hyperparameter setting in a fixed wall-clock time. For instance, training time could
be used as a resource to quickly terminate straggler jobs in distributed computation
environments.

• Data Set Subsampling – Here we consider the setting of a black-box batch training
algorithm that takes a data set as input and outputs a model. In this setting, we treat
the resource as the size of a random subset of the data set with R corresponding to
the full data set size. Subsampling data set sizes using Hyperband, especially for
problems with super-linear training times like kernel methods, can provide substantial
speedups.

• Feature Subsampling – Random features or Nyström-like methods are popular
methods for approximating kernels for machine learning applications (Rahimi and Recht,
2007). In image processing, especially deep-learning applications, filters are usually
sampled randomly, with the number of filters having an impact on the performance.
Downsampling the number of features is a common tool used when hand-tuning
hyperparameters; Hyperband can formalize this heuristic.

3.5 Setting R

The resource R and η (which we address next) are the only required inputs to Hyperband.
As mentioned in Section 3.2, R represents the maximum amount of resources that can be
allocated to any given configuration. In most cases, there is a natural upper bound on
the maximum budget per configuration that is often dictated by the resource type (e.g.,
training set size for data set downsampling; limitations based on memory constraint for
feature downsampling; rule of thumb regarding number of epochs when iteratively training
neural networks). If there is a range of possible values for R, a smaller R will give a result
faster (since the budget B for each bracket is a multiple of R), but a larger R will give a
better guarantee of successfully differentiating between the configurations.

Moreover, for settings in which either R is unknown or not desired, we provide an
infinite horizon version of Hyperband in Section 5. This version of the algorithm doubles
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the budget over time, B ∈ {2, 4, 8, 16, . . .}, and for each B, tries all possible values of
n ∈

{
2k : k ∈ {1, . . . , log2(B)}

}
. For each combination of B and n, the algorithm runs

an instance of the (infinite horizon) SuccessiveHalving algorithm, which implicitly sets
R = B

2 log2(n)
, thereby growing R as B increases. The main difference between the infinite

horizon algorithm and Algorithm 1 is that the number of unique brackets grows over time
instead of staying constant with each outer loop. We will analyze this version of Hyperband

in more detail in Section 5 and use it as the launching point for the theoretical analysis of
standard (finite horizon) Hyperband.

Note that R is also the number of configurations evaluated in the bracket that performs
the most exploration, i.e s = smax. In practice one may want n ≤ nmax to limit overhead
associated with training many configurations on a small budget, i.e., costs associated with
initialization, loading a model, and validation. In this case, set smax = ⌊logη(nmax)⌋.
Alternatively, one can redefine one unit of resource so that R is artificially smaller (i.e., if
the desired maximum iteration is 100k, defining one unit of resource to be 100 iterations
will give R = 1, 000, whereas defining one unit to be 1k iterations will give R = 100). Thus,
one unit of resource can be interpreted as the minimum desired resource and R as the ratio
between maximum resource and minimum resource.

3.6 Setting η

The value of η is a knob that can be tuned based on practical user constraints. Larger
values of η correspond to more aggressive elimination schedules and thus fewer rounds of
elimination; specifically, each round retains 1/η configurations for a total of ⌊logη(n)⌋+ 1
rounds of elimination with n configurations. If one wishes to receive a result faster at the
cost of a sub-optimal asymptotic constant, one can increase η to reduce the budget per
bracket B = (⌊logη(R)⌋+1)R. We stress that results are not very sensitive to the choice of η.
If our theoretical bounds are optimized (see Section 5), they suggest choosing η = e ≈ 2.718,
but in practice we suggest taking η to be equal to 3 or 4.

Tuning η will also change the number of brackets and consequently the number of different
tradeoffs that Hyperband tries. Usually, the possible range of brackets is fairly constrained,
since the number of brackets is logarithmic in R; namely, there are (⌊logη(R)⌋+1) = smax+1
brackets. For our experiments in Section 4, we chose η to provide 5 brackets for the specified
R; for most problems, 5 is a reasonable number of n versus B/n tradeoffs to explore. However,
for large R, using η = 3 or 4 can give more brackets than desired. The number of brackets
can be controlled in a few ways. First, as mentioned in the previous section, if R is too
large and overhead is an issue, then one may want to control the overhead by limiting the
maximum number of configurations to nmax, thereby also limiting smax. If overhead is not a
concern and aggressive exploration is desired, one can (1) increase η to reduce the number
of brackets while maintaining R as the maximum number of configurations in the most
exploratory bracket, or (2) still use η = 3 or 4 but only try brackets that do a baseline
level of exploration, i.e., set nmin and only try brackets from smax to s = ⌊logη(nmin)⌋. For
computationally intensive problems that have long training times and high-dimensional
search spaces, we recommend the latter. Intuitively, if the number of configurations that can
be trained to completion (i.e., trained using R resources) in a reasonable amount of time is
on the order of the dimension of the search space and not exponential in the dimension, then
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it will be impossible to find a good configuration without using an aggressive exploratory
tradeoff between n and B/n.

3.7 Overview of Theoretical Results

The theoretical properties of Hyperband are best demonstrated through an example.
Suppose there are n configurations, each with a given terminal validation error νi for
i = 1, . . . , n. Without loss of generality, index the configurations by performance so that
ν1 corresponds to the best performing configuration, ν2 to the second best, and so on.
Now consider the task of identifying the best configuration. The optimal strategy would
allocate to each configuration i the minimum resource required to distinguish it from ν1,
i.e., enough so that the envelope functions (see Figure 2) bound the intermediate loss to
be less than νi−ν1

2 away from the terminal value. In contrast, the naive uniform allocation
strategy, which allocates B/n to each configuration, has to allocate to every configuration
the maximum resource required to distinguish any arm νi from ν1. Remarkably, the budget
required by SuccessiveHalving is only a small factor of the optimal because it capitalizes
on configurations that are easy to distinguish from ν1.

The relative size of the budget required for uniform allocation and SuccessiveHalving

depends on the envelope functions bounding deviation from terminal losses as well as the
distribution from which νi’s are drawn. The budget required for SuccessiveHalving is
smaller when the optimal n versus B/n tradeoff discussed in Section 3.1 requires fewer
resources per configuration. Hence, if the envelope functions tighten quickly as a function
of resource allocated, or the average distances between terminal losses is large, then Suc-

cessiveHalving can be substantially faster than uniform allocation. These intuitions are
formalized in Section 5 and associated theorems/corollaries are provided that take into
account the envelope functions and the distribution from which νi’s are drawn.

In practice, we do not have knowledge of either the envelope functions or the distribution
of νi’s, both of which are integral in characterizing SuccessiveHalving’s required budget.
With Hyperband we address this shortcoming by hedging our aggressiveness. We show
in Section 5.3.3 that Hyperband, despite having no knowledge of the envelope functions
nor the distribution of νi’s, requires a budget that is only log factors larger than that of
SuccessiveHalving.

4. Hyperparameter Optimization Experiments

In this section, we evaluate the empirical behavior of Hyperband with three different
resource types: iterations, data set subsamples, and feature samples. For all experiments, we
compareHyperband with three well known Bayesian optimization algorithms—SMAC, TPE,
and Spearmint—using their default settings. We exclude Spearmint from the comparison set
when there are conditional hyperparameters in the search space because it does not natively
support them (Eggensperger et al., 2013). We also show results for SuccessiveHalving

corresponding to repeating the most exploratory bracket of Hyperband to provide a baseline
for aggressive early-stopping.6 Additionally, as standard baselines against which to measure

6. This is not done for the experiments in Section 4.2.1, since the most aggressive bracket varies from dataset
to dataset with the number of training points.
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all speedups, we consider random search and “random 2×,” a variant of random search with
twice the budget of other methods. Of the hybrid methods described in Section 2, we compare
to a variant of SMAC using the early termination criterion proposed by Domhan et al.
(2015) in the deep learning experiments described in Section 4.1. We think a comparison
of Hyperband to more sophisticated hybrid methods introduced recently by Klein et al.
(2017a) and Kandasamy et al. (2017) is a fruitful direction for future work.

In the experiments below, we followed these loose guidelines when determining how to
configuration Hyperband:

1. The maximum resource R should be reasonable given the problem, but ideally large
enough so that early-stopping is beneficial.

2. η should depend on R and be selected to yield ≈ 5 brackets with a minimum of
3 brackets. This is to guarantee that Hyperband will use a baseline degree of
early-stopping and prevent too coarse of a grid of n vs B tradeoffs.

4.1 Early-Stopping Iterative Algorithms for Deep Learning

For this benchmark, we tuned a convolutional neural network7 with the same architecture
as that used in Snoek et al. (2012) and Domhan et al. (2015). The search spaces used in
the two previous works differ, and we used a search space similar to that of Snoek et al.
(2012) with 6 hyperparameters for stochastic gradient decent and 2 hyperparameters for the
response normalization layers (see Appendix A for details). In line with the two previous
works, we used a batch size of 100 for all experiments.

Data sets: We considered three image classification data sets: CIFAR-10 (Krizhevsky,
2009), rotated MNIST with background images (MRBI) (Larochelle et al., 2007), and Street
View House Numbers (SVHN) (Netzer et al., 2011). CIFAR-10 and SVHN contain 32× 32
RGB images while MRBI contains 28× 28 grayscale images. Each data set was split into a
training, validation, and test set: (1) CIFAR-10 has 40k, 10k, and 10k instances; (2) MRBI
has 10k, 2k, and 50k instances; and (3) SVHN has close to 600k, 6k, and 26k instances for
training, validation, and test respectively. For all data sets, the only preprocessing performed
on the raw images was demeaning.

Hyperband Configuration: For these experiments, one unit of resource corresponds
to 100 mini-batch iterations (10k examples with a batch size of 100). For CIFAR-10 and
MRBI, R was set to 300 (or 30k total iterations). For SVHN, R was set to 600 (or 60k total
iterations) to accommodate the larger training set. Given R for these experiments, we set
η = 4 to yield five SuccessiveHalving brackets for Hyperband.

Results: Each searcher was given a total budget of 50R per trial to return the best
possible hyperparameter configuration. For Hyperband, the budget is sufficient to run
the outer loop twice (for a total of 10 SuccessiveHalving brackets). For SMAC, TPE,
and random search, the budget corresponds to training 50 different configurations to
completion. Ten independent trials were performed for each searcher. The experiments
took the equivalent of over 1 year of GPU hours on NVIDIA GRID K520 cards available
on Amazon EC2 g2.8xlarge instances. We set a total budget constraint in terms of

7. The model specification is available at http://code.google.com/p/cuda-convnet/.
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(a) CIFAR-10
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(b) MRBI
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(c) SVHN

Figure 4: Average test error across 10 trials. Label “SMAC (early)” corresponds to SMAC
with the early-stopping criterion proposed in Domhan et al. (2015) and label
“bracket s = 4” corresponds to repeating the most exploratory bracket of Hyper-

band.

iterations instead of compute time to make comparisons hardware independent.8 Comparing
progress by iterations instead of time ignores overhead costs, e.g. the cost of configuration
selection for Bayesian methods and model initialization and validation costs for Hyperband.
While overhead is hardware dependent, the overhead for Hyperband is below 5% on EC2
g2.8xlarge machines, so comparing progress by time passed would not change results
significantly.

For CIFAR-10, the results in Figure 4(a) show that Hyperband is over an order-
of-magnitude faster than its competitiors. For MRBI, Hyperband is over an order-of-

8. Most trials were run on Amazon EC2 g2.8xlarge instances but a few trials were run on different machines
due to the large computational demand of these experiments.
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magnitude faster than standard configuration selection approaches and 5× faster than
SMAC (early). For SVHN, while Hyperband finds a good configuration faster, Bayesian
optimization methods are competitive and SMAC (early) outperforms Hyperband. The
performance of SMAC (early) demonstrates there is merit to combining early-stopping and
adaptive configuration selection.

Across the three data sets, Hyperband and SMAC (early) are the only two methods
that consistently outperform random 2×. On these data sets, Hyperband is over 20×
faster than random search while SMAC (early) is ≤ 7× faster than random search within
the evaluation window. In fact, the first result returned by Hyperband after using a
budget of 5R is often competitive with results returned by other searchers after using 50R.
Additionally, Hyperband is less variable than other searchers across trials, which is highly
desirable in practice (see Appendix A for plots with error bars).

As discussed in Section 3.6, for computationally expensive problems in high-dimensional
search spaces, it may make sense to just repeat the most exploratory brackets. Similarly, if
meta-data is available about a problem or it is known that the quality of a configuration is
evident after allocating a small amount of resource, then one should just repeat the most
exploratory bracket. Indeed, for these experiments, bracket s = 4 vastly outperforms all
other methods on CIFAR-10 and MRBI and is nearly tied with SMAC (early) for first on
SVHN.

While we set R for these experiments to facilitate comparison to Bayesian methods
and random search, it is also reasonable to use infinite horizon Hyperband to grow the
maximum resource until a desired level of performance is reached. We evaluate infinite
horizon Hyperband on CIFAR-10 using η = 4 and a starting budget of B = 2R. Figure 4(a)
shows that infinite horizon Hyperband is competitive with other methods but does not
perform as well as finite horizon Hyperband within the 50R budget limit. The infinite
horizon algorithm underperforms initially because it has to tune the maximum resource R as
well and starts with a less aggressive early-stopping rate. This demonstrates that in scenarios
where a max resource is known, it is better to use the finite horizon algorithm. Hence, we
focus on the finite horizon version of Hyperband for the remainder of our empirical studies.

Finally, CIFAR-10 is a very popular data set and state-of-the-art models achieve much
lower error rates than what is shown in Figure 4. The difference in performance is mainly
attributable to higher model complexities and data manipulation (i.e. using reflection or
random cropping to artificially increase the data set size). If we limit the comparison to
published results that use the same architecture and exclude data manipulation, the best
human expert result for the data set is 18% error and the best hyperparameter optimized
results are 15.0% for Snoek et al. (2012)9 and 17.2% for Domhan et al. (2015). These results
exceed ours on CIFAR-10 because they train on 25% more data, by including the validation
set, and also train for more epochs. When we train the best model found by Hyperband on
the combined training and validation data for 300 epochs, the model achieved a test error of
17.0%.

9. We were unable to reproduce this result even after receiving the optimal hyperparameters from the
authors through a personal communication.
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4.2 Data Set Subsampling

We studied two different hyperparameter search optimization problems for whichHyperband

uses data set subsamples as the resource. The first adopts an extensive framework presented
in Feurer et al. (2015) that attempts to automate preprocessing and model selection. Due
to certain limitations of the framework that fundamentally limited the impact of data set
downsampling, we conducted a second experiment using a kernel classification task.

4.2.1 117 Data Sets

We used the framework introduced by Feurer et al. (2015), which explored a structured
hyperparameter search space comprised of 15 classifiers, 14 feature preprocessing methods,
and 4 data preprocessing methods for a total of 110 hyperparameters. We excluded the
meta-learning component introduced in Feurer et al. (2015) used to warmstart Bayesian
methods with promising configurations, in order to perform a fair comparison with random
search and Hyperband. Similar to Feurer et al. (2015), we imposed a 3GB memory limit,
a 6-minute timeout for each hyperparameter configuration and a one-hour time window to
evaluate each searcher on each data set. Twenty trials of each searcher were performed per
data set and all trials in aggregate took over a year of CPU time on n1-standard-1 instances
from Google Cloud Compute. Additional details about our experimental framework are
available in Appendix A.

Data sets: Feurer et al. (2015) used 140 binary and multiclass classification data sets
from OpenML, but 23 of them are incompatible with the latest version of the OpenML
plugin (Feurer, 2015), so we worked with the remaining 117 data sets. Due to the limitations
of the experimental setup (discussed in Appendix A), we also separately considered 21
of these data sets, which demonstrated at least modest (though still sublinear) training
speedups due to subsampling. Specifically, each of these 21 data sets showed on average
at least a 3× speedup due to 8× downsampling on 100 randomly selected hyperparameter
configurations.

Hyperband Configuration: Due to the wide range of dataset sizes, with some datasets
having fewer than 10k training points, we ran Hyperband with η = 3 to allow for at least
3 brackets without being overly aggressive in downsampling on small datasets. R was set to
the full training set size for each data set and the maximum number of configurations for any
bracket of SuccessiveHalving was limited to nmax = max{9, R/1000}. This ensured that
the most exploratory bracket of Hyperband will downsample at least twice. As mentioned
in Section 3.6, when nmax is specified, the only difference when running the algorithm is
smax = ⌊logη(nmax)⌋ instead of ⌊logη(R)⌋.

Results: The results on all 117 data sets in Figure 5(a,b) show that Hyperband

outperforms random search in test error rank despite performing worse in validation error rank.
Bayesian methods outperform Hyperband and random search in test error performance
but also exhibit signs of overfitting to the validation set, as they outperform Hyperband

by a larger margin on the validation error rank. Notably, random 2× outperforms all other
methods. However, for the subset of 21 data sets, Figure 5(c) shows that Hyperband

outperforms all other searchers on test error rank, including random 2× by a very small
margin. While these results are more promising, the effectiveness of Hyperband was
restricted in this experimental framework; for smaller data sets, the startup overhead was
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(c) Test Error on 21 Data Sets

Figure 5: Average rank across all data sets for each searcher. For each data set, the searchers
are ranked according to the average validation/test error across 20 trials.

high relative to total training time, while for larger data sets, only a handful of configurations
could be trained within the hour window.

We note that while average rank plots like those in Figure 5 are an effective way to
aggregate information across many searchers and data sets, they provide no indication about
the magnitude of the differences between the performance of the methods. Figure 6, which
charts the difference between the test error for each searcher and that of random search
across all 117 datasets, highlights the small difference in the magnitude of the test errors
across searchers.

These results are not surprising; as mentioned in Section 2.1, vanilla Bayesian optimization
methods perform similarly to random search in high-dimensional search spaces. Feurer
et al. (2015) showed that using meta-learning to warmstart Bayesian optimization methods
improved performance in this high-dimensional setting. Using meta-learning to identify a
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Figure 6: Each line plots, for a single data set, the difference in test error versus random
search for each search, where lower is better. Nearly all the lines fall within the
-0.5% and 0.5% band and, with the exception of a few outliers, the lines are mostly
flat.

promising distribution from which to sample configurations as input into Hyperband is a
direction for future work.

4.2.2 Kernel Regularized Least Squares Classification

For this benchmark, we tuned the hyperparameters of a kernel-based classifier on CIFAR-10.
We used the multi-class regularized least squares classification model, which is known to
have comparable performance to SVMs (Rifkin and Klautau, 2004; Agarwal et al., 2014) but
can be trained significantly faster.10 The hyperparameters considered in the search space
include preprocessing method, regularization, kernel type, kernel length scale, and other
kernel specific hyperparameters (see Appendix A for more details). For Hyperband, we
set R = 400, with each unit of resource representing 100 datapoints, and η = 4 to yield a
total of 5 brackets. Each hyperparameter optimization algorithm was run for ten trials on
Amazon EC2 m4.2xlarge instances; for a given trial, Hyperband was allowed to run for
two outer loops, bracket s = 4 was repeated 10 times, and all other searchers were run for
12 hours.

Figure 7 shows that Hyperband returned a good configuration after completing the
first SuccessiveHalving bracket in approximately 20 minutes; other searchers failed to
reach this error rate on average even after the entire 12 hours. Notably, Hyperband was
able to evaluate over 250 configurations in this first bracket of SuccessiveHalving, while
competitors were able to evaluate only three configurations in the same amount of time.
Consequently, Hyperband is over 30× faster than Bayesian optimization methods and 70×
faster than random search. Bracket s = 4 sightly outperforms Hyperband but the terminal

10. The default SVM method in Scikit-learn is single core and takes hours to train on CIFAR-10, whereas a
block coordinate descent least squares solver takes less than 10 minutes on an 8 core machine.
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Figure 7: Average test error of the best ker-
nel regularized least square clas-
sification model found by each
searcher on CIFAR-10. The color
coded dashed lines indicate when
the last trial of a given searcher
finished.
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Figure 8: Average test error of the best
random features model found by
each searcher on CIFAR-10. The
test error for Hyperband and
bracket s = 4 are calculated in
every evaluation instead of at the
end of a bracket.

performance for the two algorithms are the same. Random 2× is competitive with SMAC
and TPE.

4.3 Feature Subsampling to Speed Up Approximate Kernel Classification

Next, we examine the performance of Hyperband when using features as a resource on a
random feature kernel approximations task. Features were randomly generated using the
method described in Rahimi and Recht (2007) to approximate the RBF kernel, and these
random features were then used as inputs to a ridge regression classifier. The hyperparameter
search space included the preprocessing method, kernel length scale, and L2 penalty. While it
may seem natural to use infinite horizon Hyperband, since the fidelity of the approximation
improves with more random features, in practice, the amount of available machine memory
imposes a natural upper bound on the number of features. Thus, we used finite horizion
Hyperband with a maximum resource of 100k random features, which comfortably fit
into a machine with 60GB of memory. Additionally, we set one unit of resource to be 100
features, so R = 1000. Again, we set η = 4 to yield 5 brackets of SuccessiveHalving. We
ran 10 trials of each searcher, with each trial lasting 12 hours on a n1-standard-16 machine
from Google Cloud Compute. The results in Figure 8 show that Hyperband is around
6× faster than Bayesian methods and random search. Hyperband performs similarly to
bracket s = 4. Random 2× outperforms Bayesian optimization algorithms.

4.4 Experimental Discussion

While our experimental results show Hyperband is a promising algorithm for hyperparam-
eter optimization, a few questions naturally arise:
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1. What impacts the speedups provided by Hyperband?

2. Why does SuccessiveHalving seem to outperform Hyperband?

3. What about hyperparameters that should depend on the resource?

We next address each of these questions in turn.

4.4.1 Factors Impacting the Performance of Hyperband

For a given R, the most exploratory SuccessiveHalving round performed by Hyperband

evaluates R configurations using a budget of (⌊logη(R)⌋+ 1)R, which gives an upper bound
on the potential speedup over random search. If training time scales linearly with the
resource, the maximum speedup offered by Hyperband compared to random search is

R
(⌊logη(R)⌋+1) . For the values of η and R used in our experiments, the maximum speedup

over random search is approximately 50× given linear training time. However, we observe a
range of speedups from 6× to 70× faster than random search. The differences in realized
speedup can be explained by three factors:

1. How training time scales with the given resource. In cases where training time is
superlinear as a function of the resource, Hyperband can offer higher speedups. For
instance, if training scales like a polynomial of degree p > 1, the maximum speedup for
Hyperband over random search is approximately ηp−1

ηp−1 R. In the kernel least square
classifier experiment discussed in Section 4.2.2, the training time scaled quadratically
as a function of the resource, which explains why the realized speedup of 70× is higher
than the maximum expected speedup given linear scaling.

2. Overhead costs associated with training. Total evaluation time also depends on fixed
overhead costs associated with evaluating each hyperparameter configuration, e.g.,
initializing a model, resuming previously trained models, and calculating validation
error. For example, in the downsampling experiments on 117 data sets presented in
Section 4.2.1, Hyperband did not provide significant speedup because many data
sets could be trained in a matter of a few seconds and the initialization cost was high
relative to training time.

3. The difficulty of finding a good configuration. Hyperparameter optimization problems
can vary in difficulty. For instance, an ‘easy’ problem is one where a randomly sampled
configuration is likely to result in a high-quality model, and thus we only need to
evaluate a small number of configurations to find a good setting. In contrast, a ‘hard’
problem is one where an arbitrary configuration is likely to be bad, in which case
many configurations must be considered. Hyperband leverages downsampling to
boost the number of configurations that are evaluated, and thus is better suited for
‘hard’ problems where more evaluations are actually necessary to find a good setting.
Generally, the difficulty of a problem scales with the dimensionality of the search space.
For low-dimensional problems, the number of configurations evaluated by random
search and Bayesian methods is exponential in the number of dimensions so good
coverage can be achieved. For instance, the low-dimensional (d = 3) search space in
our feature subsampling experiment in Section 4.3 helps explain why Hyperband is
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only 6× faster than random search. In contrast, for the neural network experiments in
Section 4.1, we hypothesize that faster speedups are observed for Hyperband because
the dimension of the search space is higher.

4.4.2 Comparison to SuccessiveHalving

With the exception of the LeNet experiment (Section 3.3) and the 117 Datasets experi-
ment (Section 4.2.1), the most aggressive bracket of SuccessiveHalving outperformed
Hyperband in all of our experiments. In hindsight, we should have just run bracket s = 4,
since aggressive early-stopping provides massive speedups on many of these benchmarking
tasks. However, as previously mentioned, it was unknown a priori that bracket s = 4
would perform the best and that is why we have to cycle through all possible brackets
with Hyperband. Another question is what happens when one increases s even further,
i.e. instead of 4 rounds of elimination, why not 5 or even more with the same maximum
resource R? In our case, s = 4 was the most aggressive bracket we could run given the
minimum resource per configuration limits imposed for the previous experiments. However,
for larger data sets, it is possible to extend the range of possible values for s, in which case,
Hyperband may either provide even faster speedups if more aggressive early-stopping helps
or be slower by a small factor if the most aggressive brackets are essentially throwaways.

We believe prior knowledge about a task can be particularly useful for limiting the
range of brackets explored by Hyperband. In our experience, aggressive early-stopping
is generally safe for neural network tasks and even more aggressive early-stopping may be
reasonable for larger data sets and longer training horizons. However, when pushing the
degree of early-stopping by increasing s, one has to consider the additional overhead cost
associated with examining more models. Hence, one way to leverage meta-learning would
be to use learning curve convergence rate, difficulty of different search spaces, and overhead
costs of related tasks to determine the brackets considered by Hyperband.

4.4.3 Resource Dependent Hyperparameters

In certain cases, the setting for a given hyperparameter should depend on the allocated
resource. For example, the maximum tree depth regularization hyperparameter for random
forests should be higher with more data and more features. However, the optimal tradeoff
between maximum tree depth and the resource is unknown and can be data set specific.
In these situations, the rate of convergence to the true loss is usually slow because the
performance on a smaller resource is not indicative of that on a larger resource. Hence,
these problems are particularly difficult for Hyperband, since the benefit of early-stopping
can be muted. Again, while Hyperband will only be a small factor slower than that
of SuccessiveHalving with the optimal early-stopping rate, we recommend removing
the dependence of the hyperparameter on the resource if possible. For the random forest
example, an alternative regularization hyperparameter is minimum samples per leaf, which
is less dependent on the training set size. Additionally, the dependence can oftentimes be
removed with simple normalization. For example, the regularization term for our kernel
least squares experiments were normalized by the training set size to maintain a constant
tradeoff between the mean-squared error and the regularization term.
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5. Theory

In this section, we introduce the pure-exploration non-stochastic infinite-armed bandit
(NIAB) problem, a very general setting which encompasses our hyperparameter optimization
problem of interest. As we will show, Hyperband is in fact applicable to problems far
beyond just hyperparameter optimization. We begin by formalizing the hyperparameter
optimization problem and then reducing it to the pure-exploration NIAB problem. We
subsequently present a detailed analysis of Hyperband in both the infinite and finite
horizon settings.

5.1 Hyperparameter Optimization Problem Statement

Let X denote the space of valid hyperparameter configurations, which could include contin-
uous, discrete, or categorical variables that can be constrained with respect to each other
in arbitrary ways (i.e. X need not be limited to a subset of [0, 1]d). For k = 1, 2, . . . let
ℓk : X → [0, 1] be a sequence of loss functions defined over X . For any hyperparameter
configuration x ∈ X , ℓk(x) represents the validation error of the model trained using x with k
units of resources (e.g. iterations). In addition, for some R ∈ N∪{∞}, define ℓ∗ = limk→R ℓk
and ν∗ = infx∈X ℓ∗(x). Note that ℓk(·) for all k ∈ N, ℓ∗(·), and ν∗ are all unknown to the
algorithm a priori. In particular, it is uncertain how quickly ℓk(x) varies as a function of x
for any fixed k, and how quickly ℓk(x)→ ℓ∗(x) as a function of k for any fixed x ∈ X .

We assume hyperparameter configurations are sampled randomly from a known probabil-
ity distribution p(x) : X → [0,∞), with support on X . In our experiments, p(x) is simply the
uniform distribution, but the algorithm can be used with any sampling method. If X ∈ X
is a random sample from this probability distribution, then ℓ∗(X) is a random variable
whose distribution is unknown since ℓ∗(·) is unknown. Additionally, since it is unknown how
ℓk(x) varies as a function of x or k, one cannot necessarily infer anything about ℓk(x) given
knowledge of ℓj(y) for any j ∈ N, y ∈ X . As a consequence, we reduce the hyperparmeter
optimization problem down to a much simpler problem that ignores all underlying structure
of the hyperparameters: we only interact with some x ∈ X through its loss sequence ℓk(x)
for k = 1, 2, . . . . With this reduction, the particular value of x ∈ X does nothing more than
index or uniquely identify the loss sequence.

Without knowledge of how fast ℓk(·) → ℓ∗(·) or how ℓ∗(X) is distributed, the goal of
Hyperband is to identify a hyperparameter configuration x ∈ X that minimizes ℓ∗(x)− ν∗
by drawing as many random configurations as desired while using as few total resources as
possible.

5.2 The Pure-Exploration Non-stochastic Infinite-Armed Bandit Problem

We now formally define the bandit problem of interest, and relate it to the problem of
hyperparameter optimization. Each “arm” in the NIAB game is associated with a sequence
that is drawn randomly from a distribution over sequences. If we “pull” the ith drawn arm
exactly k times, we observe a loss ℓi,k. At each time, the player can either draw a new arm
(sequence) or pull a previously drawn arm an additional time. There is no limit on the
number of arms that can be drawn. We assume the arms are identifiable only by their index
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i (i.e. we have no side-knowledge or feature representation of an arm), and we also make the
following two additional assumptions:

Assumption 1 For each i ∈ N the limit limk→∞ ℓi,k exists and is equal to νi.
11

Assumption 2 Each νi is a bounded i.i.d. random variable with cumulative distribution
function F .

The objective of the NIAB problem is to identify an arm ı̂ with small νı̂ using as few total
pulls as possible. We are interested in characterizing νı̂ as a function of the total number of
pulls from all the arms. Clearly, the hyperparameter optimization problem described above
is an instance of the NIAB problem. In this case, arm i correspondes to a configuration
xi ∈ X , with ℓi,k = ℓk(xi); Assumption 1 is equivalent to requiring that νi = ℓ∗(xi) exists;
and Assumption 2 follows from the fact that the arms are drawn i.i.d. from X according
to distribution function p(x). F is simply the cumulative distribution function of ℓ∗(X),
where X is a random variable drawn from the distribution p(x) over X . Note that since the
arm draws are independent, the νi’s are also independent. Again, this is not to say that the
validation losses do not depend on the settings of the hyperparameters; the validation loss
could well be correlated with certain hyperparameters, but this is not used in the algorithm
and no assumptions are made regarding the correlation structure.

In order to analyze the behavior of Hyperband in the NIAB setting, we must define
a few additional objects. Let ν∗ = inf{m : P (ν ≤ m) > 0} > −∞, since the domain of the
distribution F is bounded. Hence, the cumulative distribution function F satisfies

P (νi − ν∗ ≤ ǫ) = F (ν∗ + ǫ) (1)

and let F−1(y) = infx{x : F (x) ≤ y}. Define γ : N → R as the pointwise smallest,
monotonically decreasing function satisfying

sup
i
|ℓi,j − ℓi,∗| ≤ γ(j) , ∀j ∈ N. (2)

The function γ is guaranteed to exist by Assumption 1 and bounds the deviation from
the limit value as the sequence of iterates j increases. For hyperparameter optimization,
this follows from the fact that ℓk uniformly converges to ℓ∗ for all x ∈ X . In addition, γ
can be interpretted as the deviation of the validation error of a configuration trained on a
subset of resources versus the maximum number of allocatable resources. Finally, define
R as the first index such that γ(R) = 0 if it exists, otherwise set R = ∞. For y ≥ 0 let
γ−1(y) = min{j ∈ N : γ(j) ≤ y}, using the convention that γ−1(0) := R which we recall can
be infinite.

As previously discussed, there are many real-world scenarios in which R is finite and
known. For instance, if increasing subsets of the full data set is used as a resource, then the
maximum number of resources cannot exceed the full data set size, and thus γ(k) = 0 for
all k ≥ R where R is the (known) full size of the data set. In other cases such as iterative
training problems, one might not want to or know how to bound R. We separate these two
settings into the finite horizon setting where R is finite and known, and the infinite horizon

11. We can always define ℓi,k so that convergence is guaranteed, i.e. taking the infimum of a sequence.
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SuccessiveHalving (Infinite horizon)

Input: Budget B, n arms where ℓi,k denotes the kth loss from the ith arm

Initialize: S0 = [n].

For k = 0, 1, . . . , ⌈log2(n)⌉ − 1

Pull each arm in Sk for rk = ⌊ B
|Sk|⌈log2(n)⌉

⌋ times.

Keep the best ⌊|Sk|/2⌋ arms in terms of the rkth observed loss as Sk+1.

Output : ı̂, ℓ
ı̂,⌊

B/2
⌈log2(n)⌉

⌋
where ı̂ = S⌈log2(n)⌉

Hyperband (Infinite horizon)

Input: None

For k = 1, 2, . . .

For s ∈ N s.t. k − s ≥ log2(s)

Bk,s = 2k, nk,s = 2s

ı̂k,s, ℓ
ı̂k,s,⌊

2k−1

s ⌋
← SuccessiveHalving (Bk,s,nk,s)

Figure 9: (Top) The SuccessiveHalving algorithm proposed and analyzed in Jamieson
and Talwalkar (2015) for the non-stochastic setting. Note this algorithm was
originally proposed for the stochastic setting in Karnin et al. (2013). (Bottom)
The Hyperband algorithm for the infinite horizon setting. Hyperband calls
SuccessiveHalving as a subroutine.

setting where no bound on R is known and it is assumed to be infinite. While our empirical
results suggest that the finite horizon may be more practically relevant for the problem
of hyperparameter optimization, the infinite horizon case has natural connections to the
literature, and we begin by analyzing this setting.

5.3 Infinite Horizon Setting (R =∞)

Consider the Hyperband algorithm of Figure 9. The algorithm uses SuccessiveHalving

(Figure 9) as a subroutine that takes a finite set of arms as input and outputs an estimate
of the best performing arm in the set. We first analyze SuccessiveHalving (SH) for a
given set of limits νi and then consider the performance of SH when νi are drawn randomly
according to F . We then analyze the Hyperband algorithm. We note that the algorithm of
Figure 9 was originally proposed by Karnin et al. (2013) for the stochastic setting. However,
Jamieson and Talwalkar (2015) analyzed it in the non-stochastic setting and also found it to
work well in practice. Extending the result of Jamieson and Talwalkar (2015) we have the
following theorem:
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Theorem 1 Fix n arms. Let νi = lim
τ→∞

ℓi,τ and assume ν1 ≤ · · · ≤ νn. For any ǫ > 0 let

zSH = 2⌈log2(n)⌉ max
i=2,...,n

i (1 + γ−1
(
max

{
ǫ
4 ,

νi−ν1
2

})
)

≤ 2⌈log2(n)⌉
(
n+

∑

i=1,...,n

γ−1
(
max

{
ǫ
4 ,

νi−ν1
2

}) )

If the SuccessiveHalving algorithm of Figure 9 is run with any budget B > zSH then an
arm ı̂ is returned that satisfies νı̂ − ν1 ≤ ǫ/2. Moreover, |ℓ

ı̂,⌊
B/2

⌈log2(n)⌉
⌋
− ν1| ≤ ǫ.

The next technical lemma will be used to characterize the problem dependent term∑
i=1,...,n γ

−1
(
max

{
ǫ
4 ,

νi−ν1
2

})
when the sequences are drawn from a probability distribution.

Lemma 2 Fix δ ∈ (0, 1). Let pn = log(2/δ)
n . For any ǫ ≥ 4(F−1(pn)− ν∗) define

H(F, γ, n, δ, ǫ) := 2n

∫ ∞

ν∗+ǫ/4
γ−1( t−ν∗

4 )dF (t) +
(
4
3 log(2/δ) + 2nF (ν∗ + ǫ/4)

)
γ−1

(
ǫ
16

)

and H(F, γ, n, δ) := H(F, γ, n, δ, 4(F−1(pn)− ν∗)) so that

H(F, γ, n, δ) = 2n

∫ 1

pn

γ−1(F
−1(t)−ν∗

4 )dt+ 10
3 log(2/δ)γ−1

(
F−1(pn)−ν∗

4

)
.

For n arms with limits ν1 ≤ · · · ≤ νn drawn from F , then

ν1 ≤ F−1(pn) and

n∑

i=1

γ−1
(
max

{
ǫ
4 ,

νi−ν1
2

})
≤ H(F, γ, n, δ, ǫ)

for any ǫ ≥ 4(F−1(pn)− ν∗) with probability at least 1− δ.

Setting ǫ = 4(F−1(pn) − ν∗) in Theorem 1 and using the result of Lemma 2 that
ν∗ ≤ ν1 ≤ ν∗ + (F−1(pn)− ν∗), we immediately obtain the following corollary.

Corollary 3 Fix δ ∈ (0, 1) and ǫ ≥ 4(F−1( log(2/δ)n )− ν∗). Let B = 4⌈log2(n)⌉H(F, γ, n, δ, ǫ)
where H(F, γ, n, δ, ǫ) is defined in Lemma 2. If the SuccessiveHalving algorithm of
Figure 9 is run with the specified B and n arm configurations drawn randomly according
to F , then an arm ı̂ ∈ [n] is returned such that with probability at least 1 − δ we have

νı̂ − ν∗ ≤
(
F−1( log(2/δ)n ) − ν∗

)
+ ǫ/2. In particular, if B = 4⌈log2(n)⌉H(F, γ, n, δ) and

ǫ = 4(F−1( log(2/δ)n )− ν∗) then νı̂ − ν∗ ≤ 3
(
F−1( log(2/δ)n )− ν∗

)
with probability at least 1− δ.

Note that for any fixed n ∈ N we have for any ∆ > 0

P( min
i=1,...,n

νi − ν∗ ≥ ∆) = (1− F (ν∗ +∆))n ≈ e−nF (ν∗+∆)

which implies E[mini=1,...,n νi − ν∗] ≈ F−1( 1n)− ν∗. That is, n needs to be sufficiently large
so that it is probable that a good limit is sampled. On the other hand, for any fixed n,
Corollary 3 suggests that the total resource budget B needs to be large enough in order to
overcome the rates of convergence of the sequences described by γ. Next, we relate SH to a
naive approach that uniformly allocates resources to a fixed set of n arms.
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5.3.1 Non-Adaptive Uniform Allocation

The non-adaptive uniform allocation strategy takes as inputs a budget B and n arms,
allocates B/n to each of the arms, and picks the arm with the lowest loss. The following
results allow us to compare with SuccessiveHalving.

Proposition 4 Suppose we draw n random configurations from F , train each with j =
min{B/n,R} iterations, and let ı̂ = argmini=1,...,n ℓj(Xi). Without loss of generality assume
ν1 ≤ . . . ≤ νn. If

B ≥ nγ−1
(
1
2(F

−1( log(1/δ)n )− ν∗)
)

(3)

then with probability at least 1− δ we have νı̂ − ν∗ ≤ 2
(
F−1

(
log(1/δ)

n

)
− ν∗

)
. In contrast,

there exists a sequence of functions ℓj that satisfy F and γ such that if

B ≤ nγ−1
(
2(F−1( log(c/δ)

n+log(c/δ))− ν∗)
)

then with probability at least δ, we have νı̂ − ν∗ ≥ 2(F−1( log(c/δ)
n+log(c/δ)) − ν∗), where c is a

constant that depends on the regularity of F .

For any fixed n and sufficiently large B, Corollary 3 shows that SuccessiveHalving

outputs an ı̂ ∈ [n] that satisfies νı̂ − ν∗ . F−1( log(2/δ)n )− ν∗ with probability at least 1− δ.
This guarantee is similar to the result in Proposition 4. However, SuccessiveHalving

achieves its guarantee as long as12

B ≃ log2(n)

[
log(1/δ)γ−1

(
F−1( log(1/δ)n )− ν∗

)
+ n

∫ 1

log(1/δ)
n

γ−1(F−1(t)− ν∗)dt

]
, (4)

and this sample complexity may be substantially smaller than the budget required by uniform
allocation shown in Eq. (3) of Proposition 4. Essentially, the first term in Eq. (4) represents

the budget allocated to the constant number of arms with limits νi ≈ F−1( log(1/δ)n ) while
the second term describes the number of times the sub-optimal arms are sampled before
discarded. The next section uses a particular parameterization for F and γ to help better
illustrate the difference between the sample complexity of uniform allocation (Equation 3)
versus that of SuccessiveHalving (Equation 4).

5.3.2 A Parameterization of F and γ for Interpretability

To gain some intuition and relate the results back to the existing literature, we make explicit
parametric assumptions on F and γ. We stress that all of our results hold for general F and
γ as previously stated, and this parameterization is simply a tool to provide intuition. First
assume that there exists a constant α > 0 such that

γ(j) ≃
(
1

j

)1/α

. (5)

12. We say f ≃ g if there exist constants c, c′ such that cg(x) ≤ f(x) ≤ c′g(x).
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Note that a large value of α implies that the convergence of ℓi,k → νi is very slow.

We will consider two possible parameterizations of F . First, assume there exists positive
constants β such that

F (x) ≃




(x− ν∗)

β if x ≥ ν∗

0 if x < ν∗
. (6)

Here, a large value of β implies that it is very rare to draw a limit close to the optimal
value ν∗. The same model was studied in Carpentier and Valko (2015). Fix some ∆ > 0.

As discussed in the preceding section, if n = log(1/δ)
F (ν∗+∆) ≃ ∆−β log(1/δ) arms are drawn from

F then with probability at least 1 − δ we have mini=1,...,n νi ≤ ν∗ +∆. Predictably, both

uniform allocation and SuccessiveHalving output a νı̂ that satisfies νı̂−ν∗ .
(
log(1/δ)

n

)1/β

with probability at least 1− δ provided their measurement budgets are large enough. Thus,
if n ≃ ∆−β log(1/δ) and the measurement budgets of the uniform allocation (Equation 3)
and SuccessiveHalving (Equation 4) satisfy

Uniform allocation B ≃ ∆−(α+β) log(1/δ)

SuccessiveHalving B ≃ log2(∆
−β log(1/δ))

[
∆−α log(1/δ) +

∆−β −∆−α

1− α/β
log(1/δ)

]

≃ log(∆−1 log(1/δ)) log(∆−1) ∆−max{β,α} log(1/δ)

then both also satisfy νı̂ − ν∗ . ∆ with probability at least 1− δ.13 SuccessiveHalving’s
budget scales like ∆−max{α,β}, which can be significantly smaller than the uniform allocation’s
budget of ∆−(α+β). However, because α and β are unknown in practice, neither method
knows how to choose the optimal n or B to achieve this ∆ accuracy. In Section 5.3.3, we
show how Hyperband addresses this issue.

The second parameterization of F is the following discrete distribution:

F (x) =
1

K

K∑

j=1

1{x ≤ µj} with ∆j := µj − µ1 (7)

for some set of unique scalars µ1 < µ2 < · · · < µK . Note that by letting K →∞ this discrete
CDF can approximate any piecewise-continuous CDF to arbitrary accuracy. In particular,
this model can have multiple means take the same value so that α mass is on µ1 and 1− α
mass is on µ2 > µ1, capturing the stochastic infinite-armed bandit model of Jamieson et al.
(2016). In this setting, both uniform allocation and SuccessiveHalving output a νı̂ that

is within the top log(1/δ)
n fraction of the K arms with probability at least 1 − δ if their

budgets are sufficiently large. Thus, let q > 0 be such that n ≃ q−1 log(1/δ). Then, if the
measurement budgets of the uniform allocation (Equation 3) and SuccessiveHalving

13. These quantities are intermediate results in the proofs of the theorems of Section 5.3.3.
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(Equation 4) satisfy

Uniform allocation B ≃ log(1/δ)




K max

j=2,...,K
∆−α

j if q = 1/K

q−1∆−α
⌈qK⌉ if q > 1/K

SuccessiveHalving B ≃ log(q−1 log(1/δ)) log(1/δ)





∆−α
2 +

K∑

j=2

∆−α
j if q = 1/K

∆−α
⌈qK⌉ +

1
qK

K∑

j=⌈qK⌉

∆−α
j if q > 1/K,

an arm that is in the best q-fraction of arms is returned, i.e. ı̂/K ≈ q and νı̂ − ν∗ .

∆⌈max{2,qK}⌉, with probability at least 1 − δ. This shows that the average resource per
arm for uniform allocation is that required to distinguish the top q-fraction from the best,
while that for SuccessiveHalving is a small multiple of the average resource required to
distinguish an arm from the best; the difference between the max and the average can be
very large in practice. We remark that the value of ǫ in Corollary 3 is carefully chosen to
make the SuccessiveHalving budget and guarantee work out. Also note that one would
never take q < 1/K because q = 1/K is sufficient to return the best arm.

5.3.3 Hyperband Guarantees

The Hyperband algorithm of Figure 9 addresses the tradeoff between the number of arms n
versus the average number of times each one is pulled B/n by performing a two-dimensional
version of the so-called “doubling trick.” For each fixed B, we non-adaptively search a
predetermined grid of values of n spaced geometrically apart so that the incurred loss of
identifying the “best” setting takes a budget no more than log(B) times the budget necessary
if the best setting of n were known ahead of time. Then, we successively double B so that
the cumulative number of measurements needed to arrive at the necessary B is no more than
2B. The idea is that even though we do not know the optimal setting for B, n to achieve
some desired error rate, the hope is that by trying different values in a particular order, we
will not waste too much effort.

Fix δ ∈ (0, 1). For all (k, s) pairs defined in the Hyperband algorithm of Figure 9, let
δk,s =

δ
2k3

. For all (k, s) define

Ek,s := {Bk,s > 4⌈log2(nk,s)⌉H(F, γ, nk,s, δk,s)} = {2k > 4sH(F, γ, 2s, 2k3/δ)}

Then by Corollary 3 we have

P

(
∞⋃

k=1

k⋃

s=1

{νı̂k,s − ν∗ > 3
(
F−1( log(4k

3/δ)
2s )− ν∗

)
} ∩ Ek,s

)
≤

∞∑

k=1

k∑

s=1

δk,s =
∞∑

k=1

δ

2k2
≤ δ.

For sufficiently large k we will have
⋃k

s=1 Ek,s 6= ∅, so assume B = 2k is sufficiently large.
Let ı̂B be the empirically best-performing arm output from SuccessiveHalving of round
kB = ⌊log2(B)⌋ of Hyperband of Figure 9 and let sB ≤ kB be the largest value such that

28



Bandit-Based Approach to Hyperparameter Optimization

EkB ,sB holds. Then

νı̂B − ν∗ ≤ 3
(
F−1(

log(4⌊log2(B)⌋3/δ)
2sB

)− ν∗
)
+ γ(⌊2⌊log2(B)⌋−1

⌊log2(B)⌋ ⌋).

Also note that on stage k at most
∑k

i=1 iBi,1 ≤ k
∑k

i=1Bi,1 ≤ 2kBk,s = 2 log2(Bk,s)Bk,s

total samples have been taken. While this guarantee holds for general F, γ, the value of
sB, and consequently the resulting bound, is difficult to interpret. The following corollary
considers the β, α parameterizations of F and γ, respectively, of Section 5.3.2 for better
interpretation.

Theorem 5 Assume that Assumptions 1 and 2 of Section 5.2 hold and that the sampled
loss sequences obey the parametric assumptions of Equations 5 and 6. Fix δ ∈ (0, 1). For
any T ∈ N, let ı̂T be the empirically best-performing arm output from SuccessiveHalving

from the last round k of Hyperband of Figure 9 after exhausting a total budget of T from
all rounds, then

νı̂T − ν∗ ≤ c

(
log(T )3log(log(T )/δ)

T

)1/max{α,β}

for some constant c = exp(O(max{α, β})) where log(x) = log(x) log log(x).

By a straightforward modification of the proof, one can show that if uniform allocation
is used in place of SuccessiveHalving in Hyperband, the uniform allocation version

achieves νı̂T−ν∗ ≤ c
(
log(T )log(log(T )/δ)

T

)1/(α+β)
. We apply the above theorem to the stochastic

infinite-armed bandit setting in the following corollary.

Corollary 6 [Stochastic Infinite-armed Bandits] For any step k, s in the infinite horizon
Hyperband algorithm with nk,s arms drawn, consider the setting where the jth pull of the ith
arm results in a stochastic loss Yi,j ∈ [0, 1] such that E[Yi,j ] = νi and P(νi − ν∗ ≤ ǫ) = c−1

1 ǫβ.

If ℓj(i) =
1
j

∑j
s=1 Yi,s then with probability at least 1− δ/2 we have ∀k ≥ 1, 0 ≤ s ≤ k, 1 ≤

i ≤ nk,s, 1 ≤ j ≤ Bk,

|νi − ℓi,j | ≤
√

log(Bknk,s/δk,s)
2j ≤

√
log(16Bk

δ )
(
2
j

)1/2
.

Consequently, if after B total pulls we define ν̂B as the mean of the empirically best arm
output from the last fully completed round k, then with probability at least 1− δ

ν̂B − ν∗ ≤ polylog(B/δ)max{B−1/2, B−1/β}.

The result of this corollary matches the anytime result of Section 4.3 of Carpentier and
Valko (2015) whose algorithm was built specifically for the case of stochastic arms and the β
parameterization of F defined in Eq. (6). Notably, this result also matches the lower bounds
shown in that work up to poly-logarithmic factors, revealing that Hyperband is nearly
tight for this important special case. However, we note that this earlier work has a more
careful analysis for the fixed budget setting.
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Theorem 7 Assume that Assumptions 1 and 2 of Section 5.2 hold and that the sampled loss
sequences obey the parametric assumptions of Equations 5 and 7. For any T ∈ N, let ı̂T be the
empirically best-performing arm output from SuccessiveHalving from the last round k of
Hyperband of Figure 9 after exhausting a total budget of T from all rounds. Fix δ ∈ (0, 1)
and q ∈ (1/K, 1) and let zq = log(q−1)(∆−α

⌈max{2,qK}⌉ +
1
qK

∑K
i=⌈max{2,qK}⌉∆

−α
i ). Once

T = Ω̃ (zq log(zq) log(1/δ)) total pulls have been made by Hyperband we have ν̂T − ν∗ ≤
∆⌈max{2,qK}⌉ with probability at least 1− δ where Ω̃(·) hides log log(·) factors.

Appealing to the stochastic setting of Corollary 6 so that α = 2, we conclude that the
sample complexity sufficient to identify an arm within the best q proportion with probabiltiy
1− δ, up to log factors, scales like log(1/δ) log(q−1)(∆−α

⌈qK⌉ +
1
qK

∑K
i=⌈qK⌉∆

−α
i ). One may

interpret this result as an extension of the distribution-dependent pure-exploration results
of Bubeck et al. (2009); but in our case, our bounds hold when the number of pulls is
potentially much smaller than the number of arms K. When q = 1/K this implies that the
best arm is identified with about log(1/δ) log(K){∆−2

2 +
∑K

i=2∆
−2
i } which matches known

upper bounds Karnin et al. (2013); Jamieson et al. (2014) and lower bounds Kaufmann et al.
(2015) up to log factors. Thus, for the stochastic K-armed bandit problem Hyperband

recovers many of the known sample complexity results up to log factors.

5.4 Finite Horizon Setting (R <∞)

In this section we analyze the algorithm described in Section 3, i.e. finite horizon Hyperband.
We present similar theoretical guarantees as in Section 5.3 for infinite horizon Hyperband,
and fortunately much of the analysis will be recycled. We state the finite horizon version of
the SuccessiveHalving and Hyperband algorithms in Figure 10.

The finite horizon setting differs in two major ways. First, in each bracket at least
one arm will be pulled R times, but no arm will be pulled more than R times. Second,
the number of brackets, each representing SuccessiveHalving with a different tradeoff
between n and B, is fixed at logη(R) + 1. Hence, since we are sampling sequences randomly
i.i.d., increasing B over time would just multiply the number of arms in each bracket by a
constant, affecting performance only by a small constant.

Theorem 8 Fix n arms. Let νi = ℓi,R and assume ν1 ≤ · · · ≤ νn. For any ǫ > 0 let

zSH = η(logη(R) + 1)
[
n+

n∑

i=1

min
{
R, γ−1

(
max

{
ǫ
4 ,

νi−ν1
2

}) }]

If the Successive Halving algorithm of Figure 10 is run with any budget B ≥ zSH then an
arm ı̂ is returned that satisfies νı̂ − ν1 ≤ ǫ/2.

Recall that γ(R) = 0 in this setting and by definition supy≥0 γ
−1(y) ≤ R. Note that

Lemma 2 still applies in this setting and just like above we obtain the following corollary.

Corollary 9 Fix δ ∈ (0, 1) and ǫ ≥ 4(F−1( log(2/δ)n )− ν∗). Let H(F, γ, n, δ, ǫ) be as defined
in Lemma 2 and B = η logη(R)(n+max{R,H(F, γ, n, δ, ǫ)}). If the SuccessiveHalving

algorithm of Figure 10 is run with the specified B and n arm configurations drawn randomly
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SuccessiveHalving (Finite horizon)

input: Budget B, and n arms where ℓi,k denotes the kth loss from the ith arm,
maximum size R, η ≥ 2 (η = 3 by default).

Initialize: S0 = [n], s = min{t ∈ N : nR(t+ 1)η−t ≤ B, t ≤ logη(min{R,n})}.
For k = 0, 1, . . . , s

Set nk = ⌊nη−k⌋, rk = ⌊Rηk−s⌋
Pull each arm in Sk for rk times.

Keep the best ⌊nη−(k+1)⌋ arms in terms of the rkth observed loss as Sk+1.

Output : ı̂, ℓı̂,R where ı̂ = argmini∈Ss+1
ℓi,R

Hyperband (Finite horizon)

Input: Budget B, maximum size R, η ≥ 2 (η = 3 by default)

Initialize: smax = ⌊log(R)/ log(η)⌋
For k = 1, 2, . . .

For s = smax, smax − 1, . . . , 0

Bk,s = 2k, nk,s = ⌈ 2kηs

R(s+1)⌉
ı̂s, ℓı̂s,R ← SuccessiveHalving (Bk,s,nk,s,R,η)

Figure 10: The finite horizon SuccessiveHalving and Hyperband algorithms are inspired
by their infinite horizon counterparts of Figure 9 to handle practical constraints.
Hyperband calls SuccessiveHalving as a subroutine.

according to F then an arm ı̂ ∈ [n] is returned such that with probability at least 1− δ we

have νı̂ − ν∗ ≤
(
F−1( log(2/δ)n )− ν∗

)
+ ǫ/2. In particular, if B = 4⌈log2(n)⌉H(F, γ, n, δ) and

ǫ = 4(F−1( log(2/δ)n )− ν∗) then νı̂ − ν∗ ≤ 3
(
F−1( log(2/δ)n )− ν∗

)
with probability at least 1− δ.

As in Section 5.3.2 we can apply the α, β parameterization for interpretability, with

the added constraint that supy≥0 γ
−1(y) ≤ R so that γ(j) ≃ 1j<R

(
1
j

)1/α
. Note that the

approximate sample complexity of SuccessiveHalving given in Eq. (4) is still valid for
the finite horizon algorithm.

Fixing some ∆ > 0, δ ∈ (0, 1), and applying the parameterization of Eq. (6) we recognize
that if n ≃ ∆−β log(1/δ) and the sufficient sampling budgets (treating η as an absolute
constant) of the uniform allocation (Equation 3) and SuccessiveHalving (Eq. (4)) satisfy

Uniform allocation B ≃ R∆−β log(1/δ)

SuccessiveHalving B ≃ log(∆−1 log(1/δ)) log(1/δ)

[
R+∆−β 1− (α/β)R1−β/α

1− α/β

]

then both also satisfy νı̂ − ν∗ . ∆ with probability at least 1− δ. Recalling that a larger
α means slower convergence and that a larger β means a greater difficulty of sampling
a good limit, note that when α/β < 1 the budget of SuccessiveHalving behaves like
R+∆−β log(1/δ) but as α/β →∞ the budget asymptotes to R∆−β log(1/δ).
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We can also apply the discrete-CDF parameterization of Eq. (7). For any q ∈ (0, 1), if
n ≃ q−1 log(1/δ) and the measurement budgets of the uniform allocation (Equation 3) and
SuccessiveHalving (Equation 4) satisfy

Uniform allocation: B ≃ log(1/δ)




Kmin

{
R, max

j=2,...,K
∆−α

j

}
if q = 1/K

q−1min{R,∆−α
⌈qK⌉} if q > 1/K

SuccessiveHalving:

B ≃ log(q−1 log(1/δ)) log(1/δ)





min{R,∆−α
2 }+

K∑

j=2

min{R,∆−α
j } if q = 1/K

min{R,∆−α
⌈qK⌉}+ 1

qK

K∑

j=⌈qK⌉

min{R,∆−α
j } if q > 1/K

then an arm that is in the best q-fraction of arms is returned, i.e. ı̂/K ≈ q and νı̂ − ν∗ .

∆⌈max{2,qK}⌉, with probability at least 1 − δ. Once again we observe a stark difference

between uniform allocation and SuccessiveHalving, particularly when ∆−α
j ≪ R for many

values of j ∈ {1, . . . , n}.
Armed with Corollary 9, all of the discussion of Section 5.3.3 preceding Theorem 5 holds

for the finite case (R <∞) as well. Predictably analogous theorems also hold for the finite
horizon setting, but their specific forms (with the polylog factors) provide no additional
insights beyond the sample complexities sufficient for SuccessiveHalving to succeed, given
immediately above.

It is important to note that in the finite horizon setting, for all sufficiently large B (e.g.
B > 3R) and all distributions F , the budget B of SuccessiveHalving should scale linearly
with n ≃ ∆−β log(1/δ) as ∆→ 0. Contrast this with the infinite horizon setting in which
the ratio of B to n can become unbounded based on the values of α, β as ∆ → 0. One
consequence of this observation is that in the finite horizon setting it suffices to set B large
enough to identify an ∆-good arm with just constant probability, say 1/10, and then repeat
SuccessiveHalving m times to boost this constant probability to probability 1− ( 9

10)
m.

While in this theoretical treatment of Hyperband we grow B over time, in practice we
recommend fixing B as a multiple of R as we have done in Section 3. The fixed budget
version of finite horizon Hyperband is more suitable for practical application due to the
constant time, instead of exponential time, between configurations trained to completion in
each outer loop.

6. Conclusion

We conclude by discussing three potential extensions related to parallelizing Hyperband

for distributed computing, adjusting for training methods with different convergence rates,
and combining Hyperband with non-random sampling methods.

Distributed implementations. Hyperband has the potential to be parallelized since
arms are independent and sampled randomly. The most straightforward parallelization
scheme is to distribute individual brackets of SuccessiveHalving to different machines.
This can be done asynchronously and as machines free up, new brackets can be launched
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with a different set of arms. One can also parallelize a single bracket so that each round of
SuccessiveHalving runs faster. One drawback of this method is that if R can be computed
on one machine, the number of tasks decreases exponentially as arms are whittled down so a
more sophisticated job priority queue must be managed. Devising parallel generalizations of
Hyperband that efficiently leverage massive distributed clusters while minimizing overhead
costs is an interesting avenue for future work.

Adjusting for different convergence rates. A second open challenge involves gen-
eralizing the ideas behind Hyperband to settings where configurations have drastically
differing convergence rates. Configurations can have different convergence rates if they
have hyperparameters that impact convergence (e.g., learning rate decay for SGD or neural
networks with differing numbers of layers or hidden units), and/or if they correspond to
different model families (e.g., deep networks versus decision trees). The core issue arises
when configurations with drastically slower convergence rates ultimately result in better
models. To address these issues, we should be able to adjust the resources allocated to each
configuration so that a fair comparison can be made at the time of elimination.

Incorporating non-random sampling. Finally, Hyperband can benefit from differ-
ent sampling schemes aside from simple random search. Quasi-random methods like Sobol
or latin hypercube which were studied in Bergstra and Bengio (2012) may improve the
performance of Hyperband by giving better coverage of the search space. Alternatively,
meta-learning can be used to define intelligent priors informed by previous experimenta-
tion (Feurer et al., 2015). Finally, as mentioned in Section 2, exploring ways to combine
Hyperband with adaptive configuration selection strategies is a very promising future
direction.
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Appendix A. Additional Experimental Results

Additional details for experiments presented in Section 3 and 4 are provided below.

A.1 LeNet Experiment

The search space for the LeNet example discussed in Section 3.3 is shown in Table 2.

Hyperparameter Scale Min Max

Learning Rate log 1e-3 1e-1

Batch size log 1e1 1e3

Layer-2 Num Kernels (k2) linear 10 60

Layer-1 Num Kernels (k1) linear 5 k2

Table 2: Hyperparameter space for the LeNet application of Section 3.3. Note that the
number of kernels in Layer-1 is upper bounded by the number of kernels in Layer-2.

A.2 Experiments Using Alex Krizhevsky’s CNN Architecture

For the experiments discussed in Section 4.1, the exact architecture used is the 18% model
provided on cuda-convnet for CIFAR-10.14

Search Space: The search space used for the experiments is shown in Table 3. The
learning rate reductions hyperparameter indicates how many times the learning rate was
reduced by a factor of 10 over the maximum iteration window. For example, on CIFAR-10,
which has a maximum iteration of 30,000, a learning rate reduction of 2 corresponds to
reducing the learning every 10,000 iterations, for a total of 2 reductions over the 30,000
iteration window. All hyperparameters, with the exception of the learning rate decay
reduction, overlap with those in Snoek et al. (2012). Two hyperparameters in Snoek et al.
(2012) were excluded from our experiments: (1) the width of the response normalization
layer was excluded due to limitations of the Caffe framework and (2) the number of epochs
was excluded because it is incompatible with dynamic resource allocation.

Data Splits: For CIFAR-10, the training (40,000 instances) and validation (10,000
instances) sets were sampled from data batches 1-5 with balanced classes. The original test
set (10,000 instances) was used for testing. For MRBI, the training (10,000 instances) and
validation (2,000 instances) sets were sampled from the original training set with balanced
classes. The original test set (50,000 instances) was used for testing. Lastly, for SVHN, the
train, validation, and test splits were created using the same procedure as that in Sermanet
et al. (2012).

Comparison with Early-Stopping: Domhan et al. (2015) proposed an early-stopping
method for neural networks and combined it with SMAC to speed up hyperparameter opti-
mization. Their method stops training a configuration if the probability of the configuration
beating the current best is below a specified threshold. This probability is estimated by
extrapolating learning curves fit to the intermediate validation error losses of a configuration.

14. The model specification is available at http://code.google.com/p/cuda-convnet/.
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Hyperparameter Scale Min Max

Learning Parameters
Initial Learning Rate log 5 ∗ 10−5 5
Conv1 L2 Penalty log 5 ∗ 10−5 5
Conv2 L2 Penalty log 5 ∗ 10−5 5
Conv3 L2 Penalty log 5 ∗ 10−5 5
FC4 L2 Penalty log 5 ∗ 10−3 500
Learning Rate Reductions integer 0 3

Local Response Normalization
Scale log 5 ∗ 10−6 5
Power linear 0.01 3

Table 3: Hyperparameters and associated ranges for the three-layer convolutional network.

If a configuration is terminated early, the predicted terminal value from the estimated
learning curves is used as the validation error passed to the hyperparameter optimization
algorithm. Hence, if the learning curve fit is poor, it could impact the performance of the
configuration selection algorithm. While this approach is heuristic in nature, it could work
well in practice so we compare Hyperband to SMAC with early termination (labeled SMAC
(early) in Figure 11). We used the conservative termination criterion with default parameters
and recorded the validation loss every 400 iterations and evaluated the termination criterion
3 times within the training period (every 8k iterations for CIFAR-10 and MRBI and every
16k iterations for SVHN).15 Comparing the performance by the number of total iterations
as mulitple of R is conservative because it does not account for the time spent fitting the
learning curve in order to check the termination criterion.

A.3 117 Data Sets Experiment

For the experiments discussed in Section 4.2.1, we followed Feurer et al. (2015) and imposed
a 3GB memory limit, a 6-minute timeout for each hyperparameter configuration and a
one-hour time window to evaluate each searcher on each data set. Moreover, we evaluated
the performance of each searcher by aggregating results across all data sets and reporting
the average rank of each method. Specifically, the hour training window is divided up into
30 second intervals and, at each time point, the model with the best validation error at that
time is used in the calculation of the average error across all trials for each (data set-searcher)
pair. Then, the performance of each searcher is ranked by data set and averaged across
all data sets. All experiments were performed on Google Cloud Compute n1-standard-1
instances in us-central1-f region with 1 CPU and 3.75GB of memory.

Data Splits: Feurer et al. (2015) split each data set into 2/3 training and 1/3 test set,
whereas we introduce a validation set to avoid overfitting to the test data. We also used 2/3
of the data for training, but split the rest of the data into two equally sized validation and
test sets. We reported results on both the validation and test data. Moreover, we performed

15. We used the code provided at https://github.com/automl/pylearningcurvepredictor.
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Figure 11: Average test error across 10 trials is shown in all plots. Error bars indicate the
top and bottom quartiles of the test error corresponding to the model with the
best validation error
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20 trials of each (data set-searcher) pair, and as in Feurer et al. (2015) we kept the same
data splits across trials, while using a different random seed for each searcher in each trial.

Shortcomings of the Experimental Setup: The benchmark contains a large variety
of training set sizes and feature dimensions16 resulting in random search being able to test
600 configurations on some data sets but just dozens on others. Hyperband was designed
under the implicit assumption that computation scaled at least linearly with the data set size.
For very small data sets that are trained in seconds, the initialization overheads dominate
the computation and subsampling provides no computational benefit. In addition, many of
the classifiers and preprocessing methods under consideration return memory errors as they
require storage quadratic in the number of features (e.g., covariance matrix) or the number of
observations (e.g., kernel methods). These errors usually happen immediately (thus wasting
little time); however, they often occur on the full data set and not on subsampled data sets.
A searcher like Hyperband that uses a subsampled data set could spend significant time
training on a subsample only to error out when attempting to train it on the full data set.

A.4 Kernel Classification Experiments

Table 4 shows the hyperparameters and associated ranges considered in the kernel least
squares classification experiment discussed in Section 4.2.2.

Hyperparameter Type Values

preprocessor Categorical min/max, standardize, normalize

kernel Categorical rbf, polynomial, sigmoid

C Continuous log [10−3, 105]

gamma Continuous log [10−5, 10]

degree if kernel=poly integer [2, 5]

coef0 if kernel=poly, sigmoid uniform [-1.0, 1.0]

Table 4: Hyperparameter space for kernel regularized least squares classification problem
discussed in Section 4.2.2.

The cost term C is divided by the number of samples so that the tradeoff between the
squared error and the L2 penalty would remain constant as the resource increased (squared
error is summed across observations and not averaged). The regularization term λ is equal
to the inverse of the scaled cost term C. Additionally, the average test error with the top
and bottom quartiles across 10 trials are show in Figure 12.

Table 5 shows the hyperparameters and associated ranges considered in the random
features kernel approximation classification experiment discussed in Section 4.3. The
regularization term λ is divided by the number of features so that the tradeoff between
the squared error and the L2 penalty would remain constant as the resource increased.
Additionally, the average test error with the top and bottom quartiles across 10 trials are
show in Figure 13.

16. Training set size ranges from 670 to 73,962 observations, and number of features ranges from 1 to 10,935.
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Figure 12: Average test error of the best kernel regularized least square classification model
found by each searcher on CIFAR-10. The color coded dashed lines indicate
when the last trial of a given searcher finished. Error bars correspond to the top
and bottom quartiles of the test error across 10 trials.
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Figure 13: Average test error of the best random features model found by each searcher on
CIFAR-10. The test error for Hyperband and bracket s = 4 are calculated in
every evaluation instead of at the end of a bracket. Error bars correspond to the
top and bottom quartiles of the test error across 10 trials.
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Hyperparameter Type Values

preprocessor Categorical none, min/max, standardize, normalize

λ Continuous log [10−3, 105]

gamma Continuous log [10−5, 10]

Table 5: Hyperparameter space for random feature kernel approximation classification
problem discussed in Section 4.3.

Appendix B. Proofs

In this section, we provide proofs for the theorems presented in Section 5.

B.1 Proof of Theorem 1

Proof First, we verify that the algorithm never takes a total number of samples that
exceeds the budget B:

⌈log2(n)⌉−1∑

k=0

|Sk|
⌊

B
|Sk|⌈log(n)⌉

⌋
≤

⌈log2(n)⌉−1∑

k=0

B
⌈log(n)⌉ ≤ B .

For notational ease, let ℓi,j := ℓj(Xi). Again, for each i ∈ [n] := {1, . . . , n} we assume
the limit limk→∞ ℓi,k exists and is equal to νi. As a reminder, γ : N→ R is defined as the
pointwise smallest, monotonically decreasing function satisfying

max
i
|ℓi,j − νi| ≤ γ(j) , ∀j ∈ N. (8)

Note γ is guaranteed to exist by the existence of νi and bounds the deviation from the limit
value as the sequence of iterates j increases.

Without loss of generality, order the terminal losses so that ν1 ≤ ν2 ≤ · · · ≤ νn. Assume
that B ≥ zSH . Then we have for each round k

rk ≥
B

|Sk|⌈log2(n)⌉
− 1

≥ 2

|Sk|
max

i=2,...,n
i

(
1 + γ−1

(
max

{ ǫ
4
,
νi − ν1

2

}))
− 1

≥ 2

|Sk|
(⌊|Sk|/2⌋+ 1)

(
1 + γ−1

(
max

{ ǫ
4
,
ν⌊|Sk|/2⌋+1 − ν1

2

}))
− 1

≥
(
1 + γ−1

(
max

{ ǫ
4
,
ν⌊|Sk|/2⌋+1 − ν1

2

}))
− 1

= γ−1
(
max

{ ǫ
4
,
ν⌊|Sk|/2⌋+1 − ν1

2

})
,

where the fourth line follows from ⌊|Sk|/2⌋ ≥ |Sk|/2− 1.
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First we show that ℓi,t − ℓ1,t > 0 for all t ≥ τi := γ−1
(
νi−ν1

2

)
. Given the definition of γ,

we have for all i ∈ [n] that |ℓi,t− νi| ≤ γ(t) ≤ νi−ν1
2 where the last inequality holds for t ≥ τi.

Thus, for t ≥ τi we have

ℓi,t − ℓ1,t = ℓi,t − νi + νi − ν1 + ν1 − ℓ1,t

= ℓi,t − νi − (ℓ1,t − ν1) + νi − ν1

≥ −2γ(t) + νi − ν1

≥ −2νi − ν1
2

+ νi − ν1

= 0.

Under this scenario, we will eliminate arm i before arm 1 since on each round the arms are
sorted by their empirical losses and the top half are discarded. Note that by the assumption
the νi limits are non-decreasing in i so that the τi values are non-increasing in i.

Fix a round k and assume 1 ∈ Sk (note, 1 ∈ S0). The above calculation shows that

t ≥ τi =⇒ ℓi,t ≥ ℓ1,t. (9)

Consequently,

{1 ∈ Sk, 1 /∈ Sk+1} ⇐⇒




∑

i∈Sk

1{ℓi,rk < ℓ1,rk} ≥ ⌊|Sk|/2⌋





=⇒




∑

i∈Sk

1{rk < τi} ≥ ⌊|Sk|/2⌋





=⇒





⌊|Sk|/2⌋+1∑

i=2

1{rk < τi} ≥ ⌊|Sk|/2⌋





⇐⇒
{
rk < τ⌊|Sk|/2⌋+1

}
.

where the first line follows by the definition of the algorithm, the second by Equation 9,
and the third by τi being non-increasing (for all i < j we have τi ≥ τj and consequently,
1{rk < τi} ≥ 1{rk < τj} so the first indicators of the sum not including 1 would be on
before any other i’s in Sk ⊂ [n] sprinkled throughout [n]). This implies

{1 ∈ Sk, rk ≥ τ⌊|Sk|/2⌋+1} =⇒ {1 ∈ Sk+1}. (10)

Recalling that rk ≥ γ−1
(
max

{
ǫ
4 ,

ν⌊|Sk|/2⌋+1−ν1
2

})
and τ⌊|Sk|/2⌋+1 = γ−1

(ν⌊|Sk|/2⌋+1−ν1
2

)
,

we examine the following three exhaustive cases:

• Case 1:
ν⌊|Sk|/2⌋+1−ν1

2 ≥ ǫ
4 and 1 ∈ Sk

In this case, rk ≥ γ−1
(ν⌊|Sk|/2⌋+1−ν1

2

)
= τ⌊|Sk|/2⌋+1. By Equation 10 we have that

1 ∈ Sk+1 since 1 ∈ Sk.
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• Case 2:
ν⌊|Sk|/2⌋+1−ν1

2 < ǫ
4 and 1 ∈ Sk

In this case rk ≥ γ−1
(
ǫ
4

)
but γ−1

(
ǫ
4

)
< τ⌊|Sk|/2⌋+1. Equation 10 suggests that it may

be possible for 1 ∈ Sk but 1 /∈ Sk+1. On the good event that 1 ∈ Sk+1, the algorithm
continues and on the next round either case 1 or case 2 could be true. So assume
1 /∈ Sk+1. Here we show that {1 ∈ Sk, 1 /∈ Sk+1} =⇒ maxi∈Sk+1

νi ≤ ν1 + ǫ/2.

Because 1 ∈ S0, this guarantees that SuccessiveHalving either exits with arm î = 1
or some arm î satisfying ν̂i ≤ ν1 + ǫ/2.

Let p = min{i ∈ [n] : νi−ν1
2 ≥ ǫ

4}. Note that p > ⌊|Sk|/2⌋+ 1 by the criterion of the
case and

rk ≥ γ−1
( ǫ
4

)
≥ γ−1

(
νi − ν1

2

)
= τi, ∀i ≥ p.

Thus, by Equation 9 (t ≥ τi =⇒ ℓi,t ≥ ℓ1,t) we have that arms i ≥ p would always
have ℓi,rk ≥ ℓ1,rk and be eliminated before or at the same time as arm 1, presuming
1 ∈ Sk. In conclusion, if arm 1 is eliminated so that 1 ∈ Sk but 1 /∈ Sk+1 then
maxi∈Sk+1

νi ≤ maxi<p νi < ν1 + ǫ/2 by the definition of p.

• Case 3: 1 /∈ Sk

Since 1 ∈ S0, there exists some r < k such that 1 ∈ Sr and 1 /∈ Sr+1. For this r, only
case 2 is possible since case 1 would proliferate 1 ∈ Sr+1. However, under case 2, if
1 /∈ Sr+1 then maxi∈Sr+1 νi ≤ ν1 + ǫ/2.

Because 1 ∈ S0, we either have that 1 remains in Sk (possibly alternating between cases
1 and 2) for all k until the algorithm exits with the best arm 1, or there exists some k such
that case 3 is true and the algorithm exits with an arm î such that ν̂i ≤ ν1 + ǫ/2. The proof
is complete by noting that

|ℓ
î,⌊

B/2
⌈log2(n)⌉

⌋
− ν1| ≤ |ℓ

î,⌊
B/2

⌈log2(n)⌉
⌋
− ν̂i|+ |ν̂i − ν1| ≤ ǫ/4 + ǫ/2 ≤ ǫ

by the triangle inequality and because B ≥ 2⌈log2(n)⌉γ−1(ǫ/4) by assumption.
The second, looser, but perhaps more interpretable form of zSH follows from the fact

that γ−1(x) is non-increasing in x so that

max
i=2,...,n

i γ−1
(
max

{
ǫ
4 ,

νi−ν1
2

})
≤

∑

i=1,...,n

γ−1
(
max

{
ǫ
4 ,

νi−ν1
2

})
.

B.2 Proof of Lemma 2

Proof Let pn = log(2/δ)
n , M = γ−1

(
ǫ
16

)
, and µ = E[min{M,γ−1

(
νi−ν∗

4

)
}]. Define the events

ξ1 = {ν1 ≤ F−1(pn)}

ξ2 =

{
n∑

i=1

min{M,γ−1
(
νi−ν∗

4

)
} ≤ nµ+

√
2nµM log(2/δ) + 2

3M log(2/δ)

}
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Note that P(ξc1) = P(mini=1,...,n νi > F−1(pn)) = (1 − pn)
n ≤ exp(−npn) ≤ δ

2 . Moreover,

P(ξc2) ≤ δ
2 by Bernstein’s inequality since

E
[
min{M,γ−1

(
νi−ν∗

4

)
}2
]
≤ E

[
M min{M,γ−1

(
νi−ν∗

4

)
}
]
= Mµ.

Thus, P(ξ1 ∩ ξ2) ≥ 1− δ so in what follows assume these events hold.
First we show that if ν∗ ≤ ν1 ≤ F−1(pn), which we will refer to as equation (∗), then

max
{
ǫ
4 ,

νi−ν1
2

}
≥ max

{
ǫ
4 ,

νi−ν∗
4

}
.

Case 1: ǫ
4 ≤ νi−ν1

2 and ǫ ≥ 4(F−1(pn)− ν∗).

νi−ν1
2

(∗)

≥ νi−ν∗+ν∗−F−1(pn)
2 = νi−ν∗

4 + νi−ν∗
4 − F−1(pn)−ν∗

2

(∗)

≥ νi−ν∗
4 + νi−ν1

4 − F−1(pn)−ν∗
2

Case 1

≥ νi−ν∗
4 .

Case 2: ǫ
4 > νi−ν1

2 and ǫ ≥ 4(F−1(pn)− ν∗).

νi−ν∗
4 = νi−ν1

4 + ν1−ν∗
4

Case 2

< ǫ
8 + ν1−ν∗

4

(∗)

≤ ǫ
8 + F−1(pn)−ν∗

4

Case 2

< ǫ
4

which shows the desired result.
Consequently, for any ǫ ≥ 4(F−1(pn)− ν∗) we have

n∑

i=1

γ−1
(
max

{
ǫ
4 ,

νi−ν1
2

})
≤

n∑

i=1

γ−1
(
max

{
ǫ
4 ,

νi−ν∗
4

})

≤
n∑

i=1

γ−1
(
max

{
ǫ
16 ,

νi−ν∗
4

})

=
n∑

i=1

min{M,γ−1
(
νi−ν∗

4

)
}

≤ nµ+
√
2nµM log(1/δ) + 2

3M log(1/δ)

≤
(√

nµ+
√

2
3M log(2/δ)

)2

≤ 2nµ+ 4
3M log(2/δ).

A direct computation yields

µ = E[min{M,γ−1
(
νi−ν∗

4

)
}]

= E[γ−1
(
max

{
ǫ
16 ,

νi−ν∗
4

})
]

= γ−1
(

ǫ
16

)
F (ν∗ + ǫ/4) +

∫ ∞

ν∗+ǫ/4
γ−1( t−ν∗

4 )dF (t)

so that

n∑

i=1

γ−1
(
max

{
ǫ
4 ,

νi−ν1
2

})
≤ 2nµ+ 4

3M log(2/δ)

= 2n

∫ ∞

ν∗+ǫ/4
γ−1( t−ν∗

4 )dF (t) +
(
4
3 log(2/δ) + 2nF (ν∗ + ǫ/4)

)
γ−1

(
ǫ
16

)

which completes the proof.
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B.3 Proof of Proposition 4

We break the proposition up into upper and lower bounds and prove them seperately.

B.4 Uniform Allocation

Proposition 10 Suppose we draw n random configurations from F , train each with a budget
of j,17 and let ı̂ = argmini=1,...,n ℓj(Xi). Let νi = ℓ∗(Xi) and without loss of generality
assume ν1 ≤ . . . ≤ νn. If

B ≥ nγ−1
(
1
2(F

−1( log(1/δ)n )− ν∗)
)

(11)

then with probability at least 1− δ we have νı̂ − ν∗ ≤ 2
(
F−1

(
log(1/δ)

n

)
− ν∗

)
.

Proof Note that if we draw n random configurations from F and i∗ = argmini=1,...,n ℓ∗(Xi)
then

P (ℓ∗(Xi∗)− ν∗ ≤ ǫ) = P

( n⋃

i=1

{ℓ∗(Xi)− ν∗ ≤ ǫ}
)

= 1− (1− F (ν∗ + ǫ))n ≥ 1− e−nF (ν∗+ǫ) ,

which is equivalent to saying that with probability at least 1−δ, ℓ∗(Xi∗)−ν∗ ≤ F−1(log(1/δ)/n)−
ν∗. Furthermore, if each configuration is trained for j iterations then with probability at
least 1− δ

ℓ∗(Xı̂)− ν∗ ≤ ℓj(Xı̂)− ν∗ + γ(j) ≤ ℓj(Xi∗)− ν∗ + γ(j)

≤ ℓ∗(Xi∗)− ν∗ + 2γ(j) ≤ F−1
(
log(1/δ)

n

)
− ν∗ + 2γ(j).

If our measurement budget B is constrained so that B = nj then solving for j in terms of B
and n yields the result.

The following proposition demonstrates that the upper bound on the error of the uniform
allocation strategy in Proposition 4 is in fact tight. That is, for any distribution F and
function γ there exists a loss sequence that requires the budget described in Eq. (3) in order
to avoid a loss of more than ǫ with high probability.

Proposition 11 Fix any δ ∈ (0, 1) and n ∈ N. For any c ∈ (0, 1], let Fc denote the space of

continuous cumulative distribution functions F satisfying18 infx∈[ν∗,1−ν∗] inf∆∈[0,1−x]
F (x+∆)−F (x+∆/2)

F (x+∆)−F (x) ≥
c. And let Γ denote the space of monotonically decreasing functions over N. For any
F ∈ Fc and γ ∈ Γ there exists a probability distribution µ over X and a sequence of
functions ℓj : X → R ∀j ∈ N with ℓ∗ := limj→∞ ℓj, ν∗ = infx∈X ℓ∗(x) such that

17. Here j can be bounded (finite horizon) or unbounded (infinite horizon).

18. Note that this condition is met whenever F is convex. Moreover, if F (ν∗ + ǫ) = c−1
1 ǫβ then it is easy to

verify that c = 1− 2−β ≥ 1
2
min{1, β}.
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supx∈X |ℓj(x) − ℓ∗(x)| ≤ γ(j) and Pµ(ℓ∗(X) − ν∗ ≤ ǫ) = F (ǫ). Moreover, if n configu-
rations X1, . . . , Xn are drawn from µ and ı̂ = argmini∈1,...,n ℓB/n(Xi) then with probability
at least δ

ℓ∗(Xı̂)− ν∗ ≥ 2(F−1( log(c/δ)
n+log(c/δ))− ν∗)

whenever B ≤ nγ−1
(
2(F−1( log(c/δ)

n+log(c/δ))− ν∗)
)
.

Proof Let X = [0, 1], ℓ∗(x) = F−1(x), and µ be the uniform distribution over [0, 1]. Define

ν̂ = F−1( log(c/δ)
n+log(c/δ)) and set

ℓj(x) =

{
ν̂ + 1

2γ(j) + (ν̂ + 1
2γ(j)− ℓ∗(x)) if |ν̂ + 1

2γ(j)− ℓ∗(x)| ≤ 1
2γ(j)

ℓ∗(x) otherwise.

Essentially, if ℓ∗(x) is within
1
2γ(j) of ν̂ + 1

2γ(j) then we set ℓj(x) equal to ℓ∗(x) reflected
across the value 2ν̂ + γ(j). Clearly, |ℓj(x)− ℓ∗(x)| ≤ γ(j) for all x ∈ X .

Since each ℓ∗(Xi) is distributed according to F , we have

P

( n⋂

i=1

{ℓ∗(Xi)− ν∗ ≥ ǫ}
)
= (1− F (ν∗ + ǫ))n ≥ e−nF (ν∗+ǫ)/(1−F (ν∗+ǫ)) .

Setting the right-hand-side greater than or equal to δ/c and solving for ǫ, we find ν∗ + ǫ ≥
F−1( log(c/δ)

n+log(c/δ)) = ν̂.

Define I0 = [ν∗, ν̂), I1 = [ν̂, ν̂ + 1
2γ(B/n)) and I2 = [ν̂ + 1

2γ(B/n), ν̂ + γ(B/n)]. Fur-
thermore, for j ∈ {0, 1, 2} define Nj =

∑n
i=1 1ℓ∗(Xi)∈Ij . Given N0 = 0 (which occurs with

probability at least δ/c), if N1 = 0 then ℓ∗(Xı̂)− ν∗ ≥ F−1( log(c/δ)
n+log(c/δ)) +

1
2γ(B/n) and the

claim is true.
Below we will show that if N2 > 0 whenever N1 > 0 then the claim is also true. We now

show that this happens with at least probability c whenever N1 +N2 = m for any m > 0.
Observe that

P(N2 > 0|N1 +N2 = m) = 1− P(N2 = 0|N1 +N2 = m)

= 1− (1− P(νi ∈ I2|νi ∈ I1 ∪ I2))
m ≥ 1− (1− c)m ≥ c

since

P(νi ∈ I2|νi ∈ I1 ∪ I2) =
P(νi ∈ I2)

P(νi ∈ I1 ∪ I2)
=

P(νi ∈ [ν̂ + 1
2γ, ν̂ + γ])

P(νi ∈ [ν̂, ν̂ + γ])
=

F (ν̂ + γ)− F (ν̂ + 1
2γ)

F (ν̂ + γ)− F (ν̂)
≥ c .

Thus, the probability of the event that N0 = 0 and N2 > 0 whenever N1 > 0 occurs with
probability at least δ/c · c = δ, so assume this is the case in what follows.

Since N0 = 0, for all j ∈ N, each Xi must fall into one of three cases:

1. ℓ∗(Xi) > ν̂ + γ(j) ⇐⇒ ℓj(Xi) > ν̂ + γ(j)

2. ν̂ ≤ ℓ∗(Xi) < ν̂ + 1
2γ(j) ⇐⇒ ν̂ + 1

2γ(j) < ℓj(Xi) ≤ ν̂ + γ(j)
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3. ν̂ + 1
2γ(j) ≤ ℓ∗(Xi) ≤ ν̂ + γ(j) ⇐⇒ ν̂ ≤ ℓj(Xi) ≤ ν̂ + 1

2γ(j)

The first case holds since within that regime we have ℓj(x) = ℓ∗(x), while the last two
cases hold since they consider the regime where ℓj(x) = 2ν̂ + γ(j) − ℓ∗(x). Thus, for
any i such that ℓ∗(Xi) ∈ I2 it must be the case that ℓj(Xi) ∈ I1 and vice versa. Be-
cause N2 ≥ N1 > 0, we conclude that if ı̂ = argmini ℓB/n(Xi) then ℓB/n(Xı̂) ∈ I1 and

ℓ∗(Xı̂) ∈ I2. That is, νı̂ − ν∗ ≥ ν̂ − ν∗ + 1
2γ(j) = F−1( log(c/δ)

n+log(c/δ)) − ν∗ + 1
2γ(j). So if

we wish νı̂ − ν∗ ≤ 2(F−1( log(c/δ)
n+log(c/δ)) − ν∗) with probability at least δ then we require

B/n = j ≥ γ−1
(
2(F−1( log(c/δ)

n+log(c/δ))− ν∗)
)
.

B.5 Proof of Theorem 5

Proof Step 1: Simplify H(F, γ, n, δ). We begin by simplifying H(F, γ, n, δ) in terms of
just n, δ, α, β. In what follows, we use a constant c that may differ from one inequality to the
next but remains an absolute constant that depends on α, β only. Let pn = log(2/δ)

n so that

γ−1
(
F−1(pn)−ν∗

4

)
≤ c

(
F−1 (pn)− ν∗

)−α ≤ c p−α/β
n

and

∫ 1

pn

γ−1(F
−1(t)−ν∗

4 )dt ≤ c

∫ 1

pn

t−α/βdt ≤
{
c log(1/pn) if α = β

c1−p
1−α/β
n

1−α/β if α 6= β.

We conclude that

H(F, γ, n, δ) = 2n

∫ 1

pn

γ−1(F
−1(t)−ν∗

4 )dt+ 10
3 log(2/δ)γ−1

(
F−1(pn)−ν∗

4

)

≤ cp−α/β
n log(1/δ) + cn

{
log(1/pn) if α = β
1−p

1−α/β
n

1−α/β if α 6= β.

Step 2: Solve for (Bk,l, nk,l) in terms of ∆. Fix ∆ > 0. Our strategy is to describe nk,l

in terms of ∆. In particular, parameterize nk,l such that pnk,l
= c log(4k

3/δ)
nk,l

= ∆β so that

nk,l = c∆−β log(4k3/δ) so

H(F, γ, nk,l, δk,l) ≤ cp−α/β
nk,l

log(1/δk,l) + cnk,l




log(1/pnk,l

) if α = β
1−p

1−α/β
nk,l

1−α/β if α 6= β.

≤ c log(k/δ)

[
∆−α +

{
∆−β log(∆−1) if α = β
∆−β−∆−α

1−α/β if α 6= β

]

≤ c log(k/δ)min{ 1
|1−α/β| , log(∆

−1)}∆−max{β,α}
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where the last line follows from

∆max{β,α}∆
−β −∆−α

1− α/β
= β

∆max{0,α−β} −∆max{0,β−α}

β − α

= β

{
1−∆β−α

β−α if β > α
1−∆α−β

α−β if β < α
≤ cmin{ 1

|1−α/β| , log(∆
−1)}.

Using the upperbound ⌈log(nk,l)⌉ ≤ c log(log(k/δ)∆−1) ≤ c log(log(k/δ)) log(∆−1) and
letting z∆ = log(∆−1)2∆−max{β,α}, we conclude that

Bk,l < min{2k : 2k > 4⌈log(nk,l)⌉H(F, γ, nk,l, δk,l)}
< min{2k : 2k > c log(k/δ) log(log(k/δ))z∆}
≤ cz∆ log(log(z∆)/δ) log(log(log(z∆)/δ))

= cz∆log(log(z∆)/δ).

Step 3: Count the total number of measurements. Moreover, the total number of
measurements before ı̂k,l is output is upperbounded by

T =

k∑

i=1

i∑

j=l

Bi,j ≤ k

k∑

i=1

Bi,1 ≤ 2kBk,1 = 2Bk,1 log2(Bk,1)

where we have employed the so-called “doubling trick”:
∑k

i=1Bi,1 =
∑k

i=1 2
i ≤ 2k+1 = 2Bk,i.

Simplifying,

T ≤ cz∆log(log(z∆)/δ)log(z∆ log(log(z∆)/δ)) ≤ c∆−max{β,α}log(∆−1)3log(log(∆−1)/δ)

Solving for ∆ in terms of T obtains

∆ = c

(
log(T )3log(log(T )/δ)

T

)1/max{α,β}

.

Because the output arm is just the empirical best, there is some error associated with
using the empirical estimate. The arm returned returned on round (k, l) is pulled ⌊2k−1

l ⌋ &
Bk,l/ log(Bk,l) times so the possible error is bounded by γ(Bk,l/ log(Bk,l)) ≤ c

(
log(Bk,l)

Bk,l

)1/α
≤

c
(
log(B)2 log(log(B))

B

)1/α
which is dominated by the value of ∆ solved for above.

B.6 Proof of Theorem 7

Proof Step 1: Simplify H(F, γ, n, δ, ǫ). We begin by simplifying H(F, γ, n, δ, ǫ) in terms
of just n, δ, α, β. As before, we use a constant c that may differ from one inequality to the
next but remains an absolute constant. Let pn = log(2/δ)

n First we solve for ǫ by noting that
we identify the best arm if νı̂− ν∗ < ∆2. Thus, if νı̂− ν∗ ≤

(
F−1(pn)− ν∗

)
+ ǫ/2 then we set

ǫ = max
{
2
(
∆2 −

(
F−1(pn)− ν∗

))
, 4
(
F−1(pn)− ν∗

)}
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so that

νı̂ − ν∗ ≤ max
{
3
(
F−1(pn)− ν∗

)
,∆2

}
= ∆⌈max{2,cKpn}⌉.

We treat the case when 3
(
F−1(pn)− ν∗

)
≤ ∆2 and the alternative separately.

First assume 3
(
F−1(pn)− ν∗

)
> ∆2 so that ǫ = 4

(
F−1(pn)− ν∗

)
and H(F, γ, n, δ, ǫ) =

H(F, γ, n, δ). We also have

γ−1
(
F−1(pn)−ν∗

4

)
≤ c

(
F−1 (pn)− ν∗

)−α ≤ c∆−α
⌈pnK⌉

and

∫ 1

pn

γ−1(F
−1(t)−ν∗

4 )dt =

∫ 1

F−1(pn)
γ−1(x−ν∗

4 )dF (x) ≤ c

K

K∑

i=⌈pnK⌉

∆−α
i

so that

H(F, γ, n, δ) = 2n

∫ 1

pn

γ−1(F
−1(t)−ν∗

4 )dt+ 10
3 log(2/δ)γ−1

(
F−1(pn)−ν∗

4

)

≤ c∆−α
⌈pnK⌉ log(1/δ) +

cn

K

K∑

i=⌈pnK⌉

∆−α
i .

Now consider the case when 3
(
F−1(pn) − ν∗

)
≤ ∆2. In this case F (ν∗ + ǫ/4) = 1/K,

γ−1
(

ǫ
16

)
≤ c∆−α

2 , and
∫∞
ν∗+ǫ/4 γ

−1( t−ν∗
4 )dF (t) ≤ c

∑K
i=2∆

−α
i so that

H(F, γ, n, δ, ǫ) = 2n

∫ ∞

ν∗+ǫ/4
γ−1( t−ν∗

4 )dF (t) +
(
4
3 log(2/δ) + 2nF (ν∗ + ǫ/4)

)
γ−1

(
ǫ
16

)

≤ c(log(1/δ) + n/K)∆−α
2 +

cn

K

K∑

i=2

∆−α
i .

Step 2: Solve for (Bk,l, nk,l) in terms of ∆. Note there is no improvement possible
once pnk,l

≤ 1/K since 3
(
F−1(1/K)− ν∗

)
≤ ∆2. That is, when pnk,l

≤ 1/K the algorithm
has found the best arm but will continue to take samples indefinetely. Thus, we only
consider the case when q = 1/K and q > 1/K. Fix ∆ > 0. Our strategy is to describe

nk,l in terms of q. In particular, parameterize nk,l such that pnk,l
= c log(4k

3/δ)
nk,l

= q so that

nk,l = cq−1 log(4k3/δ) so

H(F, γ, nk,l, δk,l, ǫk,l) ≤ c

{
(log(1/δk,l) +

nk,l

K )∆−α
2 +

nk,l

K

∑K
i=2∆

−α
i if 5

(
F−1(pnk,l

)− ν∗
)
≤ ∆2

∆−α
⌈pnk,l

K⌉ log(1/δk,l) +
nk,l

K

∑K
i=⌈pnk,l

K⌉∆
−α
i if otherwise

≤ c log(k/δ)

{
∆−α

2 +
∑K

i=2∆
−α
i if q = 1/K

∆−α
⌈qK⌉ +

1
qK

∑K
i=⌈qK⌉∆

−α
i if q > 1/K.

≤ c log(k/δ)∆−α
⌈max{2,qK}⌉ +

1

qK

K∑

i=⌈max{2,qK}⌉

∆−α
i
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Using the upperbound ⌈log(nk,l)⌉ ≤ c log(log(k/δ)q−1) ≤ c log(log(k/δ)) log(q−1) and letting

zq = log(q−1)(∆−α
⌈max{2,qK}⌉ +

1
qK

∑K
i=⌈max{2,qK}⌉∆

−α
i ), we apply the exact sequence of steps

as in the proof of Theorem 5 to obtain

T ≤ czqlog(log(zq)/δ)log(zq log(log(zq)/δ))

Because the output arm is just the empirical best, there is some error associated with using the
empirical estimate. The arm returned on round (k, l) is pulled ⌈2k−1

l ⌉ ≥ cBk,l/ log(Bk,l) times

so the possible error is bounded by γ(Bk,l/ log(Bk,l)) ≤ c
(
log(Bk,l)

Bk,l

)1/α
≤ c

(
log(T )2 log(log(T ))

T

)1/α
.

This is dominated by ∆⌈max{2,qK}⌉ for the value of T prescribed by the above calculation,
completing the proof.

B.7 Proof of Theorem 8

Proof Let s denote the index of the last stage, to be determined later. If r̃k = Rηk−s and
ñk = nη−k so that rk = ⌊r̃k⌋ and nk = ⌊ñk⌋ then

s∑

k=0

nkrk ≤
s∑

k=0

ñkr̃k = nR(s+ 1)η−s ≤ B

since, by definition, s = min{t ∈ N : nR(t + 1)η−t ≤ B, t ≤ logη(min{R,n})}. It is
straightforward to verify that B ≥ zSH ensures that r0 ≥ 1 and ns ≥ 1.

The proof for Theorem 1 holds here with a few modifications. First, we derive a lower
bound on the resource per arm rk per round if B ≥ zSH with generalized elimination rate η:

rk ≥
B

|Sk|(⌊logη(n)⌋+ 1)
− 1

≥ η

|Sk|
max

i=2,...,n
i

(
1 + min

{
R, γ−1

(
max

{ ǫ
4
,
νi − ν1

2

})})
− 1

≥ η

|Sk|
(⌊|Sk|/η⌋+ 1)

(
1 + min

{
R, γ−1

(
max

{ ǫ
4
,
ν⌊|Sk|/2⌋+1 − ν1

2

})})
− 1

≥
(
1 + min

{
R, γ−1

(
max

{ ǫ
4
,
ν⌊|Sk|/2⌋+1 − ν1

2

})})
− 1

= min
{
R, γ−1

(
max

{ ǫ
4
,
ν⌊|Sk|/2⌋+1 − ν1

2

})}
.

Also, note that γ(R) = 0, hence if the minimum is ever active, ℓi,R = νi and we know the
true loss. The rest of the proof is same as that for Theorem 1 for η in place of 2.

In addition, we note that

max
i=ns+1,...,n

i γ−1
(
max

{
ǫ
4 ,

νi−ν1
2

})
≤ nsγ

−1
(
max

{
ǫ
4 ,

νns+1−ν1
2

})
+
∑

i>ns

γ−1
(
max

{
ǫ
4 ,

νi−ν1
2

})
.
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