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The effects of exposure to hyperbaric oxygen on the oxidative capacity of the skeletal muscles in mice at different ages were
investigated. We exposed 5-, 34-, 55-, and 88-week-old mice to 36% oxygen at 950 mmHg for 6 hours per day for 2 weeks. The
activities of succinate dehydrogenase (SDH), which is a mitochondrial marker enzyme, of the tibialis anterior muscle in hyperbaric
mice were compared with those in age-matched mice under normobaric conditions (21% oxygen at 760 mmHg). Furthermore, the
SDH activities of type IIA and type IIB fibers in the muscle were determined using quantitative histochemical analysis. The SDH
activity of the muscle in normobaric mice decreased with age. Similar results were observed in both type IIA and type IIB fibers
in the muscle. The decrease in the SDH activity of the muscle was reduced in hyperbaric mice at 57 and 90 weeks. The decreased
SDH activities of type IIA and type IIB fibers were reduced in hyperbaric mice at 90 weeks and at 57 and 90 weeks, respectively.
We conclude that exposure to hyperbaric oxygen used in this study reduces the age-related decrease in the oxidative capacity of
skeletal muscles.

1. Introduction

A reduction in skeletal muscle mass is one of the most
striking features of the aging process. Previous studies [1–3]
have indicated that this reduction is due to decreases in the
number and volume of individual fibers in skeletal muscles.
Mammalian skeletal muscles consist of different sizes and
types of fibers, for example, slow-twitch type I and fast-
twitch type II fibers [4, 5]. A reduction in the number and
volume of type II fibers in skeletal muscles of rats can be
observed in the initial stages of the aging process [6, 7].
These changes in type II fibers are considered to be due to
a transition of fiber types from type II to type I, selective
loss and atrophy of type II fibers, and/or degeneration in the
neuromuscular junction, which are induced by age-related

disuse of type II fibers. A decrease in the number and volume
of both type I and type II fibers in skeletal muscles of rats
can be observed in the late stages of the aging process [6–8].
These changes in type I and type II fibers are closely related to
the loss and degeneration of spinal motoneurons innervating
those fibers in skeletal muscles. Furthermore, a decrease in
the oxidative enzyme activity of skeletal muscles in rats was
observed with increasing age [9–11].

An elevation in atmospheric pressure accompanied by an
increase in oxygen concentration enhances the partial pres-
sure of oxygen and increases the concentration of dissolved
oxygen in the plasma. An increase in both atmospheric pres-
sure and oxygen concentration enhances oxidative enzyme
activity in mitochondria and consequently increases the
oxidative metabolism in cells and tissues [12]; thus, it is
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expected that exposure to hyperbaric oxygen facilitates the
turnover of oxidative metabolism, particularly of pathways
in the mitochondrial TCA cycle, thereby reducing the age-
related decrease in the oxidative enzyme activity of muscle
fibers. We determined that a pressure of 960 mmHg and
an oxygen concentration of 36% are required for obtaining
effective responses with regard to oxidative metabolism
[12, 13]. This study examined the oxidative capacity of the
tibialis anterior muscle in mice at different ages, which were
exposed to 36% oxygen at 950 mmHg. Furthermore, the
cross-sectional areas and oxidative enzyme activities of fibers,
which were type-defined by ATPase activity, in the muscle
of mice were determined using quantitative histochemical
analysis.

2. Materials and Methods

All experimental procedures, including animal care, were
conducted in accordance with the Guide for the Care and Use
of Laboratory Animals of the Japanese Physiological Society.
This study was also approved by the Institutional Animal
Care Committee at Kyoto University.

2.1. Animal Care and Treatment. We used 5-, 34-, 55-,
and 88-week-old female mice in this study. The mice (the
hyperbaric group; n = 6 in each age group) were exposed
to hyperbaric conditions (950 mmHg) with a high oxygen
concentration (36%), which were automatically maintained
by a computer-assisted system, in a hyperbaric chamber for
6 hours (1100–1700) and were placed under normobaric
conditions (21% oxygen at 760 mmHg) for 18 hours (1700–
1100), while other mice (the normobaric group; n = 6
in each age group) were placed in a hyperbaric chamber
under normobaric conditions for 24 hours. The hyperbaric
chamber was 90 cm in length and 80 cm in diameter; thus,
it could simultaneously house a number of rats (up to 20
cages).

All mice were individually housed in same-sized cages
in a room maintained under controlled 12-hour light/dark
cycles (lights switched off from 2000 to 0800) at a tempera-
ture of 22± 2◦C with a relative humidity of 45%–65%. Food
and water were provided ad libitum to all mice.

2.2. Tissue Procedures. After 2 weeks of exposure to hyper-
baric oxygen, the mice in the normobaric and hyperbaric
groups were anesthetized by an intraperitoneal injection of
sodium pentobarbital (50 mg/kg body weight). The tibialis
anterior muscles from both hind limbs were removed and
cleaned of excess fat and connective tissue. Thereafter, the
mice were sacrificed by an overdose of sodium pentobarbital.

The tibialis anterior muscles of the right side were quickly
frozen in liquid nitrogen for measurement of succinate
dehydrogenase (SDH) activity. The SDH activity was deter-
mined according to the method of Cooperstein et al. [14].
Briefly, the muscles were homogenized using a glass tissue
homogenizer with 5 volumes of ice-cold 0.3 M phosphate
buffer, pH 7.4. Sodium succinate was added to yield a final
concentration of 17 mM. The final concentrations of the

components of the reaction mixture were as follows: sodium
succinate 17 µM, sodium cyanide 1 mM, aluminum chloride
0.4 mM, and calcium chloride 0.4 mM. This reaction mixture
was transferred to the spectrophotometer and the reduction
of cytochrome c was followed by observing the increase
in extinction at 550 nm. The SDH activity was calculated
from the ferricytochrome c concentration and protein
content.

The tibialis anterior muscles of the left side were pinned
on a cork at their in vivo length and quickly frozen in
isopentane cooled with liquid nitrogen. The mid-portion of
the muscle was mounted on a specimen chuck using a Tissue
Tek OCT Compound (Sakura Finetechnical, Tokyo, Japan).
Serial transverse sections (10-µm thickness) of the muscle on
the chuck were cut in a cryostat maintained at −20◦C. The
serial sections were brought to room temperature, air-dried
for 30 minutes, and incubated for ATPase activity following
acid preincubation and for SDH activity [15, 16].

The ATPase activity was determined by the following
procedures: (1) preincubation for 5 minutes at room temper-
ature in 50 mM sodium acetate and 30 mM sodium barbital
in distilled water, adjusted to pH 4.5 with HCl; (2) washing
in 5 changes of distilled water; (3) incubation for 45 minutes
at 37◦C in 2.8 mM ATP, 50 mM CaCl2, and 75 mM NaCl in
distilled water, adjusted to pH 9.4 with NaOH; (4) washing
in 5 changes of distilled water; (5) immersion for 3 minutes
in 1% CaCl2; (6) washing in 5 changes of distilled water;
(7) immersion for 3 minutes in 2% CoCl2; (8) washing in 5
changes of distilled water; (9) immersion for 1 minutes in 1%
(NH4)2S; (10) washing in 5 changes of distilled water; (11)
dehydration in a graded series of ethanol, passed through
xylene, and then cover slipped (Figure 1). Classification into
two fiber types was based on staining intensities for ATPase
activity: type IIA (positive intensity) and type IIB (negative
intensity) [17].

The SDH activity was determined by incubation in a
medium containing 0.9 mM 1-methoxyphenazine methyl-
sulfate, 1.5 mM nitroblue tetrazolium, 5.6 mM ethylenedi-
aminetetraacetic acid disodium salt, and 48 mM succinate
disodium salt (pH 7.6) in 100 mM phosphate buffer. The
incubation time was 10 minutes; the changes in staining
intensity in response to incubation reached a plateau after
10 minutes. The reaction was stopped by multiple washings
with distilled water, dehydrated in a graded series of ethanol,
passed through xylene, and cover slipped (Figure 1).

The cross-sectional areas and SDH activities from
approximately 300 fibers, which were type-defined by ATPase
activity, in the central region of the muscle section were
measured by tracing the outline of a fiber and stored in a
computer-assisted image processing system (Neuroimaging
System, Kyoto, Japan) [18, 19]. The images were digitized as
gray-level pictures. Each pixel was quantified as one of 256
gray levels that were then automatically converted to optical
density (OD). A gray level of zero was equivalent to 100%
transmission of light and that of 255 was equivalent of 0%
transmission of light. The mean OD value of all pixels within
a fiber was determined using a calibration tablet that had
21 gradient density steps and corresponding diffused density
values.
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Figure 1: Serial transverse sections of the tibialis anterior muscles in the normobaric ((a) and (b)) and hyperbaric ((c) and (d)) mice at 90
weeks. (a) and (c), stained for ATPase activity following preincubation at pH 4.5; (b) and (d), stained for succinate dehydrogenase activity.
a: type IIA; b: type IIB. Scale bar = 50 µm.

2.3. Statistical Analyses. The data were expressed as mean
and standard deviation. One-way analysis of variance was
used to evaluate the age-related changes. When the differ-
ences were found to be significant, further comparisons were
made by performing post hoc tests. The differences between
the normobaric and age-matched hyperbaric groups were
determined by using the t-test. A probability level of 0.05 was
considered to be statistically significant.

3. Results

3.1. Body Weight. An age-related increase in body weight was
observed in the normobaric groups; the body weights at 36
and 57 weeks were greater than that at 7 weeks, and the body
weight at 90 weeks was the greatest among the groups (Figure
2(a)). These results were similar in the hyperbaric groups.

There were no differences in body weight between the
normobaric and age-matched hyperbaric groups, irrespec-
tive of the age.

3.2. Tibialis Anterior Muscle Weight. The muscle weights of
the normobaric groups at 36 and 57 weeks were greater than
that at 7 weeks (Figure 2(b)). These results were similar in
the hyperbaric groups. The muscle weight of the normobaric
group at 90 weeks was lower than that at 57 weeks.

There were no differences in muscle weight between the
normobaric and age-matched hyperbaric groups, irrespec-
tive of the age.

3.3. SDH Activity of the Tibialis Anterior Muscle. An age-
related decrease in SDH activity was observed in the normo-
baric groups; the SDH activities of the muscle at 57 and 90
weeks were lower than that at 36 weeks and those at 7 and
36 weeks, respectively (Figure 3). There were no differences
in SDH activity of the muscle among the hyperbaric groups,
irrespective of the age.

The SDH activity of the muscle in the hyperbaric group
at 57 and 90 weeks was greater than that in the age-matched
normobaric group.

3.4. Fiber Cross-Sectional Area in the Tibialis Anterior Muscle.
There were no differences in cross-sectional area of type IIA
fibers among the normobaric groups, irrespective of the age
(Figure 4(a)). These results were similar in the hyperbaric
groups.

There were no differences in cross-sectional area of
type IIA fibers between the normobaric and age-matched
hyperbaric groups, irrespective of the age.

The cross-sectional areas of type IIB fibers in the
normobaric groups at 36 and 57 weeks were greater than
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Figure 2: Body weights (a) and tibialis anterior muscle weights (b) of the normobaric and hyperbaric groups at different ages. Data are
represented as the mean and standard deviation determined from six animals. The mice in the hyperbaric group were exposed to 36%
oxygen at 950 mmHg for 6 hours per day for 2 weeks. aP < .05 compared with the corresponding group at 7 weeks; bP < .05 compared with
the corresponding groups at 7, 36, and 57 weeks; cP < .05 compared with the corresponding group at 57 weeks.
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Figure 3: Succinate dehydrogenase activities of the tibialis anterior
muscles of the normobaric and hyperbaric groups at different
ages. Data are represented as the mean and standard deviation
determined from six animals. The mice in the hyperbaric group
were exposed to 36% oxygen at 950 mmHg for 6 hours per day for
2 weeks. SDH: succinate dehydrogenase. dP < .05 compared with
the corresponding group at 36 weeks; eP < .05 compared with the
corresponding groups at 7 and 36 weeks; ∗P < .05 compared with
the age-matched normobaric group.

those at 7 and 90 weeks (Figure 4(b)). These results were
similar in the hyperbaric groups.

There were no differences in cross-sectional area of
type IIB fibers between the normobaric and age-matched
hyperbaric groups, irrespective of the age.

3.5. Fiber SDH Activity in the Tibialis Anterior Muscle. The
SDH activity of type IIA fibers in the normobaric group at
57 weeks was lower than that at 7 weeks (Figure 5(a)). The
SDH activity of type IIA fibers in the normobaric group at

90 weeks was lower than those at 7 and 36 weeks. The SDH
activity of type IIA fibers in the hyperbaric group at 90 weeks
was lower than that at 7 weeks.

The SDH activity of type IIA fibers in the hyperbaric
group at 90 weeks was greater than that in the age-matched
normobaric group.

The SDH activities of type IIB fibers in the normobaric
groups at 57 and 90 weeks were lower than that at 7 weeks
(Figure 5(b)). The SDH activity of type IIB fibers in the
hyperbaric group at 90 weeks was lower than that at 7 weeks.

The SDH activity of type IIB fibers in the hyperbaric
group at 57 and 90 weeks was greater than that of the age-
matched hyperbaric group.

4. Discussion

An elevation in atmospheric pressure accompanied by
high oxygen concentration enhances the partial pressure
of oxygen and increases the concentration of dissolved
oxygen in the plasma [20, 21]. An increase in both atmo-
spheric pressure and oxygen concentration enhances the
mitochondrial oxidative enzyme activity and consequently
increases oxidative metabolism in cells and tissues. Fur-
thermore, an increase in atmospheric pressure and oxygen
concentration increases carbon dioxide concentration, which
in turn facilitates the release of oxygen from hemoglobin
and causes the dilation of blood vessels. We designed a
hyperbaric chamber for performing the animal experiments
[12]; the chamber consisted of an oxygen tank containing
an oxygen concentrator and an air compressor, which auto-
matically maintains the elevated atmospheric pressure and
oxygen concentration using a computer-assisted system. We
determined the optimal atmospheric pressure (950 mmHg)
and oxygen concentration (36%) required for obtaining
effective responses with regard to oxidative capacity in the
neuromuscular system [12].



Enzyme Research 5

9057367

Age (weeks)

Normobaric

Hyperbaric

0

1000

2000

3000

4000
C

SA
(µ

m
2
)

(a)

9057367

Age (weeks)

Normobaric

Hyperbaric

0

1000

2000

3000

4000

C
SA

(µ
m

2
)

f f f f

(b)

Figure 4: Cross-sectional areas of type IIA (a) and type IIB (b) fibers in the tibialis anterior muscles of the normobaric and hyperbaric
groups at different ages. Data are represented as the mean and standard deviation determined from six animals. The mice in the hyperbaric
group were exposed to 36% oxygen at 950 mmHg for 6 hours per day for 2 weeks. CSA: cross-sectional area. fP < .05 compared with the
corresponding groups at 7 and 90 weeks.
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Figure 5: Succinate dehydrogenase activities of type IIA (a) and type IIB (b) fibers in the tibialis anterior muscles of the normobaric and
hyperbaric groups at different ages. Data are represented as the mean and standard deviation determined from six animals. The mice in the
hyperbaric group were exposed to 36% oxygen at 950 mmHg for 6 hours per day for 2 weeks. SDH: succinate dehydrogenase; OD: optical
density. aP < .05 compared with the corresponding group at 7 weeks; eP < .05 compared with the corresponding groups at 7 and 36 weeks;
∗P < .05 compared with the age-matched normobaric group.

Our previous study [13] demonstrated that young rats
exposed to 36% oxygen at 950 mmHg exhibited greater
voluntary running activities than those maintained under
normobaric conditions. We also found that oxidative enzyme
activities of fibers in the soleus and plantaris muscles and
of spinal motoneurons innervating these muscles increased
following exposure to hyperbaric oxygen [13]. These findings
suggest that the adaptation of neuromuscular units to
hyperbaric oxygen enhances the oxidative capacity in muscle
fibers and motoneurons, which promotes the function of
the neuromuscular units. Furthermore, our previous studies
[22, 23] revealed that exposure to 36% oxygen at 950 mmHg

inhibited the growth-related increase in blood glucose levels
of type 2 diabetic rats and in blood pressure levels of
spontaneously hypertensive rats. Exposure to hyperbaric
oxygen inhibited both the growth-related transition of fiber
types from high to low oxidative and the decrease in oxidative
enzyme activity of fibers in the soleus and plantaris muscles
of type 2 diabetic rats [24, 25]. It is suggest that exposure
to hyperbaric oxygen reduces the age-related decrease in
the oxidative capacity of skeletal muscles, because exposure
to hyperbaric oxygen facilitates the turnover of oxidative
metabolism, particularly of pathways in the mitochondrial
TCA cycle.
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Exercise is believed to be effective in maintaining and
improving oxidative metabolism in cells and tissues. Our
previous study [26] observed that exercise is effective for the
prevention of a decrease in the oxidative enzyme activity
of type I and type II fibers in the soleus muscles of rats,
which was induced by unloading. Furthermore, our previous
study [27] found that running exercises served to inhibit the
growth-related transition of fiber types from high to low
oxidative in the soleus muscle of rats with type 2 diabetes,
although this inhibition was observed only in rats that ran
more than 7 km per day.

Atrophy, loss, and decreased oxidative enzyme activity of
fibers in skeletal muscles have been observed with increasing
age [6, 7]. Muscle atrophy in old rats is associated with a
decrease in activity levels of certain enzymes involved in
oxidative metabolism [10]. These changes in skeletal muscles
of rats in the initial stages of aging (60–65 weeks) are
considered to be due to the age-related disuse of skeletal
muscles, which results in the lowering of oxidative capacity
of individual fibers. A previous study [9] observed that 96-
week-old rats retained the capacity to increase the oxida-
tive enzyme activity and mitochondrial density of skeletal
muscles in response to endurance exercises. Furthermore,
our previous study [28] observed that voluntary running
exercises prevented atrophy of type II fibers as well as the
decrease in oxidative enzyme activity of type I and type
II fibers in rats in the initial stages of aging (65 weeks).
Therefore, it is expected that a reduction in the decrease of
oxidative metabolism in skeletal muscles, which was induced
by exposure to hyperbaric oxygen as well as by aerobic
exercise, should treat fiber atrophy and the decrease in
oxidative capacity of skeletal muscles during the initial stages
of the aging process.

We classified fibers in the tibialis anterior muscles of
mice into two types on the basis of staining intensities for
the ATPase activity: type IIA and type IIB. In normobaric
mice, type IIA fibers were smaller than type IIB fibers,
irrespective of the age (Figure 4). Type IIA fibers are more
effective in supplying oxygen and nutrients for oxidative
metabolism from capillaries, which are located close to the
membrane, because of their small sizes. These indicate that
type IIA fibers can work at a relatively low intensity and
have more prolonged activities than do type IIB fibers. In
this study, a reduction in cross-sectional area of type IIB
fibers (Figure 4(b)), but not type IIA fibers (Figure 4(a)),
was observed at 90 weeks. Low-intensity and prolonged
activities, which are performed presumably using type IIA
fibers, continue during increasing age, while high-intensity
and short activities, which are performed presumably using
type IIB fibers, decrease with increasing age. These indicate
that type IIB fibers become less active with increasing age
and, therefore, facilitate disuse-induced atrophy as observed
in Figure 4(b). In this study, there were no differences in
cross-sectional area of type IIA or type IIB fibers between
the normobaric and age-related hyperbaric mice (Figure 4).
Therefore, exposure to hyperbaric oxygen had no effect on
fiber cross-sectional area in the muscle. This view does not
match our expectations and is inconsistent with the findings
observed in relation to exercise [28].

Exposure to hyperbaric oxygen reduced the age-related
decrease in the oxidative enzyme activity of the tibialis
anterior muscle (Figure 3). Similarly, exposure to hyperbaric
oxygen reduced the oxidative enzyme activity of type IIB
fibers in the muscle at 57 weeks (initial stage of aging) and
those of type IIA and type IIB fibers at 90 weeks (middle to
late stages of aging) (Figure 5). The changes in the oxidative
enzyme activity of the tibialis anterior muscle by exposure
to hyperbaric oxygen corresponded well with that of muscle
fibers. We conclude that exposure to hyperbaric oxygen used
in this study reduced the age-related decrease in the oxidative
capacity of skeletal muscles because of the increased oxidative
metabolism in cells and tissues.
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