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Abs t rac t 

Even i f represented in a way w h i c h is i nva r ian t 
to i l l u m i n a t i o n cond i t i ons , a 3D ob jec t gives 
rise to an i n f i n i t e number o f 2D views, depend
i n g on i ts pose. I t has been recent ly shown 
([13]) t h a t i t is possible to synthesize a modu le 
t h a t can recognize a specific 3D ob jec t f r o m any 
v i ewpo in t , by us ing a new technique of learn ing 
f r o m examples, w h i c h are, in th is case, a smal l 
set o f 2D views o f the ob jec t . In th is paper 
we ex tend the techn ique, a) to deal w i t h real 
ob jects ( iso la ted paper c l ips) t h a t suffer f r o m 
noise and occlusions and b) to exp lo i t nega
t i ve examples d u r i n g the learn ing phase. We 
also compare di f ferent versions of the m u l t i -
layer ne tworks cor respond ing to our technique 
among themselves and w i t h a s tandard Near-
est Ne ighbor classif ier. T h e s implest vers ion, 
w h i c h is a Rad ia l Basis Func t ions ne twork , per
forms less we l l t h a n a Nearest Ne ighbor classi
f ier. T h e more power fu l versions, t ra ined w i t h 
pos i t ive and negat ive examples, pe r fo rm signif
i can t l y bet te r . O u r resul ts, wh i ch may have 
in te res t ing imp l i ca t i ons for compute r vis ion de
spi te the re la t ive s imp l i c i t y o f the task s tud ied , 
are especial ly in te res t ing for unders tand ing the 
process o f ob jec t recogn i t ion in b io log ica l v i 
s ion. 

1 I n t r o d u c t i o n 

Shape-based v isua l recogn i t ion o f 3D objects may be 
solved by f i rs t hypo thes iz ing the v i ewpo in t (e.g., us ing 
i n f o r m a t i o n on feature correspondences between the i m 
age and a 3D m o d e l ) , t hen c o m p u t i n g the appearance of 
the mode l o f t he ob jec t to be recognized f r o m t h a t v iew
po in t and c o m p a r i n g i t w i t h the ac tua l image ( [6; 20; 9 ; 
1 1 ; 21]) . M o s t recogn i t ion schemes developed in com
pu te r v is ion over the last few years employ 3D models 
o f ob jects . A u t o m a t i c l ea rn ing o f 3D models , however, 
is in i t se l f a d i f f i cu l t p rob lem t h a t has no t been much 

addressed in the past a n d wh i ch presents d i f f icu l t ies, es
pecia l ly for any theory t h a t wants to account for h u m a n 
a b i l i t y i n v isual recogn i t ion . 

Recent ly , recogn i t ion schemes have been suggested 
t h a t , re ly ing on a set of 2D views of the ob jec t ins tead 
of a 3D mode l ( [2; 5; 13]), offer a n a t u r a l so lu t ion to the 
p rob lem o f mode l acqu is i t ion . In pa r t i cu la r , Poggio and 
Ede lman ([13]) have argued t h a t for each ob jec t there 
exists a smoo th f unc t i on m a p p i n g any perspect ive v iew 
i n t o a " s t a n d a r d " v iew o f the ob jec t and t h a t th is m u l 
t i va r ia te f unc t i on m a y be approx ima teve ly synthesized 
f r o m a smal l number of v iews of the ob jec t . Such a func
t i on w o u l d be ob jec t specif ic, w i t h d i f ferent funct ions 
cor respond ing to d i f ferent 3D ob jects . Since synthesiz
i ng an a p p r o x i m a t i o n to a f unc t i on f r o m a smal l number 
of sparse da ta - the v iews - can be considered as learn
i ng an i n p u t - o u t p u t m a p p i n g f r o m a set o f examples ( [14; 
15]), Poggio and Ede lman used a scheme for the app rox i 
ma t i on of smoo th func t ions w h i c h is equiva lent to a class 
o f mu l t i l aye r ne tworks cal led Regu lar iza t ion Networks 
a n d , in the i r more general f o r m , HyperBas is func t ions . 
For each 3D ob jec t there exist a sma l l ne twork , wh ich is 
" lea rned" d i rec t l y f r o m a smal l set of perspect ive views 
o f the ob jec t . T h e y demons t ra ted the successful per for
mance of such a scheme using compu te r s imu la ted 3D 
wi re f rame objects s imi lar to paperc l ips . The i r exper i 
ments assumed t h a t the ob jec t had been iso lated f r o m 
the background and t h a t features (such as the specific 
corners or angles between the segments) had been ex
t rac ted and m a t c h e d to the cor respond ing features o f 
the mode l v iews. F u r t h e r m o r e , the i r d a t a were noise-
free and w i t h o u t any occlusions. 

In th is paper we ex tend the i r technique and exper i 
ments to more real ist ic s i tua t ions . O u r u l t i m a t e goal 
is to imp lemen t a system for the recogn i t ion of h u m a n 
faces by app l y i ng the H y p e r B F techn ique to v iew vectors 
compu ted f r om the image by ex t r ac t i ng features such as 
the pos i t i on o f the eyes and m o u t h and the color o f the 
ha i rs . 

Real 3D objects in t roduces several d i f f icu l t ies, namely 
the presence o f noise in the feature d a t a , the ignorance 
of the correspondence between the features o f d i f ferent 
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views of the same ob jec t a n d f i na l l y the necessity to use 
incomple te feature vectors (due to the presence of occ lu 
sions a n d / o r to the i n a b i l i t y to recover cor rec t ly some 
o f t he ob jec ts features) . I t seems reasonable to l i m i t , a t 
least in a f i rs t s tep, a l l o f these d i f f icu l t ies to the recog
n i t i o n phase: t he l ea rn ing phase is supervised and uses 
" g o o d " example v iews, where the p rob lem o f correspon
dence has been removed a n d the noise reduced. 

T h e m a i n resu l t o f the paper i s t h a t the H y p e r b f 
technique, su i t ab l y m o d i f i e d , can deal successfully w i t h 
the prob lems of noise, occlusions and miss ing correspon
dences, a t least for the s imple 3D objects we consider 
here. One o f the most useful and in te res t ing o f our ex
tensions of the techique is the use of negat ive examples 
in the t r a i n i n g , t h a t i s in t he mode l acqu is i t i on , phase. 

T h e p l a n of the paper is as fo l lows. T h e f i rs t sect ion 
gives a b r ie f rev iew of the s imple R B F technique. We 
then describe the exper iments and compare the perfor
mance o f d i f ferent vers ion o f the a l g o r i t h m ( inc lud ing 
per formance of a s tandard Nearest Ne ighbor classif ier). 
T h e more general H y p e r B F ne twork is then in t roduced 
and character ised in te rms o f exper imen ta l per formance. 

2 Rad ia l Basis Funct ions 
Rad ia l Basis Func t ions can be regarded as a special case 
of Regu la r iza t ion Ne tworks i n t roduced in [14] as a gen
eral a p p r o x i m a t i o n technique t h a t can be used in p rob
lems o f lea rn ing f rom examples. 

A scalar f unc t i on can be a p p r o x i m a t e d , g iven i ts value 
on a sparse set o f po in ts { x i } , by an expansion in rad ia l 
func t ions : 

(1) 

where represents the usual Euc l idean n o r m . T h e 
c o m p u t a t i o n of the coeff icients c i rests on the i nve r t i b i l -
i t y o f m a t r i x wh i ch has been proved 
(see M icche l l i [12]) for func t ions such as: 

(2) 
(3) 

I t is possible to use fewer rad ia l func t ions t h a n ex
amples, i.e. d a t a po in t s . T h e resu l t ing overconst ra ined 
system can be solved in a least square way under the 
cond i t ions o f M iche l l i ' s t heo rem and proves to be useful 
when m a n y examples are ava i lab le . 

Poggio and G i ros i ( [14; 15]) have shown t h a t the 
R B F techn ique is a special case of the regu la r i za t ion ap
proach to the a p p r o x i m a t i o n o f m u l t i v a r i a t e func t ions . 
In the regu la r i za t ion approach one seeks the a p p r o x i m a t 
i ng f u n c t i o n w h i c h i s closest to the d a t a and smoothest , 
accord ing t o a n approp r ia te c r i t e r i on . T h e R B F tech
n ique descr ibed above, w h i c h is the s implest version of 
the H y p e r B F scheme descr ibed la te r , was used in the 
exper iments descr ibed in the nex t sect ion. 

3 Exper imenta l setup 
T h e ob jects used in the exper iments were f ive paper 
c l ips, r andomly generated of the same l eng th , rendered 
t h rough ray - t rac ing techniques (see F ig . 1). T h e smal l 
number of objects used mus t be taken i n t o account when 
the exper imen ta l results are considered. T h e smal l dif
ference in per formance among the di f ferent techniques 
is expected to increase i f the number of objects to be 
classif ied increases. T h e c l i p was f i rs t isolated f r o m the 
background ([1]) and the resu l t ing b ina ry image was 
skeletonised ( [18]) , g i v ing essent ial ly a l ine d raw ing . A 
po l ygona l a p p r o x i m a t i o n rou t i ne ident i f ied l ine segments 
wh i ch were t hen used to reconst ruc t the c l ip us ing an A* 
search ( [1 ] ) . T h e same a lgo r i t hms were app l ied to a real 
c l ip ( images were taken w i t h a C C D camera) and proven 
to pe r f o rm equal ly we l l . T h e reconst ruc ted cl ips were 
used to s imu la te d i f ferent degrees of occlusions by as
s igning to each c l ip a f i n i te rad ius ( the bigger the radius 
the h igher the occlusion percentage) . 

For each c l ip a set of 80 views were avai lable among 
wh ich the learn ing and tes t ing sets cou ld be chosen. 
The a t t i t u d e was res t r ic ted to one oc tan t o f the v iew
ing sphere. Each c l i p , hav ing six vert ices, was described 
as a vector of twelve coord inates, represent ing the po
s i t ion on the image plane of the vert ices (expressed in 
the barycent r i c coord ina te system iden t i f i ed by the ver
tices to remove t rans la t iona l dependency) . T h e use of 
the (x,y) coord inates of the vert ices on the image plane 
is one of the m a n y possible choices of features. For i n 
stance, the angles between the c l ip segments cou ld have 
been used ( [13]) . B road ly speak ing, every feature tha t 
can be cast i n t o numer ica l f o r m and t h a t maps smoo th l y 
i n t o the o u t p u t o f the ne two rk , may be used in the recog
n i t i on process. 

F igure 1: A real c l ip ( le f t ) and a ray t raced c l ip ( r i gh t ) 

4 Exper imen ts 
T h e purpose o f the exper iments was to test the recogni
t i on per formance of several st rategies. For each rendered 
c l ip , f r o m a set of 80 v iews, a lea rn ing set of g iven car
d i n a l i t y and a tes t ing set of f ixed ca rd i na l i t y (10 views) 
were ex t rac ted . T h e p rob lem o f feature correspondence 
was const ra ined by the na ture of the ob jects . T h e cl ips 
cou ld be present in the lea rn ing set in one of the two 
na tu ra l o r i en ta t i on ( the recons t ruc t ion a l go r i t hm d i d not 
f i x th is a m b i g u i t y ) . In the recogni t ion phase each c l ip 
was used in the t w o ways a t t e m p t i n g recogni t ion and 
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choosing the best resu l t . T h e order o f t h e vert ices was 
assumed to be cor rect b u t for th i s o rder ing amb igu i t y . 
T h e o u t p u t representa t ion used for recogn i t ion was the 
character is t ic f u n c t i o n o f the c l ips: 

(4) 

where P(Ci) represents the space spanned by the per
spect ive p ro jec t ions o f the i - t h c l i p . T h e synthesis o f the 
character is t ic f unc t i on f r o m the lea rn ing set is real ised 
by w h a t w i l l be referred to as RBF module. T h e response 
of a modu le to an i n p u t vector (a c l ip to be classif ied) 
i s the value o f the R B F expansion a t the g iven p o i n t , 
c l ipped to the i n te rva l [0 ,1 ] . T h e c l i p i s t hen assigned to 
the modu le w i t h the h ighest response. 

Several groups of exper iments have been pe r fo rmed : 

• us ing on ly pos i t i ve examples and comple te ver tex 
i n f o r m a t i o n ; 

• us ing on ly pos i t i ve examples and occ luded c l ips; 

• us ing pos i t i ve a n d negat ive examples w i t h complete 
ve r tex i n f o r m a t i o n . 

Posi t ive examples are views of the correct c l ip and 
negat ive examples are views of o ther c l ips ( therefore in-
correct c l ips for the modu le under t r a i n i n g ) . 

In the f i rs t g roup o f exper iments the number o f cen
ters i n the R B F expansions ma tched t h a t o f the avai lable 
pos i t ive examples for the g iven c l ip . T h e per formance 
reflects how wel l t he R B F scheme works w i t h noise in 
the feature vector and in the specific task. As we men
t ioned before, real 3D ob jects exh ib i t occlusions ( topo
log ica l absence of features) , unrecovered features (defec
t i ve feature ex t rac t i on ) and correspondence prob lems. 
T h e f i rs t t w o character is t ics requi re the use o f i ncom
plete feature vectors . I n the "van i l l a ' ' version o f R B F 
descr ibed in sect ion 2, t he rad ia l basis func t ions mus t be 
comple te ly specif ied w i t h the i r parameters before t r a i n 
i ng . For Gaussian r a d i a l basis f unc t i ons , the value for 
mus t be chosen. L e t be the lea rn ing set. To each 
example a nearest ne ighbor can be associated, i.e. an 
example such t h a t 

(5) 

Since the theo ry ([14]) a l lows on ly for a g loba l value of 
(and n o t for a d i f ferent one for each u n i t ) , the average 

nearest ne ighbor d is tance was used: 

(6) 

w i t h n the n u m b e r o f examples in the learn ing set. I f 
the learn ing set spans u n i f o r m l y the space where the 
f unc t i on is def ined, no prob lems arise. I f th is is no t the 

case o v e r / u n d e r genera l isa t ion m a y be expected in th is 
s imple scheme. 

D u r i n g t he c lassi f icat ion task , i ncomp le te feature vec
tors m a y b e presented t o the R B F m o d u l e . T w o s t ra te
gies were inves t iga ted . T h e f i rs t one is p r o b a b l y the 
s implest : a l l possible c o m b i n a t i o n o f the avai lable da ta 
are tes ted. I t s m a j o r d rawback i s t h a t t he number o f 
such comb ina t ions grows qu i t e r a p i d l y w i t h the number 
o f t he avai lable features. T h e second s t ra tegy is d i rec t l y 
re la ted to the idea of characteristic views of a three d i 
mens iona l ob jec t (see [7]). I t can be shown t h a t the 
space of the possible perspect ive v iews of a three d imen 
sional ob jec t can be p a r t i t i o n e d i n t o subspaces w i t h the 
fo l l ow ing proper t ies : 

• a l l t he v iews in a single subspace are topo log ica l ly 
equiva lent ( the i r p ro jec ted edge-s t ructure exh ib i t a 
j u n c t i o n l ine i d e n t i t y ) ; 

• every v iew in a single subspace can be t rans fo rmed 
i n t o another v iew of the same subspace w i t h a l inear 
t r ans fo rma t i on ( i n homogeneous coord inates) . 

An equivalence re la t ion can t h e n be def ined and the 
quo t ien t space considered. T h e elements o f the quo t ien t 
space are cal led characteristic views. T h e topo log ica l 
equivalence of the views in the same subspace impl ies 
t h a t each v iew has the same number of features (such 
as vert ices and faces), the reverse be ing not necessarily 
t rue . I t i s t hen n a t u r a l to assign an R B F modu le to each 
character is t ic v iew. 

F igure 2: A schemat ic v iew of the modified characteristic 
view approach 

Let us focus on Gaussian R B F s . I f a suf f ic ient ly dense 
lea rn ing set is ava i lab le , the value re tu rned by the R B F 
a p p r o x i m a t i o n qu i ck l y decays w i t h the d istance f rom the 
lea rn ing set. I t is reasonable to consider the examples 
in the lea rn ing set as w i re f rame ob jec ts , so t h a t there 
are no occlusions (somewhat l i ke C A D mode ls ) . We can 
then es t imate the value of on th i s virtual set. T h e 
learn ing set can be subd iv ided i n t o subsets whose m e m 
bers share the same number of v is ib le (real) features. Of 
course, an equal number o f features is necessary b u t not 
suff ic ient to share the same character is t ic v iew. T h e d i 
ag ram of F ig . 2 shows a possible scenario and how i t can 
be mapped i n t o d i f ferent R B F modu les , one for each d i -
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mens iona l i t y ( ins tead of one for each character is t ic v iew) 
o f the lea rn ing examples. 

T h e use of a reduced d imens iona l i t y impl ies the use of 
a mod i f ied As is d i r ec t l y re la ted to a d is tance, the 
fo l l ow ing t r a n s f o r m a t i o n ru le was adop ted : 

where i s the value a t d imens iona l i t y j . Whenever a 
feature vector w i t h a d imens iona l i t y t h a t does no t m a t c h 
any of the avai lable examples is presented to the recog
n i t i o n m o d u l e , the f i rs t s t ra tegy can be emp loyed . We 
mus t , however, solve the p r o b l e m o f how to compu te the 
d is tance between po in t s for w h i c h some coord inates may 
no t be ava i lab le . Le t us def ine the me t r i c in the fo l l ow ing 
way: 

(8) 

where M is a symmet r i c , pos i t ive def in i te m a t r i x in 
cal led the metric matrix. I f the s tandard eu-

c l idean met r i c is used and the learn ing set is complete 
the fo l l ow ing me t r i c can be used ( [10]) : 

(9) 

where is the Kronecker s y m b o l , gi — 1 i f the i-
th coord ina te is avai lable in the p o i n t to be classified 
and gi — 0 o therwise. A more useful met r i c can also 
be def ined ([10]) whose d iagona l e lements take i n t o ac
count the number o f miss ing coord ina tes . I f we choose 
to preserve the t race o f the (d iagonal ) met r i c m a t r i x 

the elements o f the met r i c 
m a t r i x are g iven by : 

(10) 

T h i s corresponds to wo rk i ng in a reduced d imens iona l 
i t y R B F m o d u l e w i t h an effect ive chosen accord ing to 
the equat ion 7 . T h e resu l t ing m i x e d s t ra tegy proved to 
be qu i te effect ive, especial ly w i t h h igh occlusions per
centages. T h e use o f m u l t i p l e R B F modules w i t h the 
m ixed s t ra tegy and a we ighted me t r i c prov ides u n i f o r m 
resul ts, so t h a t the answer of the d i f ferent modules can 
be compared to de te rmine the best answer. 

To gauge the per formance of t he R B F scheme, a Near
est Ne ighbor c lassi f icat ion scheme was used on the same 
d a t a sets. Several a d d i t i o n a l exper iments no t repo r ted 
here have also been per fo rmed ( [3 ] ) . 

For each exper imen t t w o quant i t i es are shown in the 
f igures: 

M I N / M A X : the m i n i m u m error made b y the modu le 
on a w r o n g c l i p d i v i ded by the m a x i m u m error on 
a r i gh t c l ip . W h e n MIN/MAX > 1 the modu le 
can avo id false a l a r m t h r o u g h the i n t r o d u c t i o n of a 
th resho ld (sec [4]). T h e average M I N / M A X value 
over the d i f ferent modules is repo r ted in the graphs. 

R E C O G N I T I O N : i s c o m p u t e d assigning each c l ip t o 
the modu le w i t h the smal lest er ror , i g n o r i n g any 
i n f o r m a t i o n f r o m M I N / M A X . 

5 Per formance analysis 

T h e compar ison o f " v a n i l l a " R B F and Nearest Neighbor 
c lassi f icat ion seems to favor the l a t t e r (see F ig . 3). T h i s 
can be exp la ined by some recent theoret ica l results. I t 
can be shown ( [2] , see also [4]) t h a t under o r tograph ic 
p ro jec t ions , the v iew of a g iven ob jec t as denned ear l ier , 
spans a 6-d imensional subspace. If the viewer is at a 
reasonable d is tance f r o m the ob jec t there is on ly a neg-
l igeable dif ference between perspect ive and or tograph ic 
p ro jec t i on . T h i s i m p l y t h a t the views o f each c l ip a lmost 
cer ta in ly span non- in te rsec t ing 6-mani fo lds , embedded 
in the R12 representa t ion space. In these exper iments , 
the s tanda rd eucl idean met r i cs was used. T h e use of 
Gaussians effect ively corresponds to se t t ing a vo lume 
" a r o u n d " the 6 -man i fo ld . T h i s vo lume is bigger when 
the number of examples is smal ler ( larger i n te r samples 
distances) and th is can exp la in the in fer io r per formance 
o f the R B F recogn i t ion scheme, w h i c h is overgeneral iz-
ing . T h e average M I N / M A X error i s be t te r for R B F 
even i f the wors t case (wors t M I N / M A X f igu re o f the 
recogni t ion modules) is usual ly s l igh t l y be t te r for N N . 

I t is in te res t ing to compare the per formance of ex
haust ive m a t c h i n g and m u l t i p l e modules m a t c h i n g ([3]) . 
Whereas at low occlusion percentages the per formance 
of the t w o strategies is very s imi la r , the m u l t i p l e modules 
approach per fo rms def in i te ly be t te r w i t h a large number 
of occlusions. T h e use of a weighted me t r i c increases 
a l l the per fo rmance measures for b o t h strategies. T h i s 
imp rovemen t is due to the fact t h a t when some features 
are miss ing we requi re a progressively closer m a t c h for 
those we have: th is a l lows the reduc t ion of false a larms 
and o f overgenera l iza t ion. 

A n o t h e r possible o u t p u t representa t ion , w h i c h we d i d 
not use because i t can be proved to y ie ld an in fer ior per
formance in th is case ( [3]) , is t h a t of a p ro to t ype v iew 
([13]) : every v iew of a given c l ip is m a p p e d i n t o a par
t i cu lar v iew of t h a t c l i p , cal led i ts prototype view ( th is 
m a p p i n g is real ized t h r o u g h a vector va lued f unc t i on ) . 
T h e c l ip is then assigned to the modu le e x h i b i t i n g the 
smal lest d istance f r o m the o u t p u t o f the R B F expansion 
to i ts p ro to t ype v iew. 

T h e differences in per fo rmance us ing on ly pos i t ive ex
amples, pos i t i ve examples w i t h i n f o r m a t i o n f r o m nega
t i ve examples ( R B F centers on ly on pos i t i ve examples) 
and pos i t ive and negat ive examples (centers on b o t h pos
i t i ve and negat ive examples) have been tested using ra
d ia l Gaussian func t ions (see F ig . 4) . Due to the decay-
to-zero of Gaussians negat ive examples are effective for 
the van i l la R B F scheme on ly when the number o f exam
ples is sma l l . 
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6 H y p e r Basis Funct ions technique 

Figure 3 : Compar i son between R B F w i t h complete ver
tex i n f o r m a t i o n ( A D ) and the m u l t i p l e modules s t ra tegy 
( M I ) a t d i f ferent occlusion percentages. 

F igure 4: Recogn i t ion rates using i n f o rma t i on f r o m neg
at ive examples: P C P N I uses as centers only the posi
t ive examples b u t takes advantage of the negat ive exam
ples i n f o r m a t i o n ( P C P N I ( n ) uses only posi t ive centers 
to compute P N C P N I uses as centers al l of the posi 
t ive and negat ive examples; P C P I does no t use negat ive 
examples and is p rov ided for compar ison. 

T h e " v a n i l l a " R B F technique prov ides a basis for com
par ison w i t h the extensions o f the Regu la r i sa t ion net
work technique descr ibed by T . Poggio and F . G i ros i in 
[14]. F r o m a more general f o r m u l a t i o n of the var ia t iona l 
p rob lem o f regu la r i za t ion t hey der ive the fo l l ow ing ap
p r o x i m a t i o n scheme, ins tead o f equa t ion (1) : 

(11) 

where the parameters t a , t h a t we ca l l "centers , " and the 
coeff icients ca are u n k n o w n , and are in general much 
fewer t h a n the d a t a po in ts T h e t e r m p ( x ) 
is a p o l y n o m i a l t h a t of ten can be neglected, t hough i t 
usual ly consists o f the constant and l inear terms. T h e 
n o r m is a weighted norm 

(12) 

where W is an u n k n o w n square m a t r i x and the super-
scr ip t T indicates the t ranspose. In the s imple case of 
d iagonal W the d iagona l elements W i assign a specific 
weight to each i n p u t coord ina te , de te rm in ing in fact the 
un i ts o f measure and the impor tance of each feature. 
In th is f o rmu la t i on the learn ing stage is used to est i 
mate no t on ly the coeff icients o f the R B F expansion, 
bu t also the met r ic (p rob lem d ipendent d imens iona l i t y 
reduc t ion) and the pos i t i on of the centers ( o p t i m a l ex
amples select ion). 

Th i s more general o p t i m i z a t i o n p rob lem cannot be 
solved th rough m a t r i x invers ion and methods l ike gra
d ient descent ([17]) or r andom m i n i m i z a t i o n techniques 
( [8; 19]) must be used (as the poss ib i l i t y of ge t t ing 
t r apped in poor local m i n i m a is s ign i f icant we op ted for 
the la t te r approach) . 

T h e poss ib i l i ty o f m o v i n g the expansion centers, i n i 
t ia l l y located on some of the learn ing examples, is useful 
in the presence of noise in the avai lable da ta and for 
i m p r o v i n g the representativity o f the center. The ad
jus tab le met r i c is even more i m p o r t a n t , since i t al lows 
to set a more specific d i ss im i la r i t y measure between new 
views and centers t h a n euci idean met r i c . 

One of the most in te res t ing results is t h a t in the task 
o f ob jec t recogn i t ion , and i f an approach s imi la r to ours 
is used, an ad jus tab le met r i c requires necessarily nega
t i ve examples. T h e a rgumen t , subs tan t ia ted by exper i 
ments , rests on the t r i v i a l observat ion t h a t i f on ly posi
t i ve examples were used, i t w o u l d be possible to ob ta i n 
an o p t i m a l ( in te rms of quadra t i c error on the examples) 
a p p r o x i m a t i o n to the character is t ic f unc t i on o f an ob ject 
by m a p p i n g every possible i n p u t v iew to the value 1 , t h a t 
is by choosing W = 0. Th i s is obv ious ly a poor choice 
for the task of ob jec t d i sc r im ina t i on . T h e use of negat ive 
examples is therefore essential . T h e added comp lex i t y is 
smal l since the c o m p u t a t i o n a l comp lex i t y o f the R B F 
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expansion depends l i near l y on the number o f examples 
( for a f ixed number o f centers) . T h i s means t h a t i f m i n i 
m i za t i on techniques such as g rad ien t descent or r a n d o m 
m i n i m i s a t i o n are used, the increase in the c o m p u t a t i o n 
t ime is expected to be l inear . In the case of ob jec t recog-
n i t i o n , negat ive examples a l low to remedy in an elegant 
way w h a t is t he m a i n p rob lem in most learn ing tasks: 
the need of a large number of examples. Use of a large 
number of pos i t i ve examples w o u l d make the whole ap-
proach o f th is paper qu i t e m o o t : each ob ject wou ld be 
represented essent ial ly as a l ook -up table of very m a n y of 
i t s v iews w i t h a l l the cor respond ing c o m p l e x i t y o f stor
age and acqu is i t i on . O u r p roposa l , suppor ted by our ex
per imen ts , is, i ns tead , to use a sma l l number of pos i t ive 
views and a large number of negat ive examples, wh i ch 
are easily avai lable i f t he d a t a basis includes m a n y ob
jec ts . 

T h e p lo ts of F i g . 5 gives some i n f o r m a t i o n on how 
the genera l izat ion proceeds w i t h the number o f pos i t ive 
and negat ive examples avai lable as we l l as a compar ison 
w i t h the nearest ne ighbor results on the same da ta sets. 
R B F ( N ) refers to a one center H y p e r B F expansion w i t h 
movable coeff ic ient, center and d iagonal met r i c (N is the 
number o f pos i t i ve examples) . 

T h e expe r imen ta l results a l low us to rank the dif fer
ent R B F approaches together w i t h the Nearest Neighbor 
c lassi f icat ion scheme p r o v i d i n g a useful gauge. T h e R B F 
approaches can be sor ted , by increasing per formance, in 
the fo l low ing way: 

1 . " van i l l a " R B F : use o f on ly pos i t ive examples w i t h 
as m a n y centers as avai lable examples 

2 . R B F w i t h negat ive examples: only the posi t ive ex
amples are used as centers b u t the i n f o r m a t i o n f rom 
the negat ive examples is used 

3. Nearest Ne ighbor : the per formance is near ly equal 
t o t h a t o f R B F w i t h negat ive examples 

4. H y p e r B F w i t h d iagonal met r i c (negative i n fo rma
t i on m u s t be used) 

5 . H y p e r B F w i t h complete met r i c : again negat ive i n 
f o rma t i on mus t be used. 

7 Conclusions 
We have app l ied recent ly proposed networks for learn ing 
f r o m examples ( the van i l l a R B F version as wel l as the 
more power fu l H y p e r B F scheme) to the p rob lem o f 3D 
object recogn i t ion . E x p e r i m e n t a l resul ts on recogni t ion 
rate have been ob ta ined for w i re f rame ob jects (paper 
cl ips represented as po ly l ines , hence w i t h no occlusions) 
and for more real ist ic ob jects (paper cl ips represented 
as a set of c i l inders of va r y i ng r a d i i , hence exh ib i t i ng 
di f ferent percentages of occlusions). We have extended 
the R B F technique in order to cope w i t h the p rob lem o f 
feature occ lus ion t h r o u g h the i n t r o d u c t i o n of a mod i f ied 

eucl idean met r i c . A character is t ic v iew representat ion 
has been compared to an exhaust ive search for the best 
m a t c h in the case of self-occluded cl ips. Especial ly in ter 
est ing is the use of negat ive examples wh ich y ie ld some 
imp rovemen t in the van i l la R B F approach and are cr i t 
ica l ly i m p o r t a n t for the more general H y p e r B F scheme, 
wh i le reduc ing considerably the complex i ty o f the tech
n ique in te rms o f representa t ion and mode l acquis i t ion. 
T h e H y p e r B F genera l izat ion o f the basic technique, w i t h 
the i n t r o d u c t i o n of movab le expansion centers and the 
synthesis of a task dependent me t r i c , p roved to be suc
cessful in ob ta i n i ng a compac t representa t ion of the ob
jects t h a t appears to w o r k wel l in the - a d m i t t e d l y s t i l l 
very l i m i t e d - recogn i t ion tasks descr ibed here. 
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Figure 5 : L E F T : recogn i t ion rates us ing Gaussian Hy-
p e r B F as a f unc t i on of the percentage of negat ive ex
ample in the learn ing set. R I G H T : compar ison between 
complete met r i c (C ) and d iagona l me t r i c ( D ) ( b o t h w i t h 
one movable center ) . Abscissas represent the number 
o f pos i t i ve example used. A l l the pos i t i ve examples o f 
every other object were used as negat ive examples. 


