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Abstract

Even if represented in a way which is invariant
to illumination conditions, a 3D object gives
rise to an infinite number of 2D views, depend-
ing on its pose. It has been recently shown
([13]) that it is possible to synthesize a module
that can recognize a specific 3D object from any
viewpoint, by using a new technique oflearning
from examples, which are, in this case, a small
set of 2D views of the object. In this paper
we extend the technique, a) to deal with real
objects (isolated paper clips) that suffer from
noise and occlusions and b) to exploit nega-
tive examples during the learning phase. We
also compare different versions of the multi-
layer networks corresponding to our technique
among themselves and with a standard Near-
est Neighbor classifier. The simplest version,
which is a Radial Basis Functions network, per-
forms less well than a Nearest Neighbor classi-
fier. The more powerful versions, trained with
positive and negative examples, perform signif-
icantly better. Our results, which may have
interesting implications for computer vision de-
spite the relative simplicity of the task studied,
are especially interesting for understanding the
process of object recognition in biological vi-
sion.

1 Introduction

Shape-based visual recognition of 3D objects may be
solved by first hypothesizing the viewpoint (e.g., using
information on feature correspondences between the im-
age and a 3D model), then computing the appearance of
the model ofthe object to be recognized from that view-
point and comparing it with the actual image ([6; 20; 9;
11; 21]). Most recognition schemes developed in com-
puter vision over the last few years employ 3D models
of objects. Automatic learning of 3D models, however,
is in itself a difficult problem that has not been much
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addressed in the past and which presents difficulties, es-
pecially for any theory that wants to account for human
ability in visual recognition.

Recently, recognition schemes have been suggested
that, relying on a set of 2D views of the object instead
of a 3D model ([2; 5; 13]), offer a natural solution to the
problem of model acquisition. In particular, Poggio and
Edelman ([13]) have argued that for each object there
exists a smooth function mapping any perspective view
into a "standard" view of the object and that this mul-
tivariate function may be approximatevely synthesized
from a small number of views of the object. Such a func-
tion would be object specific, with different functions
corresponding to different 3D objects. Since synthesiz-
ing an approximation to a function from a small number
of sparse data - the views - can be considered as learn-
ing an input-output mapping from a set ofexamples ([14;
15]), Poggio and Edelman used a scheme for the approxi-
mation of smooth functions which is equivalent to a class
of multilayer networks called Regularization Networks
and, in their more general form, HyperBasis functions.
For each 3D object there exist a small network, which is
"learned" directly from a small set of perspective views
of the object. They demonstrated the successful perfor-
mance of such a scheme using computer simulated 3D
wireframe objects similar to paperclips. Their experi-
ments assumed that the object had been isolated from
the background and that features (such as the specific
corners or angles between the segments) had been ex-
tracted and matched to the corresponding features of
the model views. Furthermore, their data were noise-
free and without any occlusions.

In this paper we extend their technique and experi-
ments to more realistic situations. Our ultimate goal
is to implement a system for the recognition of human
faces by applying the HyperBF technique to view vectors
computed from the image by extracting features such as
the position of the eyes and mouth and the color of the
hairs.

Real 3D objects introduces several difficulties, namely
the presence of noise in the feature data, the ignorance

of the correspondence between the features of different



views of the same object and finally the necessity to use
incomplete feature vectors (due to the presence of occlu-
sions and/or to the inability to recover correctly some
of the objects features). It seems reasonable to limit, at
least in a first step, all of these difficulties to the recog-
nition phase: the learning phase is supervised and uses
"good" example views, where the problem of correspon-
dence has been removed and the noise reduced.

The main result of the paper is that the Hyperbf
technique, suitably modified, can deal successfully with
the problems of noise, occlusions and missing correspon-
dences, at least for the simple 3D objects we consider
here. One of the most useful and interesting of our ex-
tensions of the techique is the use of negative examples
in the training, that is in the model acquisition, phase.

The plan of the paper is as follows. The first section
gives a brief review of the simple RBF technique. We
then describe the experiments and compare the perfor-
mance of different version of the algorithm (including
performance of a standard Nearest Neighbor classifier).
The more general HyperBF network is then introduced
and characterised in terms of experimental performance.

2 Radial

Radial Basis Functions can be regarded as a special case
of Regularization Networks introduced in [14] as a gen-
eral approximation technique that can be used in prob-
lems of learning from examples.

A scalar function can be approximated, given its value
on a sparse set of points {xi}, by an expansion in radial
functions:

Basis Functions
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computation of the coefficients c; rests on the invertibil-
ity of matrix Hi; = h(}| i~ 2; ||} which has been proved
(see Micchelli [12]) for functions such as:
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It is possible to use fewer radial functions than ex-
amples, i.e. data points. The resulting overconstrained
system can be solved in a least square way under the
conditions of Michelli's theorem and proves to be useful
when many examples are available.

Poggio and Girosi ([14; 15]) have shown that the
RBF technique is a special case of the regularization ap-
proach to the approximation of multivariate functions.
In the regularization approach one seeks the approximat-
ing function which is closest to the data and smoothest,
according to an appropriate criterion. The RBF tech-
nique described above, which is the simplest version of
the HyperBF scheme described later, was used in the
experiments described in the next section.

3 Experimental setup

The objects used in the experiments were five paper
clips, randomly generated of the same length, rendered
through ray-tracing techniques (see Fig. 1). The small
number of objects used must be taken into account when
the experimental results are considered. The small dif-
ference in performance among the different techniques
is expected to increase if the number of objects to be
classified increases. The clip was first isolated from the
background ([1]) and the resulting binary image was
skeletonised ([18]), giving essentially a line drawing. A
polygonal approximation routine identified line segments
which were then used to reconstruct the clip using an A*
search ([1]). The same algorithms were applied to a real
clip (images were taken with a CCD camera) and proven
to perform equally well. The reconstructed clips were
used to simulate different degrees of occlusions by as-
signing to each clip a finite radius (the bigger the radius
the higher the occlusion percentage).

For each clip a set of 80 views were available among
which the learning and testing sets could be chosen.
The attitude was restricted to one octant of the view-
ing sphere. Each clip, having six vertices, was described
as a vector of twelve coordinates, representing the po-
sition on the image plane of the vertices (expressed in
the barycentric coordinate system identified by the ver-
tices to remove translational dependency). The use of
the (x,y) coordinates of the vertices on the image plane
is one of the many possible choices of features. For in-
stance, the angles between the clip segments could have
been used ([13]). Broadly speaking, every feature that
can be cast into numerical form and that maps smoothly
into the output of the network, may be used in the recog-
nition process.

Figure 1: A real clip (left) and a ray traced clip (right)

4 Experiments

The purpose of the experiments was to test the recogni-
tion performance of several strategies. For each rendered
clip, from a set of 80 views, a learning set of given car-
dinality and a testing set of fixed cardinality (10 views)
were extracted. The problem of feature correspondence
was constrained by the nature of the objects. The clips
could be present in the learning set in one of the two
natural orientation (the reconstruction algorithm did not
fix this ambiguity). In the recognition phase each clip
was used in the two ways attempting recognition and
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choosing the best result. The order of the vertices was
assumed to be correct but for this ordering ambiguity.
The output representation used for recognition was the
characteristic function of the clips:
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where P(Ci) represents the space spanned by the per-
spective projections of the i-th clip. The synthesis ofthe
characteristic function from the learning set is realised
by what will be referred to as RBF module. The response
of a module to an input vector (a clip to be classified)
is the value of the RBF expansion at the given point,
clipped to the interval [0,1]. The clip is then assigned to
the module with the highest response.
Several groups of experiments have been performed:

* using only positive examples and complete vertex
information;

* using only positive examples and occluded clips;

* using positive and negative examples with complete
vertex information.

Positive examples are views of the correct clip and
negative examples are views of other clips (therefore in-
correct clips for the module under training).

In the first group of experiments the number of cen-
ters in the RBF expansions matched that of the available
positive examples for the given clip. The performance
reflects how well the RBF scheme works with noise in
the feature vector and in the specific task. As we men-
tioned before, real 3D objects exhibit occlusions (topo-
logical absence of features), unrecovered features (defec-
tive feature extraction) and correspondence problems.
The first two characteristics require the use of incom-
plete feature vectors. In the "vanilla" version of RBF
described in section 2, the radial basis functions must be
completely specified with their parameters before train-
ing. For Gaussian radial basis functions, the value for &
must be chosen. Let {3;}1 be the learning set. To each
example #; a nearest neighbor can be associated, i.e. an
example #; #£ %; such that

3 —&|=di = ,Ef;ljl?..}(” 2 — 2 l]) (5)

Since the theory ([14]) allows only for a global value of
o (and not for a different one for each unit), the average
nearest neighbor distance was used:

1
o==3d 6)
i€l

with n the number of examples in the learning set. |If
the learning set spans uniformly the space where the
function is defined, no problems arise. If this is not the
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case over/under generalisation may be expected in this
simple scheme.

During the classification task, incomplete feature vec-
tors may be presented to the RBF module. Two strate-
gies were investigated. The first one is probably the
simplest: all possible combination of the available data
are tested. Its major drawback is that the number of
such combinations grows quite rapidly with the number
of the available features. The second strategy is directly
related to the idea of characteristic views of a three di-
mensional object (see [7]). It can be shown that the
space of the possible perspective views of a three dimen-
sional object can be partitioned into subspaces with the
following properties:

+ all the views in a single subspace are topologically
equivalent (their projected edge-structure exhibit a
junction line identity);

* every view in a single subspace can be transformed
into another view of the same subspace with a linear
transformation (in homogeneous coordinates).

An equivalence relation can then be defined and the
quotient space considered. The elements of the quotient
space are called characteristic views. The topological
equivalence of the views in the same subspace implies
that each view has the same number of features (such
as vertices and faces), the reverse being not necessarily
true. It is then natural to assign an RBF module to each
characteristic view.

Pk

Figure 2: A schematic view of the modified characteristic

view approach

Let us focus on Gaussian RBFs. Ifa sufficiently dense
learning set is available, the value returned by the RBF
approximation quickly decays with the distance from the
learning set. It is reasonable to consider the examples
in the learning set as wire frame objects, so that there
are no occlusions (somewhat like CAD models). We can
then estimate the value of @ on this vitual set. The
learning set can be subdivided into subsets whose mem-
bers share the same number of visible (real) features. Of
course, an equal number of features is necessary but not
sufficient to share the same characteristic view. The di-
agram of Fig. 2 shows a possible scenario and how it can
be mapped into different RBF modules, one for each di-



mensionality (instead of one for each characteristic view)
of the learning examples.

The use of a reduced dimensionality implies the use of
a modified &¢. As & is directly related to a distance, the
following transformation rule was adopted:

ot = .{0.3 {7

where &y is the value at dimensionality j. Whenever a
feature vector with a dimensionality that does not match
any of the available examples is presented to the recog-
nition module, the first strategy can be employed. We
must, however, solve the problem of how to compute the
distance between points for which some coordinates may
not be available. Let us define the metric in the following
way:

d(z;,2:) = (2; - %) M(&; — 2,) (8)

where M is a symmetric, positive definite matrix in
Mauwn called the metric matrix. If the standard eu-
clidean metric is used and the learning set is complete
the following metric can be used ([10]):

Mi; = gibi; 9)

where 5gj is the Kronecker symbol, gi — 1 if the i-
th coordinate is available in the point to be classified
and gi — 0 otherwise. A more useful metric can also
be defined ([10]) whose diagonal elements take into ac-
count the number of missing coordinates. If we choose
to preserve the trace of the (diagonal) metric matrix
M € Mupxa, Tr{M) = n, the elements of the metric
matrix are given by:
M;; = +9€6ij (10)
i %
This corresponds to working in a reduced dimensional-
ity RBF module with an effective & chosen according to
the equation 7. The resulting mixed strategy proved to
be quite effective, especially with high occlusions per-
centages. The use of multiple RBF modules with the
mixed strategy and a weighted metric provides uniform
results, so that the answer of the different modules can
be compared to determine the best answer.

To gauge the performance ofthe RBF scheme, a Near-
est Neighbor classification scheme was used on the same
data sets. Several additional experiments not reported
here have also been performed ([3]).

For each experiment two quantities are shown in the
figures:

MIN/MAX: the minimum error made by the module
on a wrong clip divided by the maximum error on
a right clip. When MIN/MAX > 1 the module
can avoid false alarm through the introduction of a
threshold (sec [4]). The average MIN/MAX value
over the different modules is reported in the graphs.

RECOGNITION: is computed assigning each clip to
the module with the smallest error, ignoring any
information from MIN/MAX.

5 Performance analysis

The comparison of "vanilla" RBF and Nearest Neighbor
classification seems to favor the latter (see Fig. 3). This
can be explained by some recent theoretical results. It
can be shown ([2], see also [4]) that under ortographic
projections, the view of a given object as denned earlier,
spans a 6-dimensional subspace. |If the viewer is at a
reasonable distance from the object there is only a neg-
ligeable difference between perspective and ortographic
projection. This imply that the views of each clip almost
certainly span non-intersecting 6-manifolds, embedded
in the R™ representation space. In these experiments,
the standard euclidean metrics was used. The use of
Gaussians effectively corresponds to setting a volume
"around" the 6-manifold. This volume is bigger when
the number of examples is smaller (larger inter samples
distances) and this can explain the inferior performance
of the RBF recognition scheme, which is overgeneraliz-
ing. The average MIN/MAX error is better for RBF
even if the worst case (worst MIN/MAX figure of the
recognition modules) is usually slightly better for NN.

It is interesting to compare the performance of ex-
haustive matching and multiple modules matching ([3]).
Whereas at low occlusion percentages the performance
of the two strategies is very similar, the multiple modules
approach performs definitely better with a large number
of occlusions. The use of a weighted metric increases
all the performance measures for both strategies. This
improvement is due to the fact that when some features
are missing we require a progressively closer match for
those we have: this allows the reduction of false alarms
and of overgeneralization.

Another possible output representation, which we did
not use because it can be proved to yield an inferior per-
formance in this case ([3]), is that of a prototype view
([13]): every view of a given clip is mapped into a par-
ticular view of that clip, called its prototype view (this
mapping is realized through a vector valued function).
The clip is then assigned to the module exhibiting the
smallest distance from the output of the RBF expansion
to its prototype view.

The differences in performance using only positive ex-
amples, positive examples with information from nega-
tive examples (RBF centers only on positive examples)
and positive and negative examples (centers on both pos-
itive and negative examples) have been tested using ra-
dial Gaussian functions (see Fig. 4). Due to the decay-
to-zero of Gaussians negative examples are effective for
the vanilla RBF scheme only when the number of exam-
ples is small.
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Figure 3: Comparison between RBF with complete ver-
tex information (AD) and the multiple modules strategy
(MI) at different occlusion percentages.
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Figure 4: Recognition rates using information from neg-
ative examples: PCPNI uses as centers only the posi-
tive examples but takes advantage of the negative exam-
ples information (PCPNI(n) uses only positive centers
to compute c'); PNCPNI uses as centers all of the posi-
tive and negative examples; PCPI| does not use negative
examples and is provided for comparison.
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6 Hyper Basis Functions technique

The "vanilla" RBF technique provides a basis for com-
parison with the extensions of the Regularisation net-
work technique described by T. Poggio and F. Girosi in
[14]. From a more general formulation of the variational
problem of regularization they derive the following ap-
proximation scheme, instead of equation (1):

n
@) =) cabllx~talliw) +p(x)  (11)
a=}
where the parameters t,, that we call "centers," and the
coefficients ¢, are unknown, and are in general much
fewer than the data points {# € N). The term p(x)
is a polynomial that often can be neglected, though it
usually consists of the constant and linear terms. The
norm is a weighted norm

|{(x —~ tn)ﬂz = (x— ta)TWTW(x — ta) (12)

where W is an unknown square matrix and the super-
script T indicates the transpose. In the simple case of
diagonal W the diagonal elements W; assign a specific
weight to each input coordinate, determining in fact the
units of measure and the importance of each feature.
In this formulation the learning stage is used to esti-
mate not only the coefficients of the RBF expansion,
but also the metric (problem dipendent dimensionality
reduction) and the position of the centers (optimal ex-
amples selection).

This more general optimization problem cannot be
solved through matrix inversion and methods like gra-
dient descent ([17]) or random minimization techniques
([8; 19]) must be used (as the possibility of getting
trapped in poor local minima is significant we opted for
the latter approach).

The possibility of moving the expansion centers, ini-
tially located on some of the learning examples, is useful
in the presence of noise in the available data and for
improving the representativity = of the center. The ad-
justable metric is even more important, since it allows
to set a more specific dissimilarity measure between new
views and centers than euciidean metric.

One of the most interesting results is that in the task
of object recognition, and if an approach similar to ours
is used, an adjustable metric requires necessarily nega-
tive examples. The argument, substantiated by experi-
ments, rests on the trivial observation that if only posi-
tive examples were used, it would be possible to obtain
an optimal (in terms of quadratic error on the examples)
approximation to the characteristic function of an object
by mapping every possible input view to the value 1, that
is by choosing W = 0. This is obviously a poor choice
for the task of object discrimination. The use of negative
examples is therefore essential. The added complexity is
small since the computational complexity of the RBF



expansion depends linearly on the number of examples
(for a fixed number of centers). This means that if mini-
mization techniques such as gradient descent or random
minimisation are used, the increase in the computation
time is expected to be linear. In the case ofobject recog-
nition, negative examples allow to remedy in an elegant
way what is the main problem in most learning tasks:
the need of a large number of examples. Use of a large
number of positive examples would make the whole ap-
proach of this paper quite moot: each object would be
represented essentially as a look-up table of very many of
its views with all the corresponding complexity of stor-
age and acquisition. Our proposal, supported by our ex-
periments, is, instead, to use a small number of positive
views and a large number of negative examples, which
are easily available if the data basis includes many ob-
jects .

The plots of Fig. 5 gives some information on how
the generalization proceeds with the number of positive
and negative examples available as well as a comparison
with the nearest neighbor results on the same data sets.
RBF(N) refers to a one center HyperBF expansion with
movable coefficient, center and diagonal metric (N is the
number of positive examples).

The experimental results allow us to rank the differ-
ent RBF approaches together with the Nearest Neighbor
classification scheme providing a useful gauge. The RBF
approaches can be sorted, by increasing performance, in
the following way:

1. "vanilla" RBF: use of only positive examples with

as many centers as available examples

2. RBF with negative examples: only the positive ex-
amples are used as centers but the information from
the negative examples is used

3. Nearest Neighbor: the performance is nearly equal
to that of RBF with negative examples

4. HyperBF with diagonal
tion must be used)

metric (negative informa-

5. HyperBF with complete metric:
formation must be used.

again negative in-

7 Conclusions

We have applied recently proposed networks for learning
from examples (the vanilla RBF version as well as the
more powerful HyperBF scheme) to the problem of 3D
object recognition. Experimental results on recognition
rate have been obtained for wire frame objects (paper
clips represented as polylines, hence with no occlusions)
and for more realistic objects (paper clips represented
as a set of cilinders of varying radii, hence exhibiting
different percentages of occlusions). We have extended
the RBF technique in order to cope with the problem of
feature occlusion through the introduction of a modified

euclidean metric. A characteristic view representation
has been compared to an exhaustive search for the best
match in the case of self-occluded clips. Especially inter-
esting is the use of negative examples which yield some
improvement in the vanilla RBF approach and are crit-
ically important for the more general HyperBF scheme,
while reducing considerably the complexity of the tech-
nique in terms of representation and model acquisition.
The HyperBF generalization of the basic technique, with
the introduction of movable expansion centers and the
synthesis of a task dependent metric, proved to be suc-
cessful in obtaining a compact representation of the ob-
jects that appears to work well in the - admittedly still
very limited - recognition tasks described here.
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Figure 5: LEFT: recognition rates using Gaussian Hy-
perBF as a function of the percentage of negative ex-
ample in the learning set. RIGHT: comparison between
complete metric (C) and diagonal metric (D) (both with
one movable center). Abscissas represent the number
of positive example used. All the positive examples of
every other object were used as negative examples.



