
BioMed Central

Theoretical Biology and Medical 
Modelling

ss
Open AcceResearch
Hyperbolastic growth models: theory and application
Mohammad Tabatabai1, David Keith Williams2 and Zoran Bursac*2

Address: 1Department of Mathematical Sciences, Cameron University, 2800 W Gore Blvd., Lawton, OK 73505, USA and 2Department of 
Biostatistics, University of Arkansas for Medical Sciences, Slot 820, Little Rock, AR 72205, USA

Email: Mohammad Tabatabai - mohammad@cameron.edu; David Keith Williams - WilliamsDavidK1@uams.edu; 
Zoran Bursac* - BursacZoran@uams.edu

* Corresponding author    

Hyperbolastic models

Abstract
Background: Mathematical models describing growth kinetics are very important for predicting
many biological phenomena such as tumor volume, speed of disease progression, and
determination of an optimal radiation and/or chemotherapy schedule. Growth models such as
logistic, Gompertz, Richards, and Weibull have been extensively studied and applied to a wide
range of medical and biological studies. We introduce a class of three and four parameter models
called "hyperbolastic models" for accurately predicting and analyzing self-limited growth behavior
that occurs e.g. in tumors. To illustrate the application and utility of these models and to gain a
more complete understanding of them, we apply them to two sets of data considered in previously
published literature.

Results: The results indicate that volumetric tumor growth follows the principle of hyperbolastic
growth model type III, and in both applications at least one of the newly proposed models provides
a better fit to the data than the classical models used for comparison.

Conclusion: We have developed a new family of growth models that predict the volumetric
growth behavior of multicellular tumor spheroids with a high degree of accuracy. We strongly
believe that the family of hyperbolastic models can be a valuable predictive tool in many areas of
biomedical and epidemiological research such as cancer or stem cell growth and infectious disease
outbreaks.

1. Introduction
The analysis of growth is an important component of
many clinical and biological studies. The evolution of
such mathematical functions as Gompertz, logistic, Rich-
ards, Weibull and Von Bertalanffy to describe population
growth clearly indicates how this field has developed over
the years. These models have proved useful for a wide
range of growth curves [1]. In the logistic model, the

growth curve is symmetric around the point of maximum
growth rate and has equal periods of slow and fast growth.
In contrast, the Gompertz model does not incorporate the
symmetry restriction and has a shorter period of fast
growth. Both the logistic and Gompertz have points of
inflection that are always at a fixed proportion of their
asymptotic population values. A number of recent publi-
cations have utilized some of these models. Kansal [2]
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developed a cellular automation model of proliferative
brain tumor growth. This model is able to simulate Gom-
pertzian tumor growth over nearly three orders of magni-
tude in radius using only four microscopic parameters.
Brisbin [3] observed that the description of alligator
growth by fixed-shape sigmoid models such as logistic,
Gompertz or Von Bertalanffy curves may not be adequate
because of the failure of the assumption that a constant
curve shape holds across treatment groups. There are
many applications of Gompertz, logistic and Von Berta-
lanffy models to multicellular tumor spheroid (MTS)
growth curves [4-9]. Yin [10] introduced the beta growth
function for determinate growth and compared it to the
logistic, Gompertz, Weibull and Richards models. He
showed that the beta function shares several characteris-
tics with the four classic models, but was more suitable for
accurate estimation of final biomass and duration of
growth. Ricklef [18] investigated the biological implica-
tions of the Weibull and Gompertz models of aging. Cas-
tro [19] studied a Gompertzian model for cell growth as a
function of phenotype using six human tumor cell lines.
They concluded that cell growth kinetics can be a pheno-
typic organization of attached cells. West [20,21] intro-
duced an ontogenetic theory of growth, which is based on
first principles of energy conservation and allocation. A
review of these studies reveals that the sigmoid character
of the classical three or more parameter growth functions,
such as the logistic or Von Bertalanffy, may not adequately
fit three-dimensional tumor cell cultures, which often
show complex growth patterns. Models that have been
found to provide the best fit were modified or generalized
versions of the Gompertz or logistic functions. The 1949
data on the polio epidemic [11] provide another classic
example of a situation in which none of the above models
fit the data very well. Our purpose is to introduce three
new growth models that have flexible inflection points
and can fit data with different shapes. We apply our pro-
posed models to the 1949 polio epidemic data [11] and
Deisboeck's MTS volume data [9] and compare their fit
with four classical models: logistic [12], Richards [13],
Gompertz [14] and Weibull [15].

2. The Hyperbolastic Model H1
First, we start by considering the following growth curve,
which produces flexible asymmetric curves through non-
linear ordinary differential equations of the form

or

with initial condition

P(t0) = P0

where P(t) represents the population size at time t, β is the
parameter representing the intrinsic growth rate, θ is a
parameter, and M represents the maximum sustainable
population (carrying capacity), which is assumed to be
constant, though in general the carrying capacity may
change over time. For growth curves, β has to be positive,
leading to an eventually increasing curve with an asymp-
tote at M; β can be negative only for eventual inhibition
curves or decay profiles. We refer to growth rate model (1)
as the hyperbolastic differential equation of type I. If θ =
0, then the model (1) reduces to a logistic differential
equation and equation (2) reduces to a general logistic
model [12]. Solving the equation (1) for the population P
gives

where

and arcsinh(t) is the inverse hyperbolic sine function of t.
We call the function P(t) in equation (2) the hyperbolastic
growth model of type I or simply H1. To reduce the
number of parameters, observed values of P0 and t0 are
used to obtain an approximate value of α. Notice that the
asymptotic value of P(t) is

From equation (1) we calculate the second derivative
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In other words, when the population P reaches half the

carrying capacity M, the growth  is most rapid and

then starts to diminish toward zero. If we assume θ ≠ 0,

then the growth  is most rapid at the time t*, such

that t* satisfies the following equation

If the carrying capacity changes at discrete phases of a
hyperbolastic growth, then a bi-hyperbolastic or multi-
hyperbolastic model may be appropriate.

3. The Hyperbolastic Model H2
Now we consider an alternative growth curve through a
nonlinear hyperbolastic differential equation of the form

with initial condition P(t0) = P0 and γ > 0, where tanh
stands for hyperbolic tangent function, M is the carrying
capacity, and β and γ are parameters. As in the H1 model,
parameter β has to be positive for increasing growth
curves with an asymptote at M and is negative only for
decay profiles. We refer to the growth rate model (3) as the
hyperbolastic differential equation of type II.

Solving equation (3) for population size P gives the three
parameter model

where

We call the function P(t) in equation (4) the hyperbolastic
growth model of type II or simply H2. As in the H1 model,
observed values of P0 and t0 are used to obtain an approx-
imate value of α and to reduce the number of parameters.

Notice from equation (4) that for positive values of β, P(t)
approaches M as t tends to infinity and for negative values

of β, P(t) approaches zero as t tends to infinity. Moreover,
from equation (3), we calculate the second derivative

where csch and coth represent hyperbolic cosecant and

hyperbolic cotangent, respectively. The growth rate 
is most rapid at time t* provided that t = t* satisfies the
following equation

If γ = 1, then the growth rate  is most rapid at time
t = t* if the following equality is true

4. The Hyperbolastic Model H3
Finally, we consider a third growth curve through the fol-
lowing nonlinear hyperbolastic differential equation of
the form

with initial condition P(t0) = P0 where M is the carrying
capacity and β, γ and θ are parameters. We refer to model
(5) as the hyperbolastic ordinary differential equation of
type III.

The solution to equation (5) is a four parameter model

P(t) = M - α EXP[-β tγ - arcsinh(θ t)]  (6)

where

α = (M - P0) EXP[β t0
γ + arcsinh(θ t0)].

We call the function P(t) in equation (6) the hyperbolastic
growth model of type III or simply H3. If θ = 0, then this
model reduces to the Weibull function [15]. The growth
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If we define the a(t) as the rate of generation of new tumor
cells and b(t) as the rate of loss of tumor cells, for instance,
then

 and

.

The growth rate can then be written as

If no tumor cells are lost (b(t) = 0), the tumor size P(t) fol-
lows the equation

P(t) = M [β tγ - arcsinh(θ t)].

5. Application of Hyperbolastic Models
Statistical Analysis
We analyze two data sets by fitting the general logistic
model of the form

[12], where

the Richards model of the form

[13], where

the Gompertz model of the form

P(t) = M EXP[-α EXP(-M β t)] [14], where

the Weibull model of the form

P(t) = M - α EXP(-β tγ) [15], where

α = (M - P0) EXP(β t0
γ)

and the hyperbolastic models H1, H2, and H3 described
above. Obviously some of these models are closely
related. Nonetheless, the parameter values may be quite
different when these models are fitted to a single set of
data. The logistic model used here is a two parameter sym-
metric model, while the Richards model generalizes the
logistic model by introducing an additional parameter (γ)
to the equation to deal with asymmetrical growth. The
Richards function reduces to the logistic equation if γ = 1.
The Gompertz equation, which is a two parameter asym-
metric equation, attains its maximum growth rate at an
earlier time than the logistic. In the Weibull equation, β
and γ are constants defining the shape of the response. In
all seven models M is a constant, the maximum value or
the upper asymptote, which is estimated by non-linear
regression. In each instance we express one model param-
eter (α) as the function of the other parameters and initial
observed value P0 at time t0, which allows us to reduce the
number of parameters to be estimated and also anchors
the first predicted value to the original value observed at
the initial time point.

The mean squared error (MSE) and the R2 value from the
nonlinear regression, as well as the absolute value of the
relative error (RE), which was defined as

were used to indicate the prediction accuracy or goodness
of fit for all seven fitted models. All models were fitted
using SAS v.9.1 PROC NLIN (SAS Institute Inc., Cary, NC)
and SPSS v.12.0.1 (SPSS Inc., Chicago, IL). The best fitting
functions and their derivatives were plotted using Mathe-
matica v.4.2 (Wolfram Research Inc., Champaign, IL) to
find the growth rates and accelerations.

Analysis of the Polio Epidemic Data
In 1949, the United States experienced the second worst
polio epidemic in its history. Table 1 gives the cumulative
number or incidence of polio cases diagnosed on a
monthly basis [11] and the number of cases predicted by
each of the seven models. The data originally appeared in
the 1949 Twelfth Annual Report of the National Founda-
tion for Infantile Paralysis. Absolute values of RE, MSE
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and R2 for the seven tested models are given in Table 2.
Average RE and MSE plots for the seven polio epidemic
models are graphically presented in Figure 1.

The results show that the H1

 and

H2 

models provide the best fit to the polio incidence data,
followed by Weibull

 and

H3

models. The Richards

, logis-

tic 

and Gompertz

models are clearly inadequate to describe the polio inci-
dence growth pattern (Figures 1 and 2). The second deriv-
ative of the fitted H1 function suggests that the highest
incidence of the polio epidemic cases occurred between
July and August of 1949 (Figure 3).

Table 1: Number of observed and predicted polio cases using seven models.

Month Polio Cases H1 H2 Weibull H3 Richards Logistic Gompertz

0 494 494 494 494 494 494 494 494
1 759 242.47 544.99 494.15 467.57 838.76 901.13 1112.71
2 1016 278.44 720.94 505.28 452.96 1424.12 1632.93 2224.48
3 1215 526.24 1153.82 635.10 563.29 2418.00 2924.19 4016.77
4 1619 1279.87 2218.78 1334.67 1262.75 4105.48 5130.07 6649.96
5 2964 3506.99 4917.77 3769.25 3730.08 6970.11 8697.85 10223.41
6 8489 9510.12 11444.30 9859.95 9872.33 11824.88 13987.47 14754.76
7 22377 21110.00 23267.60 20665.19 20687.08 19913.74 20898.37 20177.15
8 32618 33011.70 34655.40 32802.34 32777.73 31513.43 28575.53 26352.24
9 38153 39160.25 39855.70 39775.43 39753.72 39660.86 35708.48 33093.26
10 41462 41203.34 41247.00 41264.73 41277.59 41382.42 41316.48 40190.97
11 42375 41763.32 41522.90 41339.95 41358.99 41573.16 45174.27 47437.25

Table 2: Absolute value of the relative error(s), MSE and R2 for seven tested models with polio data.

Month RE(H1) RE(H2) RE(W) RE(H3) RE(R) RE(L) RE(G)

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.68 0.28 0.35 0.38 0.11 0.19 0.47
2 0.73 0.29 0.50 0.55 0.40 0.61 1.19
3 0.57 0.05 0.48 0.54 0.99 1.41 2.31
4 0.21 0.37 0.18 0.22 1.54 2.17 3.11
5 0.18 0.66 0.27 0.26 1.35 1.93 2.45
6 0.12 0.35 0.16 0.16 0.39 0.65 0.74
7 0.06 0.04 0.08 0.08 0.11 0.07 0.10
8 0.01 0.06 0.01 0.01 0.03 0.12 0.19
9 0.03 0.05 0.04 0.04 0.04 0.06 0.13
10 0.01 0.01 0.01 0.00 0.00 0.00 0.03
11 0.01 0.02 0.02 0.02 0.02 0.07 0.12

MSE 6.61 × 105 8.72 × 105 11.09 × 105 12.45 × 105 50.21 × 105 111.12 × 105 223.65 × 105

R2 0.9983 0.9978 0.9969 0.9969 0.9864 0.9667 0.9336

( . , . , . )MSE x RH RE HH1
5 2

16 61 10 0 217 0 9983
1

= × = =

( . , . , . )MSE x RH RE HH2
5 2

28 73 10 0 181 0 9978
2

= × = =

( . , . , . )MSE x RW RE WW
= × = =11 09 10 0 174 0 99695 2

( . , . , . )MSE x RH RE HH3
5 2

312 45 10 0 189 0 9969
3

= × = =

( . , . , . )MSE x RR RE RR
= × = =50 21 10 0 415 0 98645 2

( . , . , . )MSE x RL RE LL
= × = =111 12 10 0 606 0 96675 2

( . , . , . )MSE x RG RE GG
= × = =223 65 10 0 902 0 93365 2
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Analysis of the MTS Growth Data
In 2001, Deisboeck et al. [9] studied the development of
multicellular tumor spheroids (MTS) by creating a micro-
tumor model. They claimed that a highly malignant brain
tumor is an opportunistic, self-organizing and adaptive
complex dynamic bio-system rather than an unorganized

cell mass. Mature MTS possess a well-defined structure,
comprising a central core of dead cells surrounded by a
layer of non-proliferating, quiescent cells, with
proliferating cells restricted to the outer, nutrient-rich
layer of the tumor. Angiogenesis is a process by which new
blood vessels are created from existing ones. A cell, which

Bar graphs represent mean(s) of the relative error(s) and mean squared error for the polio modelsFigure 1
Bar graphs represent mean(s) of the relative error(s) and mean squared error for the polio models.
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would be malignant, detaches from the tumor and uses
the new blood supply to travel throughout the body.
These authors suggested that such growth can be
described by both the Gompertz and logistic functions.
Using Deisboeck's MTS with "heterotype attractor" data,
the four classical models were compared with the
hyperbolastic ones to identify which model predicted the
MTS volume most accurately. The observed and predicted
MTS volume values are presented in Table 3. The absolute
values of RE, MSE and R2 for each model are given in Table

4. The average RE and MSE plots for the seven cancer vol-
ume models are graphically presented in Figure 4.

The results indicate that the H3 model

has superior prediction accuracy for this particular data
set. It is followed by the Weibull

, H1

Area represents the error between the observed and predicted polio cases for the seven tested models in the following order starting from top left: H1, H2, Weibull, H3, Richards, logistic and GompertzFigure 2
Area represents the error between the observed and predicted polio cases for the seven tested models in the following order 
starting from top left: H1, H2, Weibull, H3, Richards, logistic and Gompertz.

Table 4: Absolute value of the relative error(s), MSE and R2 for seven tested models with MTS volume data.

Time(hr) REH3 REW REH1 REH2 REG REL RER

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
24 0.002 0.096 0.166 0.109 0.239 0.339 0.353
48 0.016 0.168 0.132 0.201 0.416 0.607 0.634
72 0.019 0.030 0.029 0.028 0.089 0.257 0.277
96 0.007 0.020 0.009 0.034 0.059 0.061 0.072
120 0.002 0.016 0.016 0.022 0.083 0.038 0.038
144 0.002 0.004 0.007 0.006 0.030 0.052 0.066

MSE 3.33 × 10-6 74.21 × 10-6 82.83 × 10-6 109.2 × 10-6 464.35 × 10-6 802.06 × 10-6 1374.42 × 10-6

R2 0.9998 0.9974 0.9974 0.9957 0.9808 0.9100 0.8972
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Bar graphs represent mean(s) of the relative error(s) and mean squared error for the MTS volume growth modelsFigure 4
Bar graphs represent mean(s) of the relative error(s) and mean squared error for the MTS volume growth models.
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Curves represent a) predicted number of polio cases using best fitting H2 model b) first derivative of the previous function or the growth rate of the polio outbreak and c) second derivative or acceleration of the polio outbreakFigure 3
Curves represent a) predicted number of polio cases using best fitting H2 model b) first derivative of the previous function or 
the growth rate of the polio outbreak and c) second derivative or acceleration of the polio outbreak.

Table 3: Observed and predicted MTS volume using seven models.

Time(hr) Volume H3 Weibull H1 H2 Gompertz Logistic Richards

0 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087
24 0.080 0.080 0.088 0.067 0.089 0.099 0.107 0.108
48 0.082 0.083 0.096 0.093 0.099 0.116 0.132 0.134
72 0.129 0.127 0.125 0.133 0.125 0.140 0.162 0.165
96 0.188 0.189 0.184 0.186 0.182 0.177 0.200 0.202
120 0.255 0.256 0.259 0.251 0.261 0.234 0.245 0.245
144 0.318 0.317 0.317 0.320 0.316 0.327 0.302 0.297

Area represents the error between the observed and predicted MTS volume for the seven tested models in the following order starting from top left: H3, Weibull, H1, H2, Gompertz, logistic and RichardsFigure 5
Area represents the error between the observed and predicted MTS volume for the seven tested models in the following 
order starting from top left: H3, Weibull, H1, H2, Gompertz, logistic and Richards.
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and H2

models, which predict with similar accuracy. Finally, the
Gompertz

,

logistic

 and

Richards

models resulted in the least precise fit of the seven (Fig-
ures 4 and 5). Even though the Weibull model was the sec-
ond best, the mean relative error associated with it was
almost seven times the mean relative error for the best-fit-
ting H3 model. Over 144 hours, MTS growth follows
decelerating growth dynamics with some shrinking dur-
ing early stages (Figure 6). The first derivative of P(t)
(growth rate) indicates that the MTS volume growth rate
is zero at t = 4.90 hours and t = 34.27 hours (Figure 6). The
second derivative of the fitted H3 function shows that the
acceleration is slowest at t = 15.27 hours and fastest when
t = 103.03 hours (Figure 6).

Figure 7 compares the MTS rate of generation of new
tumor cells (a(t)) to the rate of loss of tumor cells (b(t)).
One can clearly see that the gap between the two rates
becomes smaller and gradually approaches zero. Notice
that as the gap approaches zero, the growth rate 
also approaches zero.

6. Discussion
Obviously no model can accurately describe every biolog-
ical phenomenon that researchers encounter in their prac-
tice and the same is true for our models. Many models
have been developed to deal with sigmoid growth [16]
and new ones are continuously being proposed. The logis-
tic function is symmetric around the point of inflection.

Functions represent the rate of generation of new tumor cells a(t) and rate of loss of tumor cells b(t)Figure 7
Functions represent the rate of generation of new tumor 
cells a(t) and rate of loss of tumor cells b(t).

Table 5: Parameter estimates (with standard errors in 
parentheses) for H1, H2 and H3 models applied in two 
examples.

Model Parameter Polio Estimate MTS Estimate

H1 M 41951.4 (603.8) 0.5633 (0.16)
β 3.9 × 10-5 (3.06 × 10-6 0.0395 (0.02)
θ -2.6851 (0.29) -0.2171 (0.05)

H2 M 41574.9 (670.6) 0.3360 (0.03)
β 2.9 × 10-6 (7.02 × 10-7) 1.9 × 10-5 (4.7 × 

10-5)
γ 1.8865 (0.13) 2.6784 (0.55)

H3 M 41359.6 (817.5) 0.5871 (0.02)
β 4.11 × 10-6 (5.62 × 10-6) 0.0371 (0.01)
γ 6.18 (0.67) 0.8575 (0.05)
θ -0.00065 (0.01) -0.0256 (0.003)

R
at

e

a(t)

b(t)

Time (hours)

( . , . , . )MSE x RH RE HH2
6 2

2109 2 10 0 057 0 9957
2

= × = =−

( . , . , . )MSE x RG RE GG
= × = =−464 46 10 0 131 0 98086 2

( . , . , . )MSE x RL RE LL
= × = =−802 06 10 0 193 0 91006 2

( . , . , . )MSE x RR RE RR
= × = =−1374 42 10 0 206 0 89726 2

dP t

dt

( )

Curves represent a) predicted MTS volume using best fitting H3 model b) first derivative of the previous function or the growth rate of the MTS volume and c) second derivative or the acceleration of the MTS volume growthFigure 6
Curves represent a) predicted MTS volume using best fitting H3 model b) first derivative of the previous function or the 
growth rate of the MTS volume and c) second derivative or the acceleration of the MTS volume growth.
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The Richards function is more flexible and can fit asym-
metric growth patterns [10,17]; however, it has more
parameters than the logistic function. The Gompertz func-
tion has the same number of parameters as the logistic
function and the Weibull function has the same number
of parameters as the Richards function and both can fit
asymmetric growth, but they are not very flexible [10].

The H1 function has one more parameter than the logistic
and Gompertz functions, but it is more flexible and can fit
asymmetric growth patterns as well as increasing and

decreasing growth, as shown in the MTS volume example.
The H2 function has the same number of parameters as
H1 and can fit asymmetric curves, but it cannot fit
decreasing growth patterns, so it is less flexible. The H3
function has the same flexibility as the H1 function at the
expense of one more parameter, similar to the Weibull
and Richards equations. Some of the flexibility of the H1,
H2 and H3 functions is illustrated in Figure 8.

The logistic and Gompertz functions have two parameters
that are easily interpretable. Like Yin [10], we encountered

Functions illustrate the flexibility of the H1, H2 and H3 modelsFigure 8
Functions illustrate the flexibility of the H1, H2 and H3 models. One parameter is varied while the others are held constant to 
demonstrate the capability of the models to fit different growth or decay patterns. In all examples parameter M is held constant 
at 100.
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problems in trying to provide initial parameter values in
the Weibull function. One can arrive at a satisfactory
solution by trial and error, or using a grid search in SAS
PROC NLIN by providing a range of starting values. These
functions can be easily implemented in SPSS or SAS
PROC NLIN (see Additional file 1) or other readily avail-
able software packages. Non-linear function parameters
that have biological meaning are more advantageous for
statistical parameterization of such equations. The same
can be said for some of the parameters in the three pro-
posed models, which can be determined by summarizing
the data or using the above suggestions. Table 5 provides
estimates for the parameters of the H1, H2 and H3 mod-
els. If necessary, an additional parameter called the shift
parameter may be added to a model to improve the fit of
the data to a model.

While the results presented are valid only for the data sets
used in this study, these models can have much wider
application than shown here. We successfully applied
them to several other data sets including craniofacial and
stem cell growth data and the results indicate supreme
prediction accuracy for the hyperbolastic models. Based
on the results presented in this paper and others not
shown here, we can say that the H3 model performs the
best with cancer cell, craniofacial and stem cell growth
data. However, it is reasonable to compare models for fit
before deciding on the selection of the "best" one. With
appropriate parameter adjustments in H1 or H2, one can
derive regression type models for dichotomous or polyto-
mous response variables, and use these models in survival
data problems, reliability studies, business applications
and many other situations.

Finally, our hyperbolastic models show very promising
results. In both the above discussed data sets, they fitted
the data with smaller MSE, smaller mean RE and higher
prediction accuracy than the logistic, Richards and
Gompertz, which were the worst fit models in both cases.
Our models are accurate and simple and two of them gen-
eralize the logistic and Weibull models. They can be easily
implemented and tested in readily available software
packages or routines. We strongly believe that choosing a
flexible and highly accurate predictive model such as
hyperbolastic can significantly improve the outcome of a
study and it is the accuracy of a model that determines its
utility. We strongly recommend usage of such models to
the scientific community and practitioners and urge
comparison of them with classical models before deci-
sions on model selection are made.
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