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HYPERBOLIC 4-MANIFOLDS

AND CONFORMALLY FLAT 3-MANIFOLDS

by M. GROMOV, H. B. LAWSON, Jr. and W. THURSTON

Dedicated to Rene Thorn.

0. Introduction

It is a simple consequence of Chern-Weil theory that for a compact manifold of

constant sectional curvature all the Pontrjagin numbers are zero. In particular, the

signature must be zero. One might speculate that somehow this continues to be true

for complete non-compact manifolds. The first cases to consider would be those of
4-manifolds which are constructed as 2-plane bundles over compact surfaces. Here the

speculation would be that only the trivial bundles carry complete, constant curvature

metrics. For curvature ^ 0 this is essentially true. However, in the negative case it fails.

We present here a construction of a family of complete hyperbolic 4-manifolds, some of
which are diffeomorphic to non-trivial vector bundles over compact surfaces. These

bundles all satisfy the inequality

(+) I X(E) | ^ | x(S) |

(where E ->2 denotes the bundle over the surface).

It is intriguing to conjecture that such an inequality is in fact a necessary condition

for the existence of a complete hyperbolic metric on E. Intriguing also is the fact that

this inequality is precisely the necessary and sufficient condition for the existence of a

reduction of the structure group of E to a discrete group (or, more generally, for the

existence of a 2-dimensional foliation of E transverse to the fibres [W] [T]). Similar

conditions have also arisen in the work of Massey [Ma].

Each example M coming from our general construction has the property that there

is a compact surface S and a PL-embedding S -> M which is a homotopy equivalence.
When M is a 2-plane bundle over S, this embedding is PL-equivalent to the smooth

zero-section. However, in the general case the embedding is not locally/lot.

A second feature of our methods is that they simultaneously produce compact

conformally flat 3-manifolds. In particular we obtain conformally flat structures on a
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large portion of the circle bundles over compact surfaces whose Euler classes satisfy

the inequality (+). This inequality is known to be necessary when ^(S) = 0 [GJ.

The conformally flat 3-manifolds which correspond to the cases above where
S C M is not locally flat, are interesting. Topologically they can be obtained from circle

bundles over surfaces by removing disjoint tubular neighborhoods of a finite number of
fibres and replacing them with certain knot complements in S3.

Each of the conformally flat 3-manifolds X constructed here has a non-surjective

developmg map 8: X -> S3 of its universal covering space 5c into S3. The image

0 = 8(X) ^ S3 is preserved by a discrete subgroup FC SC\i which is abstractly iso-

morphic to the fundamental group of a compact surface. The maps 8 : 5S -> Q and
TC : Q -> 0/r ^ X are covering maps which factor the universal one. They correspond to
the short exact sequence

(++) 0 - > 7 C i Q - > 7 T i X - > r ^ O

(All oFthis can be seen directly; however, the fact that 8 is a covering map is required

by 8: X -> S3 not being surjective. This is due to Kulkarni and Pinkall [KP].)

In the case where X is diffeomorphic to a circle bundle over a surface S, the set Q

is the complement of an unknotted circle yC S3. This circle is the limit set of F, and it

has the (< self-similarity " property that any closed segment ofy contains an image under

some ̂ eFofany other closed segment. It is nowhere differentiable and could be called a

"Julia " curve. Since y is unknotted, its complement £1 = S3 — y ^ D2 X S1 is homo-

topy equivalent to S1, and the sequence (+ +) is just the one coming from the fibration
sl "̂  x -> s- It is an interesting fact that the geometry of the curve y contributes in a
subtle way to the topology of this fibration.

In each of the remaining cases (those in which the embedding S -> M is not
locally flat), the set Q. is the complement of an infinitely compounded "Julia" knot

Y C S3 which is everywhere non-tame. The associated discrete group, considered as a

group of isometries of H
4
, has this wild knot as its limit set in BH

4 = S3. Hence, this

construction yields particularly contorted representations of compact surface groups as
discrete subgroups of 8041.

In each of these remaining cases, the resulting compact, conformally flat 3-manifold

X ^ 0/r can be described topologically as a circle bundle over a compact surface which

has been modified by removing tubular neighborhoods of a finite number of fibres and

replacing each neighborhood with the complement of a torus knot in S3. Examples of

conformally flat 3-manifolds with incompressible tori were first given by R. Kulkarni [Ku],
These had surjective developing maps.

The specific ideas examined here suggest a general construction of discrete groups

PC SO^i. While we were preparing this manuscript, B. Maskit told us that he had

known a related construction for some time (cf. [A], [M]). The idea of this related

construction is roughly as follows. Consider a smooth knot K in S3. Suppose that K is

covered by a cyclic sequence of metric balls ^ = { Bi, ..., B^ } with the property that
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B, n B^ =1= 0 if and only if i —j == ± 1 (mod m) (i.e. if and only if they are adjacent).

Suppose that each pair of adjacent <c beads " B,, B^i meets in an exterior angle of

the form TT/^ where n^ is a positive integer. (Such configurations are easily arranged for

any K.) Then the group I\ y generated by the inversions in each of the spheres <?B^,

i == 1, ..., m, is a discrete subgroup of SO^ i whose limit set lim F^ yC S3 is a certain

infinite compounding of the original knot K.

If one begins with an (( unknot" K and passes to a subgroup FC I\ y of finite

index which acts freely on Q == S3 — lim I\ y, then the manifold ti/F is a circle bundle

over a compact surface. Furthermore, the reflection symmetries force the Euler class of

this bundle to vanish, that is, this bundle is always topologically trivial. In particular

therefore, the construction which we shall present here cannot be reformulated in this way.

However, a nice generalization of our construction has been found by N. Kuiper

and will appear in a sequel to this work. His method yields our examples as the special

" homogeneous " ones.

Recently the authors received a preprint by M. Kapovich [Kap] who indepen-

dently proved the existence of a flat conformal structure on the total space of the circle

bundle X associated to E -> S, for

1 < I X(E) I < I X(S) |/22.

(Kapovich's argument is similar to our basic construction in § 1.) At this point Kapovich

additionally observes that the natural circle action on X lifts to a group of uniformly

quasiconformal transformations of the sphere S3 which are not topologically conjugate to

conformal transformations.

Kapovich also states the following

Conjecture. — Let N be a Haken manifold whose fundamental group contains no

solvable subgroup of finite index. Then there exists a finite covering N of N which admits

a conformally flat structure.

Using a version of the cusp closing method he proves this conjecture for those N

where the Seifert part of the Haken decomposition contains no component homeomorphic

to T2 X [0, 1] and where there is no gluing between the hyperbolic components of N.

This result applies, for example, to an N obtained by attaching the above X to a cusp

of a hyperbolic manifold N^ (compare § 7). On the other hand Kapovich's theorem does

not apply if N is obtained by gluing together two hyperbolic manifolds N\ and N3 along

the cuspidal tori. (If the gluing diffeomorphism f between these tori is close to being

conformal, then by the cusp closing argument the manifold N == N^ UyN^ admits a

conformally flat structure.)

The paper of Kapovich contains several other interesting results including the

solution of Goldman's problem on variations of conformally flat structures with fixed

holonomy and an example of a manifold N admitting no conformally flat structure,

while some finite covering N of N does admit such a structure.

Finally we would like to thank W. Goldman and Y. Kamishima for some useful
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remarks. We want to express particular appreciation to Nico Kuiper for indicating a

number of errors in the first draft of the manuscript and for his generous help in shaping
the final version of the paper.

1. The basic construction

In this section we set the notational conventions for the paper and we present the
main idea of the construction.

Let P = P(/2, t, a) be a regular polygon in H
2 where:

n == the number of vertices of P,

t == the length of each edge of P,

a == the interior angle at each vertex of P.

Any two of the parameters (n, t, a) are independent and determine the third (by hyper-

bolic trigonometry). For each n, the parameters t and a can be varied continuously, and
t -> oo as a -> 0. As n, i -> oo, the distance between opposite edges of P also goes to oo.

At each vertex we shall join together copies of P according to a closed, oriented

polygonal curve y C S3 which we call the template. We shall assume y is regular, i.e. that

the orientation-preserving self-congruences of y are transitive on the vertices. Then
Y = Y^ \ ̂  T) has dependent parameters:

v s== the number of vertices of y?

\ = the length of each edge of y,

a == the interior angle at each vertex of y,

T •=. the torsion along each edge of y.

The torsion T is defined as follows. Assume an orientation is given for S3. Along

each edge e ofy, let N^), x ee, denote the field of oriented normal planes to e. These

planes are mutually identified by parallel translation along e. We now define at each
vertex v of y, a distinguished unit normal vector

(1.1) ^N^_)nN,(^)

where e+ and e^ are the edges which meet at v, and where e+ follows e_ in the orientation

of Y. This vector is determined up to sign by (1.1). The sign is chosen by taking the

direction of the cross-product e_ X e+ of the forward pointing tangent vectors ^ of ^
at v.

4^
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Suppose now that e is an edge of y with endpoints 24 and v_ where v^ follows v_ in the

orientation. Then the torsion of e is the unique angle T, with | T | < TC formed in passing
from n^_ to 7^ in the normal plane (field) to e.

This is also the angle change measured between the orthogonal projections at the end-

points of the " arriving " and (< departing " edges of y. (Again we measure from the
arriving to the departing edge.)

At any point x e H
4
, we can consider yC S^ == { V e T^ H

4
: [| V || == 1 } and take

the geodesic cone G^y) == { exp^V) e H
4 : V e y and t ̂  0 }. This cone is a union of

geodesic planar wedges meeting at x. Each wedge has interior angle X.

The basic idea of the construction now is the following. We fix a copy of P in H
4

and at each vertex A: of P we adjoin more copies ofP so that in a neighborhood of A? the
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resulting surface coincides with Cg(y). The process is then repeated at each exposed

vertex of the resulting polyhedral surface, and so on... For this process to work we must

require two compatibility conditions'.

(1.2) a = X ,

(1.3) w = 0(mod27r).

The necessity of (1.2) is obvious. Condition (1.3) arises by considering what happens

when we apply the construction to each vertex successively as we pass around the boun-

dary of the polygon P.

We proceed formally as follows. Fix a copy of P in H
4 and fix a vertex x of P.

Choose an isometric embedding y ^ Ya; n ̂  so ^^ ^^^a;(Ya;)' (Near x, P determines
one of the wedges of the cone. It is then contained in the infinite wedge.) For this we

need condition (1.2). Note that there is an SO^-family of such embeddings possible

for Y. These correspond to rotations of the flat normal plane field to P. From this point

on the process is determined. At x we now adjoin (y — 1) more copies of P so that in a

small neighborhood ofx the resulting surface coincides with the cone C^(va;). We now

pass to the adjacent vertex x^. in the positive direction. The pair of wedges in C^(Y^) along

the edge xx^. completely determines the placement of y in the tangent sphere S^ at x^..

We now fill out the surface at x^. by attaching polygons as we did before. We then pass

on to the next vertex and continue the process around the boundary of P until we

return to the original vertex x. Upon our return to A; a new embedding of y m S^ is

determined. It should agree with the original one, so that the surface c( closes ". Using

the flat normal plane field to P one checks that this closure occurs if and only if condi-

tion (1.3) is satisfied.

We have now constructed a polyhedral immersion of a 2-disk into H
4
. We choose

a vertex on the boundary of the disk where two polygons come together. Here the tem-

plate is fixed. We fill out at this vertex and then continue around the boundary of the

disk as before. Periodically, in fact at every n-th vertex, we encounter a template from

the previous construction because we have encircled a polygon. Compatibility is gua-
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ranteed as before. Global compatibility around the boundary of the disk is now obvious.

Proceeding in this way by c< concentric annuli" we generate an infinite surface

(1.4) Sp^H4.

This surface is given as a polygonal immersion of the open disk D2. The immersion

induces a complete metric with isolated singularities and with K == — 1 at all regular

points on D2. It also induces a topological tiling of D2 by w-gons, v of which meet at

each vertex. Note that the induced metric is singular only at vertex points.

Let Fp .y be the group of orientation preserving isometrics of the surface in its

induced metric. This coincides with the group of orientation preserving automorphisms

of the tiling. (Recall that the template is never a great circle: the angles are not 0 or TC.)

From the action on the template cones, it is clear that the construction determines a

homomorphism

(1.5) Ip^ -> Isom(H4)

with respect to which the map (1.4) is equivariant.

The main result of the next section is the following.

Theorem 1.6. — There is a constant L == L(y) such that for any compatible polygon P

with side length I ^ L(Y), this resulting immersion (1.4) is a proper embedding.

Suppose we are in the range i ^ L(y)) so t
^

l3Lt we have a proper embedding

(1.4)' Sp^^H4.

Evidently there are freely acting subgroups FC Fp ^ of finite index such that Sp^/F

is a compact oriented surface. Since (1.4)' is equivariant we get an embedding

(1.7) Sp^/r^H^r
which is a homotopy equivalence.

Remark 1.8. — If the template y is unknotted in S3, then the embedding (1.7)

is locally flat and the manifold H4/!^ is PL-homeomorphic to the PL normal bundle

of the embedding. In fact, an elementary-argument shows that H4/!^ is diffeomorphic

to the smooth normal bundle N of a smooth approximation to the embedding.

In § 4 we shall compute the Euler class of N in terms of ^(F) and the geometry

of P and Y-

2. A criterion for propemess

The point of this section is to prove Theorem 1.6. Consider the immersed polygonal

surface Sp^ -^H
4 constructed above and fix one of its vertices, say v. For convenience

we imagine v to be located at the origin in the Poincar^ model for H
4
, so that Cy^y)

actually becomes a linear cone on an isometric embedding of y in the unit 3-sphere

S3 == 3B4
 w 8^ H

4
.

5
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We shall now study the star of this vertex v in Sp^. To do this we divide our basic

polygon P into n congruent regions by cutting along each geodesic which joins the center

of P to the midpoint of an edge. These components are called pie slices. The star of the

vertex y, denoted P,,, is then defined to be the union of the v pie slices with vertex v.

Note that we have P,, C C,,(YJ. Note also that the geodesies from the center of P to the

midpoints of the edges meet these edges orthogonally. Hence, in H
4 each such geodesic

lies on the hyperplane orthogonal to the edge at that point. Hence, each pie slice at v

lies in the intersection of the two half-spaces determined by the hyperplanes perpendicular

to the two edges of the slice emanating from v.

Keep in mind that the surface ?„ bends along these edges.
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Consider now the following. For each vertex co of y we let .̂  C H
4 denote the

geodesic hyperplane orthogonal to the ray e^{t) = exp^co) at the point e^(7l2) == the

midpoint of the corresponding edge of the polygon. (So t = the length of an edge of P.)

Let H^ be that open half-space of H
4 which contains v and has

air- ==^.
to (0

Recall that the curve y is regular, and note that as 7 -> oo (considered as a free para-

meter), we have j^ c
^^^

1 == 0 f03" 3-11 vertices of y. We shall assume that there is a
number L == L(y) such that whenever t > L, we have

(2.1) ^njf^+0

only if <o and o/ are adjacent vertices of y. This will be true if, say, y is constructed by

taking a sufficiently fine subdivision of a smooth curve.

Assume now that f ̂  L(y) and that t is the side length ofP in our basic construc-

tion. Then (2.1) does hold whenever <o and G/ are adjacent vertices. Furthermore these

hyperplanes meet with <c interior " angle TT/TZ.

Consider the geodesically convex set

88, = n H,

where the intersection is over the vertices co of y. This set is diffeomorphic to H
4
. It can

be visualized as the result of digging a trench in H
4 along the curve y C S3 = 8^ H

4

by chopping out a series of spherical pieces (one at each vertex of y). The comple-
/V/

ment 3S^ = H
4 — Sy is homeomorphic to S1 X D3 and retracts down onto a tubular

neighborhood of y m S3. Note that

(2.2) P, == ̂  n C,(Y,).



36 M. GROMOV, H. B. LAWSON, JR. AND W. THURSTON

U.H4

The region 88^ has boundary consisting of geodesic hyperplanes which meet in

dihedral angles TT/TZ. We can now form an abstract complete hyperbolic 4-manifold M4

by gluing together 2^-copies of^, along each c( edge " J^ ^^^ and then continuing

the process indefinitely in the same manner as that o f§ l . We shall perform this gluing

process in the following very specific way. Consider 88^ C H
4 with its oriented template

tile P^ C 3S^. Fix a codimension-2 face S = Jf^ n ̂ ^. and let c == ?„ n <?. (Note

that c will become the center of one of the basic polygons in our extended surface.)

We now apply to 88^ the unique isometry g of H
4 which fixes c, rotates Tg P,,

by 7T/72 in the positive direction, and rotates (T^PJ1 by T (the torsion). This

map is just rotation by nfn at the codimension-2 face € followed by a normal

twist about c (which leaves both 38^ and its rotated image invariant). The union

88^ u g{S8^} u ... ^ g
2n

~
l
{SSv) gives a tiling of a neighborhood of the codimension-2

face <?. The union 8P == P^ u g(Py) u ... u^'^P,,) is exactly the continuation of

our surface in this neighborhood. (Note that rotation by i^\n at € corresponds exactly

to rotation of the basic polygon P C Sft about its center c. However, simple rotation

by 7T/7Z does not preserve the array of template curves attached to the vertices of P. To

achieve this we must apply a normal twist by T.)

We have now described the local gluing process. Using it we form a complete

hyperbolic 4-manifold M.^ ^ following exactly the same formal procedure invoked to

build the complete polygonal surface 2p ̂ . Note that by its construction, M^ ^ comes

equipped with a locally isometric immersion M^ ^ -> W which, since M^ y is compete

and 7Ti(M^^) = 0, must be a global isometry. We conclude the following.

Lemma 2.3. — Applying the ^-twisted rotations described above at the codimension-2 faces

of S8^ generates a tiling of H4
.
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It is clear from the construction above that there exists a proper embedding

Sp ̂ <-^ Mp y with exactly one template tile lying in each fundamental region. In fact

there is an action of the group Fp ^ by isometries on Mp .y with respect to which this

embedding is equivariant. The isometry M^->H4 carries the tesselation of Mp .y
to the tiling of H4 and is Fp^-equivariant. Its restriction to SpyCMp^ gives the

immersion constructed in § 1. It is now clear that this immersion is a proper embedding

and that the representation Ppv^SO^ is discrete. This completes the proof of
Theorem 1.6.

3. Examples of templates

Let? and q be positive integers with {p, q) = 1, and fix e with 0 < s < 1. Consider

the homogeneous curve F = I\ ̂  ̂ C S3 = { (^ w) e C
2
 : [ z |2 + | w |2 = 1 } parame-

terized by

(3.1) F{t) = (Vl - e
2 e^, e^) for 0 ̂  ̂  2n.

For each integer v > 3, we have the associated polygonal curve y == Ye,«.p.v obtained
by subdividing F into v equal parts. The vertices of y are the points

(3.2) Xfc == (Vl - s2 ̂ \ sco^) k == 0, ..., v - 1,

where <o = ^2JTi/v. Note that

(3.3) X, == ^(Xo)

where <p : S3-> S3 is the isometry defined by 9(2', w) == (c^ z, co^ q). The polygonal

curves Ye, q, p, v are clearly regular.

Let T == Tg^ ̂  y Y be the torsion at an edge of this curve. Then direct computation
shows that

(3.4) COS T

^ sin- (̂  cos (H + (1 - ̂  sin- (^\ cos f27^
^7 \ v /________\ ^ / \ v /v

(2np +(14^^^^s2 sin2

i M i

Note that

^ c\ T 27C^ . I T 2^?(3.5) lim T =—- and lim T =—-.
e ->-0 ^ e ->1 ^

For our construction however the template must have the following additional property:

(3.6) The minimum distance between distinct vertices of y is realized only

by adjacent pairs.

This property will guarantee condition (2.1). Note that for each smooth curve F as

above, there is a number v(r) such that the polygonal curve y = I\? obtained by
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subdividing r into v equal parts, satisfies property (3.6) for every v > v(r). Elementary

calculations show for example that we could take

(3.7) ^...+,.(1-..))

g VI — e
2

4. Computation of the Euler class

Consider now a template of type y == Ye, i, y, v an(! choose a compatible polygon
P === P(/z,^, a) where I > L(T)« This generates a properly embedded surface Sp ̂ C H

4

which, since y is unknotted, is locally flat. For each subgroup F C Fp ^ of finite index

which acts freely on Sp ^ we get a compact quotient S s Sp ^/F and an embedding

s c H^/r.
It is straightforward to see that

scw/rTN
when N is the normal bundle to a smooth approximation to this embedding.

The main aim of this section is to compute the Euler class of this bundle N. To

do this we keep S in its original polygonal form. The tiling of S by copies of P gives a

cell decomposition of S with, say, V vertices, E edges and F faces. Since each face

has n edges and each vertex meets v edges, we have the relations:

(4.1) E=^F=^vV.

Observe now that the normal bundle to S has a natural flat connection along

each face. Furthermore, by making the obvious rotation we get a canonical identification

of the normal spaces to the faces along each edge. This produces a flat connection on N

over all of S-{ vertices }.

We can use this connection to compute 5c(N) as follows. In a neighborhood of

each vertex y, consider a small disk Dy(^) = { x e S : dist(;v, v) ^ r}CP^. Let F^ be

the 0-framing of the normal bundle N along the circle ^Dy(»). This is the framing with

self-linking zero in the 3-sphere S^{v) = { x e H4/!^: dist(^, v) == r }. It is also the framing

which extends to a framing ofN over the disk Dy(y). Define hy to be the total rotation

with respect to this framing induced by parallel translation around 8Dy{v) in the flat

connection on N. This number is the same for all vertices, since they are mutually

congruent.

The standard curvature formulas yield the relation

(4.2) ^N)==^2^=^A,.

To see this, choose a smoothing of Dy(V) near v and extend F,, to a smooth framing of

the normal bundle. Extend the flat connection on N|gi)^ smoothly over the disk. In



HYPERBOLIC 4-MANIFOLDS AND CONFORMALLY FLAT 3-MANIFOLDS 39

the framing the connection is given by a 1-form cr, and the curvature is £1 = da. Do this
at each vertex. Since Q == 0 outside the disks Dg(^) we have

X ( N ) = - f Q = - s f da
47TJs W v jDg(t,)

=-2f -=-^h,
47T v J^De(v) ^7r ^

as claimed.

At each vertex v we have defined the total torsion — VT (where v == the number of

vertices ofy). Examination of the definition shows that this number represents the total

rotation induced by parallel translation with respect to the
 6C

 Frenet framing " which is

defined as follows. Let e = v_ v^. be an edge of ^Dy(^) ^ y^ y wlt!1 vertices v^. and v_.

Let 7^ and n^_ be the distinguished normals to the curve at these vertices (cf. (1.1)).

Define a normal vector field n along e by rotating n^_ to ̂  linearly through the smallest
possible angle. This defines a global unit normal field to Dy(y), and hence a normal

framing. (The second field is just the (7r/2)-rotation of n.) This is the Frenet framing

of 8D,{v) s Y-
The self-linking of the Frenet framing of y is not zero. It is equal to the linking

number LK(Y, yj m S3, where y» is obtained by pushing y off itself in the direction n.

Proposition 4.3. — If y == ̂ ^for 0 < s < 1, p ̂  0 and for v > 2p, then the self-

linking of the Frenet framing of y is p.

Proof. — We compare y to the smooth curve F given in (3.1) with q == 1. For F
the Frenet framing is given as usual by the normal and binormal vectors, and one easily

sees that, for 0< e< 1, its self-linking is p. Using homogeneity one also easily checks

that if v > 2p, then y with its Frenet framing is isotopic to F.

Corollary 4.4. — ff^^- Yv ls as m (4-3)5 then hy == VT — 2np, where T is the torsion

at an edge of y.

Equation (4.2) now implies that

(4.5) X(N)=^VVT-V^.

This of course should be an integer. To see that it is, note from (4.1) that we have

VVT = F%T, and that from the compatibility condition (1.3) we have nr s 0 (mod ZTT).

We now assume that v > v(F) where v(F) is given, say, by (3.7) with q == 1.

Combining (4.1) and (4.5) then gives the following result.

Theorem 4.6. — Fix a template y = Ye,i,»,v wlt^ 0 < s < 1 and v > 2p, and choose

any compatible polygon P == P(», t, a) with t > L(y). Let S <-> H4/? &^ ̂  quotient of Sp^ <-̂  H
4



40 M. GROMOV, H. B. LAWSON, JR. AND W. THURSTON

by a subgroup of finite index FC Fp .y which acts freely on Sp^. Then H /̂r is dijfeomorphic

to a 2'plane bundle N over the compact surface S, where

a 7} X(N) = M ~ (T/27C)
1 ' / X(S) (1/2) - (1/v) - (!/«)

dwrf wA^ T ?j given by (3.4).

Set T = (v/27r) T and note from (3.4) that T takes on all values in the interval 1 < T < p

as e ranges from 0 to 1. From above we have

(4.8)
X(N)

X(S)

1\-1!
(^-T).

Hence, this quotient takes values in the range

IX(N) ^ /I 1 1\-1
 {p - 1)

\2 n v; v '|X(S)

Since v > 2p we conclude that

|x(N) ^-i-in1
b « v j \2X(S)

which implies that for large values ofn and v the bundles N obtained by this construction

lie essentially in the range

|5C(N)|^ | ;c(S) | .

Note that, since T -> 1 as e -> 1 (see (3.5)), we have that

X(N) | ,
lim = 1.

», V->-00 X(S)e-»-l

However, we have restricted v and e by the inequality

v ^ v(D = TT(I + {p
2
 - 1) s2)^ Vl -- e2,

so we cannot fully saturate this range of possibilities.

5. Knots and limit sets

The templates y == Ye,fl ,p,v wlt
^ 9^ ^ P^ 1 an^ v ̂  2maxQ&, y) are torus knots

of type {y,p). Choosing a compatible polygon P = P^,/, a) with /* ^ L(Y)^ we again

generate a surface Sp ^ and a group Fp .y, and we can pass as before to a subgroup

r C Fp^ of finite index acting freely on 2p^. The quotient S = 2p ^./F is a compact

oriented surface and the embedding

(5.1) Sc^HVr

is a homotopy equivalence. However, this embedding is not locally flat.
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The manifold H^F is diffeomorphic to a 2-plane bundle E over S which has been

modified at a finite number of points as follows. At a point p e S, remove a local trivia-

lization E|p« ^ D2 X R
2 from E and glue in a copy of the set 88 y along the boundary

S1 X R
2
. Recall that Sty is H

4 with a knotted trench removed at infinity. The knot
Y C 8^ H

4 is a torus knot of type {q,p).

These examples are interesting because they give discrete groups F C Isom(H4)

whose limit sets are infinitely compounded knots in S3 == 8^ H
4
. Recall that the limit

set of r is the set

lim r = (T~p) n S3

where p is any point of H
4 and where the closure of the orbit T ' p is taken in

H
4
 = H

4
 u 8^ H

4
. The limit set is unchanged by passing to subgroups of finite index.

The limit set for the groups Fp ^ constructed above can be seen directly. Let 88 y

be the fundamental domain constructed in § 2, and let 88y denote the closure in H
4

of its complement H4 — Sty. Note that 88 y is the closure of the trench. The set

U,, == 88 y n S3

is a closed tubular neighborhood of the knot y ^ S3.

Now it is evident from the construction that

lim r = (I U^-gvoer

and we shall examine these intersections at finite stages. Let g denote the element gene-

rated by a (Tr/Tz) -rotation at a codimension-2 face of Sty (together with a normal twist
as in § 2). We consider what the effect of this isometry is on S8y. Consider the n hyper-

planes meeting at equal angles TC/TZ in this codimension-2 face, two of which form part

of the boundary of 88 y . These hyperplanes divide H
4 into 2w congruent regions and g

performs a cyclic permutation of these regions. At infinity, these hyperplanes divide the

sphere into conformally equivalent regions, say R^.^ .R^, which are cyclically

permuted
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byg. Note however that all but one of these regions, say R^, is contained in the thickened
-knot U,, while E.i contains all of the knot but a local segment. Hence

the intersection U. n gU, == U, n U^ is a thickening of the connected sum of the knot
2»

with itself, and H^ U ,̂, is a 2»-fold connected sum of the knot.

It is now clear that lim F = n { U^,: g e r } is an infinite compounding of the
knot as claimed.

6. The construction generalized

Certain of the ideas presented above can be generalized in the following way
(cf. [A], [M]). Let

L = YI n ... n ̂  C S3
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be any differentiable link in S3, and consider S3 to be the sphere at infinity for H4
. Send

a caterpillar along the link to eat out a trench from H
4
. As it goes along, the caterpillar

takes a sequence of spherical bights, i.e. each bight is a geodesic half-space. Two bights

(i.e. two such half-spaces) overlap if and only if they are adjacent. Each pair of adjacent

bights forms an interior angle (cc interior " to H4) of the form n{n where n is an integer > 1

which varies from bight to bight. Such sequences of bights are easy to arrange for any
given link.

We now consider the group generated by reflections at each codimension-1 face.

This generates a discrete group F C SO^ i. The set

88 EE H4
- U (bights)

is a fundamental domain for F and generates a tiling ofH4. This can be seen by applying

exactly the arguments given in the end of § 2. Furthermore, reasoning as in § 5, we see
that lim F is an infinitely compounded link which is everywhere wild.

This construction is interesting but does not recapture the examples above. To

get these we must replace reflections in the faces of 3S with certain twisted rotations at

the edges. To make such a scheme work it is necessary to impose certain compatibility

conditions extending condition (1.3) above. The details of a general construction of
this type will appear in the sequel by N. Kuiper [Kui],

7. Conformally flat 3-manifolds

Each of the discrete groups F that we constructed above gives rise to a compact

conformally flat 3-manifold. To be specific, let F C Fp ^ be a subgroup of finite index

which acts freely on 2p ̂ . Then F acts freely and properly discontinuously on the
open set

fl^S3-!™?

and the quotient

M^ s a?p/r

is a compact conformally flat 3-manifold. When y = Ye,i.p,v? we know from § 4 that

H4/? is diffeomorphic to a 2-plane bundle N over a compact surface S. The manifold M^

is then diffeomorphic to the unit circle bundle in N.

Theorem 7.1. — Let M3 be the total space of a circle bundle over a compact surface arising

from one of the constructions above. Then M3 carries a conformally flat structure.

Remark 7.2. — These manifolds include many of the circle bundles N^ -^ S where
| x(Ni) | < | x(S) |. (See [Kap] and [Kui].)

Even more interesting are the examples coming from groups generated with a

knotted template y. These manifolds are obtained from a circle bundle over a surface
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by removing sets of the form D2 X S1 (i.e. parts of the bundle which lie over disjoint

disks in the base) and gluing back in manifolds of the form 8^ 3S^ ^ S3 -- U(y) where
U(y) denotes a small tubular neighborhood of y in S3.

Theorem 7.3. — There exist conformally flat structures on compact 3-manifolds of the form

Mo ftr.(KG) ftr. ... ftr.(KG)

where MQ is a circle bundle over a surface and where KG is the complement of any prescribed knot

in S3.

Note that none of these conformally flat manifolds has a surjective developing map.

In particular therefore, their developing maps must be coverings by [KP].

Remark 7.4. — In the constructions above one also replaces knots by arbitrary

links. The result is a certain joining together of the manifolds which result from making
the construction with each component of the link separately.

This "joining process " can be axiomatized and generalized as follows. Let A be

any subset of S" and assume that both A and X = S" ~ A have non-empty interiors.

Then it is elementary that both A and A can be squeezed by global conformal transfor-

mations ofS", into arbitrarily small open subsets. Hence, both A and A can be embedded

conformally into any conformally flat n-manifold. Given two such embeddings A C M

and AC M' into conformally flat manifolds M and M', we can form the A'connected sum

(after Kulkarni and Goldman)

(7.5) M^ M' === (M - A) u (M' ~ A)

with the obvious inherited structure of a conformally flat manifold. (Note that now the
developing map (M^M')" -^ S" can be surjective and not a covering.)

For example, let LCS3 be a link with components Y i , . . . , Y f c ? and let
A = ^Yi) u • • • u U(Yjb) where U(y,) is a tubular neighborhood of y,- in S3. Consider
conformally flat 3-manifolds Mi, .... M^ and choose conformal embeddings U(y,) C M^

for eachj. We then define the conformal bouquet of M^ ..., M^ along the link L to'be the
conformally flat 3-manifold

S^Miii ...uM,).

One can also connect a manifold to itself by this process. The variations are
enormous.
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