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Abstract
Today’s web applications rely heavily on caching to re-

duce latency and backend load, using services like Redis

or Memcached that employ inflexible caching algorithms.

But the needs of each application vary, and significant per-

formance gains can be achieved with a tailored strategy,

e.g., incorporating cost of fetching, expiration time, and

so forth. Existing strategies are fundamentally limited,

however, because they rely on data structures to maintain

a total ordering of the cached items.

Inspired by Redis’s use of random sampling for evic-

tion (in lieu of a data structure) and recent theoretical jus-

tification for this approach, we design a new caching algo-

rithm for web applications called hyperbolic caching. Un-

like prior schemes, hyperbolic caching decays item priori-

ties at variable rates and continuously reorders many items

at once. By combining random sampling with lazy evalua-

tion of the hyperbolic priority function, we gain complete

flexibility in customizing the function. For example, we

describe extensions that incorporate item cost, expiration

time, and windowing. We also introduce the notion of a

cost class in order to measure the costs and manipulate the

priorities of all items belonging to a related group.

We design a hyperbolic caching variant for several pro-

duction systems from leading cloud providers. We imple-

ment our scheme in Redis and the Django web framework.

Using real and simulated traces, we show that hyperbolic

caching reduces miss rates by ~10-20% over competitive

baselines tailored to the application, and improves end-to-

end throughput by ~5-10%.

1 Introduction
Web applications and services aggressively cache data

originating from a backing store, in order to reduce both

access latency and backend load. The wide adoption

of Memcached [23] and Redis [44] (key-value caching),

Guava [26] (local object caching), and Varnish [50]

(front-end HTTP caching) speak to this demand, as does

their point-and-click availability on cloud platforms like

Heroku via MemCachier [38], EC2 via ElastiCache [4],

and Azure via Azure Redis Cache [7].

Caching performance is determined by the workload

and the caching algorithm, i.e., the strategy for priori-

tizing items for eviction when the cache is full. All of

the above services employ inflexible caching algorithms,

such as LRU. But the needs of each application vary, and

significant performance gains can be achieved by tailoring

the caching strategy to the application: e.g., incorporating

cost of fetching, expiration time, or other factors [8, 46].

Function-based strategies [2, 52] take this approach, by

devising functions that combine several of these factors.

All of these strategies are fundamentally limited, how-

ever, because they rely on data structures (typically pri-

ority queues) to track the ordering of cached items. In

particular, an item’s priority is only changed when it is

accessed. However, does cache eviction need to be tied to

a data structure? Caches like Redis already eschew order-

ing data structures to save memory [45]. Instead, they rely

on random sampling to evict the approximately lowest-

priority item [42]: a small number of items are sampled

from the cache, their priorities are evaluated (based on

per-item metadata), and the item with lowest priority is

evicted. Can this lack of an ordering data structure enable

us to build a caching framework with vast flexibility? In-

deed, we show that the combination of random sampling

and lazy evaluation allows us to evolve item priorities ar-

bitrarily; thus we can freely explore the design space of

priority functions! Neither Redis nor existing algorithms

exploit this approach, yet we find it outperforms many tra-

ditional and even domain-optimized algorithms.

Armed with this flexibility, we systematically design

a new caching algorithm for modern web applications,

called hyperbolic caching (§2). We begin with a simple

theoretical model for web workloads that leads to an op-

timal solution based on frequency. A key intuition behind

our approach is that caches can scalably measure item fre-

quency only while items are in the cache. (While some

algorithms, e.g., ARC [37], employ ghost caches to track

items not in the cache, we focus on the more practical

setting where state is maintained only for cached items.)

Thus, we overcome the drawbacks of prior frequency-

based algorithms by incorporating the time an item spends

in the cache. This deceptively simple modification already

makes it infeasible to use an ordering data structure, as

pervasively employed today, because item priorities de-

cay at variable rates and are continuously being reordered.

Yet with hyperbolic caching, we can easily customize the

priority function to different scenarios by adding exten-

sions, e.g., for item cost, expiration time, and windowing

(§3). We also introduce the notion of cost classes to man-
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age groups of related items, e.g., items materialized by the

same database query. Classes enable us both to more ac-

curately measure an item’s miss cost (by averaging over

multiple items) and to adjust the priorities of many items

at once (e.g., in response to a database overload).

A quick survey of existing algorithms shows that they

fall short of this flexibility in different ways. Recency-

based algorithms like LRU use time-of-access to order

items, which is difficult to extend: for example, incor-

porating costs requires a completely new design (e.g.,

GreedyDual [53]). Frequency-based algorithms like LFU

are easier to modify, but any non-local change to item

priorities—e.g., changing the cost of multiple items—

causes expensive churn in the underlying data structure.

Some algorithms, such as those based on marking [22],

maintain only a partial ordering, but the coarse resolution

makes it harder to incorporate new factors. Several theo-

retical studies [2,46] formulate caching as an optimization

problem unconstrained by any data structure, but their so-

lutions are approximated by online heuristics that, once

again, rely on data structures.

We design a hyperbolic caching variant for several dif-

ferent production systems from leading cloud providers

(§3), and evaluate them on real traces from those sys-

tems. We implement hyperbolic caching in Redis and

the Django web framework [18], supporting both per-item

costs and cost classes (§4). Overall (§5), we find that

hyperbolic caching reduces miss rates by ~10-20% over

competitive baselines tailored to the application, and im-

proves end-to-end system throughput by ~5-10%. This

improvement arises from changing only the caching al-

gorithms used by existing systems—our modification to

Redis was 380 lines of code—and nothing else.

To summarize, we make the following contributions:

1. We systematically design a new caching algorithm for

modern web applications, hyperbolic caching, that pri-

oritizes items in a radically different way.

2. We define extensions for incorporating item cost and

expiration time, among others, and use them to cus-

tomize hyperbolic caching to three production systems.

3. We introduce the notion of cost classes to manage

groups of related items effectively.

4. We implement hyperbolic caching in Redis and Django

and demonstrate performance improvements for several

applications.

Although we only evaluate medium-to-large web ap-

plications, we believe hyperbolic caching can improve

hyper-scale applications like Facebook, where working

sets are still too large to fit in the cache [6, 49].

2 Hyperbolic Caching
We first describe the caching framework required by hy-

perbolic caching (§2.1). Then, we motivate a simple the-

oretical model for web workloads and show that a clas-

sical frequency approach is optimal in this model (§2.2).

By solving a fundamental challenge of frequency-based

caching (§2.3), we arrive at hyperbolic caching (§2.4).

2.1 Framework

We assume a caching service that supports a standard

get/put interface. We make two changes to the imple-

mentation of this interface. First, we store a small amount

of metadata per cached item i (e.g., total number of ac-

cesses) and update it during accesses; this is done by the

on get and on put methods in Fig. 1. Second, we re-

move any data structure code that was previously used to

order the items. We replace this with a priority function

p(i) that maps item i’s metadata to a real number; thus

p imposes a total ordering on the items. To evict an item,

we randomly sample S items from the cache and evict

the item i with lowest priority p(i), as implemented by

evict which. This approximates the lowest-priority

item [42]; we evaluate its accuracy in §5.3.

The above framework is readily supported by Redis,

which already avoids ordering data structures and uses

random sampling for eviction. The use of metadata and

a priority function is standard in the literature and re-

ferred to as “function-based” caching [8]. What is dif-

ferent about our framework is when this function is eval-

uated. Prior schemes [2, 46, 52] evaluate the function on

each get/put and use the result to (re)insert the item into

a data structure, freezing its priority until subsequent ac-

cesses. Our framework uses lazy evaluation and no data

structure: an item’s priority is only evaluated when it is

considered for eviction, and it can evolve arbitrarily be-

fore that point without any impact on performance.

2.2 Model and frequency-based optimality

In many workloads, the requests follow an item popu-

larity distribution and the time between requests for the

same item are nearly independent [10]. Absent real data,

most systems papers analyze such distributions (e.g., Zip-

fian [20, 56]), and model dynamism as gradual shifts be-

tween static distributions. Motivated by this, we model re-

quests as a sequence of static distributions 〈D1, D2, . . .〉
over a universe of items, where requests are drawn inde-

pendently from D1 for some period of time, then from D2,

and so on. The model can be refined by constraining the

transitions (Di, Di+1), but even if we assume they are in-

stantaneous, we can still prove some useful facts (summa-

rized below). Our measure of cost is the miss rate, which

is widely used in practice.
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def evict_which():

sampled_items = random_sample(S)

re turn argmin(p(i) f o r i in sampled_items)

def on_put(item):

item.accessed = 1

item.ins_time = timenow()

add_to_sampler(item)

def on_get(item):

item.accessed += 1

def p(item):

in_cache = timenow - item.ins_time

re turn item.accessed / (in_cache)

Figure 1: Pseudocode for hyperbolic caching in our framework.

Within a distribution Di, a simple application of the

law of large numbers shows that the optimal strategy for

a cache of size k is to cache the k most popular items.

This is closely approximated by the least-frequently-used

(LFU) algorithm: a typical implementation assigns prior-

ity ni/H to item i, where ni is the number of hits to i and

H =
∑

i ni is the sum over all cached items. Whereas

LFU approximates the optimal strategy, one can prove

that LRU suffers a gap. This is in contrast to the traditional

competitive analysis model—which assumes a worst-case

request sequence and use total misses as the cost [47]—in

which LRU is optimal. This model has been widely criti-

cized (and improved upon) for being pessimistic and unre-

alistic [3, 9, 32, 33, 54]. Our model is reminiscent of older

work (e.g., [24]) that studied independent draws from a

distribution but, again, used total misses as the cost.

To validate our theoretical results, we use a static Zip-

fian popularity distribution and compare the miss rates of

LRU and LFU to the optimal strategy, which has perfect

knowledge of every item’s popularity (Fig. 2).1 Until the

cache size increases to hold most of the universe of items,

LRU has a 25-35% higher miss rate than optimal. LFU

fares considerably better, but is far from perfect. We ad-

dress the drawbacks of LFU next.

2.3 Problems with frequency
Even if requests are drawn from a stable distribution, there

will be irregularities in practice that cause well-known

problems for frequency-based algorithms:

New items die. When an item is inserted into the cache,

the algorithm does not have a good measure of it’s pop-

ularity. In LFU, a new item gets a frequency count of 1,

and may not have enough time to build up its count to sur-

vive in the cache. In the worst case, it could be repeatedly

inserted and evicted despite being requested frequently.

1We present miss rate rather than hit rate curves because our focus is

on the penalties at the backend. Higher numbers indicate worse perfor-

mance in most figures, and the last datapoint is 0 because the cache is

large enough to never incur a miss.

Cache Size 3k 10k 30k 100k

Perfect Freq. Miss Rate 0.29 0.19 0.10 0.00

Figure 2: Simulated miss rates1 compared to a strategy with perfect

frequency knowledge. Items are sampled with Zipfian popularity (α ≈

1) from 105 items. The cache is configured to hold a fixed number of

objects (rather than simulating size in bytes).

This problem can be mitigated by storing metadata for

non-cached items (e.g., [37]), but at the cost of additional

memory that is worst-case linear in the universe size.

Old items persist. When items’ relative popularities

shift—e.g., moving from Di to Di+1 in our model—a fre-

quency approach may take time to correct its frequency

estimates. This results in older items persisting in the

cache for longer than their current popularity warrants.

For example, consider a new item with 1 access and an

older item with 2 accesses. Initially, the new item may be

better to cache, but if time passes without an additional

access, our knowledge of the old item is more reliable.

2.4 Hyperbolic Caching

We solve the above problems by incorporating a per-item

notion of time. Intuitively, we want to compensate for the

fact that caches can only measure the frequency of an item

while it is in the cache. Traditional LFU does not account

for this, and thus overly punishes new items.

In our approach, an item’s priority is an estimate of its

frequency since it entered the cache:

pi =
ni

ti
(1)

where ni is the request count for i since it entered the

cache and ti is the time since it entered the cache. This

state is erased when i is evicted. Fig. 1 provides pseu-

docode for this policy, which we call hyperbolic caching.

Hyperbolic caching allows a new item’s priority to con-

verge to its true popularity from an initially high estimate.

This initial estimate gives the item temporary immunity

(similar to LRU), while allowing the algorithm to improve

its estimate of the item’s popularity. Over time, the prior-

ity of each item drops along a hyperbolic curve. Since

each curve is unique, the ordering of the items is contin-

uously changing. Such reordering is uniquely enabled by

our framework (lazy evaluation, random sampling), and
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Cache Size 3k 10k 30k 100k

HC Miss Rate 0.30 0.21 0.13 0.00

Figure 3: LFU miss rate compared to hyperbolic caching (HC) on a

dynamic Zipfian workload (α ≈ 1), where new items are introduced

into the distribution every 100 requests.

would be very costly to implement with a data structure.2

The strengths of hyperbolic caching over LFU are read-

ily apparent in workloads that slowly introduce new items

into the request pool. Fig. 3 shows that LFU has a sig-

nificantly higher miss rate on a workload that introduces

new items every 100 requests whose popularities are in

the top 10% of a Zipfian distribution. This workload is

artificial and much more dynamic than we would expect

in practice, but serves to illustrate the difference.

Another way to solve the same problem is to multiplica-

tively degrade item priorities (e.g., LRFU [34]) or period-

ically reset them. Both of these are forms of windowing,

which best addresses the problem of old items persisting,

not the problem of new items dying. We compare hyper-

bolic caching to these approaches in §3.4.

3 Customizing Hyperbolic Caching
Our framework allows us to build on the basic hyper-

bolic caching scheme by adding extensions to the prior-

ity function and storing metadata needed by those exten-

sions. This is similar to the way function-based policies

build on schemes like LRU and LFU [2, 46, 52], but in

our case the extensions can freely modify item priorities

without affecting efficiency (beyond the overhead of eval-

uating the function). Which extensions to use and how

to combine them are important questions that depend on

the application. Here, we describe several extensions that

have benefited our production applications (cost, expira-

tion time) and our understanding of hyperbolic caching’s

performance (windowing, initial priority estimates).

3.1 Cost-aware caching

In cost-aware caching, all items have an associated cost

that reflects the penalty for a miss on the item. The goal is

to minimize the total cost of all misses. Cost awareness is

2The basic hyperbolic function in Eq. 1 can be tracked by a kinetic

heap [31], but this is a non-standard structure with O(log2 n) update

time, and it ceases to work if the extensions from §3 are added.

particularly relevant in web applications, because unlike

traditional OS uses of caching (fixed-size CPU instruc-

tion lines, disk blocks, etc.), the cost of fetching different

items can vary greatly: items vary in size, can originate

from different backing systems or stores, or can be the

materialized result of complex database joins.

Much of the prior work on cost-aware caching focuses

on adapting recency-based strategies to cost settings (e.g.,

GreedyDual [11]). This typically requires a new design,

because recency-based strategies like LRU-K [41] and

ARC [37] use implicit priorities (e.g., position in a linked

list) and metrics like time-of-access, which are difficult

to augment with cost. In contrast, frequency-based ap-

proaches like hyperbolic caching use explicit priorities

that can naturally be multiplied by a cost: p′i = cipi,
where ci is the cost of fetching item i and pi is the origi-

nal (cost-oblivious) priority of i. Note that pi may include

other extensions from later sections.

The cost of an item needs to be supplied to the caching

algorithm by the application. It can take many forms.

For example, if the goal is to limit load on a backing

database [35], the cost could be request latency. If the

goal is to optimize the hit rate per byte of cache space

used, the cost could be item size [11].

Real-world applications. Our evaluation studies two

applications which benefit from cost awareness. The first

is a set of applications using Memcachier [38], a produc-

tion cloud-based caching service built on Memcache. We

use costs to account for object size in the eviction deci-

sion, i.e., set ci = 1/si where si is the size of item i. The

second application is Viral Search [25, 51], a Microsoft

internal website that displays viral stories from Twitter in

tree form. Virality is measured by analyzing the diffu-

sion tree of the story as it is shared through the network.

For each story, the website fetches the tree edges and con-

structs and lays them out for display. The final trees are

cached and the cost of each is set to the time required to

construct and lay out the tree.

3.2 Cost classes
In many applications, the costs of items are related to

one another. For example, some items may be created

by database joins, while others are the result of simple in-

dexed lookups. Rather than measuring the cost of each

item individually, we can associate items with a cost class

and measure the performance of each class. We store a

reference to the class in each item’s metadata.

Cost classes have two main advantages. Consider the

example of request latency to a backend database. If costs

are maintained per item, latencies must be measured for

each insertion into the cache. Since these measurements

are stochastic, some requests will experience longer de-
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lays than others and thus be treated as more costly by the

cache, even though the higher cost has nothing to do with

the item itself. What’s more, the higher costs will keep

these items in the cache longer, preventing further updates

because costs are only measured when a miss occurs. By

using cost classes, we can aggregate latency measure-

ments across all items of a class (e.g., in a weighted mov-

ing average), resulting in a less noisy estimate of cost.

The second advantage of cost classes comes from

longer-term changes to costs. In scenarios where a replica

failure or workload change affects the cost of fetching a

whole class of items, existing approaches would only up-

date the individual costs after the items have been evicted,

one by one. However, when using cost classes, a change

to a class’s cost is immediately applied to both newly

cached items and items already in the cache.

In both cases above, a single update to a cost class

changes the priorities of many items at once, possibly

dramatically. Our framework supports this with little ad-

ditional overhead because 1) items store a reference to

the class information, and 2) priorities are lazily evalu-

ated. In contrast, integrating cost classes into existing

caching schemes is prohibitively expensive because it in-

curs widespread churn in the data structures they rely on.

Interestingly, some production systems already employ

cost classes implicitly, via more inflexible and inelastic

means. For example at Facebook, the Memcached ser-

vice is split among a variety of pools, such that keys that

are accessed frequently but for which a miss is cheap do

not interfere with infrequently accessed keys for which a

miss is very expensive [40]. However, this scheme re-

quires much more management and requires tuning pool

sizes; more importantly, it does not automatically adapt to

changes in request frequencies or item costs.

In our experiments, we implement cost classes using

exponentially weighted moving averages. We explored

other techniques such as non-weighted moving averages

and using the most recent cost, but exponentially weighted

moving averages performed the best on our workloads

while requiring little memory overhead for tracking.

While cost classes are useful in many settings, incor-

rectly assigning objects to the same class that do not share

the same underlying cost will degrade caching perfor-

mance. In some settings, objects may be members of

multiple classes concurrently—there are several ways of

handling this, but we do not explore this in our work.

Real-world application. Django is a Python framework

for web apps that includes a variety of libraries and com-

ponents. One such component adds support for whole-

page caching. We modified this middleware to support

cost awareness, as follows. In Django, page requests are

dispatched to “view” functions based on the URL. We as-

sociate a cost class with each view function, and map in-

dividual pages to their view function’s class.

3.3 Expiration-aware caching
Many applications need to ensure that the content con-

veyed to end users is not stale. Developers achieve this

by specifying an expiration time for each item, which

tells the caching system how long the item remains valid.

While many systems support this feature, it is typically

handled by an auxiliary process that has no connection

to the caching algorithm (apart from evicting already-

expired items). But incorporating expiration into caching

decisions makes intuitive sense: if an item is going to ex-

pire soon, it is less costly to evict than a similarly popular

item that expires later (or not at all).

To add expiration awareness to hyperbolic caching, we

need to strike a balance between the original priority of an

item and the time before it expires. Rather than evict the

item least likely to be requested next, we want to evict the

item most likely to be requested the least number of times

over its lifetime. This can be naturally captured by multi-

plying item i’s priority by the time remaining until expiry,

or max((texpi
− tcur), 0). However, this scheme equally

prioritizes requests far into the future and those closer to

the present, which is unideal because estimates about the

future are less likely to be accurate (e.g., the item’s popu-

larity may change). Therefore, instead of equally weight-

ing all requests over time, we use a weighting function

that discounts the value of future requests:

p′i = pi · (1− e−λ·max((texpi
−tcur),0))

where pi is the original (expiration-unaware) priority of

item i and λ is a parameter controlling how quickly to

degrade the value of future requests. As an item’s time

until expiration decreases, this weighting function sharply

approaches zero. Thus the function continually reweights

(reorders) item priorities, which is uniquely enabled by

our framework: existing approaches can only account for

expiration time once, on insertion into a data structure.

Real-world application. The Decision Service [1,39] is

a machine learning system for optimizing decisions that

has been deployed in MSN to personalize news articles

shown to users. Given a user request, a particular article

is featured and a reward signal (e.g., click) is recorded.

Since rewards may arrive after a substantial delay, a cache

is used to match the decision to its reward. Rewards are

only valid if they occur within a time window after the

decision, so each cached item is given an expiration time.

3.4 Windowing
Windowing is often used in frequency-based caching to

adapt to dynamic workloads and address the problem of
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Cache Size 3k 10k 30k 100k

HC Miss Rate 0.32 0.22 0.13 0.00

LFU Miss Rate 0.44 0.21 0.13 0.00

Figure 4: Adding perfect windowing to hyperbolic caching and LFU

on a dynamic Zipfian workload (α ≈ 1). Each curve is compared to

the algorithm’s non-windowed performance (given in the table). The

window size is fixed at 104 requests. Every 100 requests, an item is

promoted to the top of the distribution.

“old items persisting”. The idea is to forget requests

older than a fixed time window from the present. Hyper-

bolic caching naturally achieves the benefits of window-

ing, but we investigate it for two reasons. First, one can

show that hyperbolic caching, unlike LRU, is not optimal

in the traditional competitive analysis model [47], but it

can be made optimal if windowing is used. Second, win-

dowing represents alternative solutions, such as resetting

or multiplicatively degrading frequency estimates (e.g.,

LRFU [34]), and so serves as an informative comparison.

We simulate windowing using an idealized (but com-

pletely inefficient) scheme that tracks every request and

forgets those older than the window. This upper bounds

the potential gains of windowing. Fig. 4 shows the perfor-

mance of LFU and hyperbolic caching on a dynamic Zip-

fian workload, with and without windowing. For hyper-

bolic caching, windowing provides limited benefits: 5–

10% reduction in misses on small cache sizes; LFU ben-

efits more but again on small cache sizes. The problem

is that windowing discards measurements that help the

cache estimate item popularity. Even in dynamic work-

loads, we find that large-sized caches can accommodate

newly popular items, so performance depends more on

the ability to differentiate at the long tail of old items.

Fortunately, hyperbolic caching’s measure of time in the

cache achieves some of the benefits of windowing; it out-

performs even recency-based approaches on many of the

highly dynamic workloads we evaluated.

3.5 Initial priorities

Hyperbolic caching protects newly cached items by giv-

ing them an initial priority that tends to be an overes-

timate: for example, an item with true popularity of

1%—placing it among the most popular in most realis-

tic workloads—would remain overvalued for at least 100
timesteps of hyperbolic decay. We found that adjusting

the initial priority based on that of recently evicted items

alleviates this problem, because evicted items tend to have

similar priorities in the tail of the distribution. Thus, we

set a new item’s initial priority to a mixture of its orig-

inal priority (pi) and the last evicted item’s priority (pe):

p′i = βpi+(1−β)pe. Solving this for ni in Eq. 1 gives us

the initial request count to use, after which the extension

can be discarded. β requires some tuning: we found that

β = 0.1 works well on many different workloads; for ex-

ample, on a Zipfian workload (α ≈ 1) it reduced the miss

rate by between 1% and 10% over hyperbolic caching for

all cache sizes.

4 Implementation
Our evaluation uses both simulation and a prototype im-

plementation. For the simulations, we developed a Python

application that generates miss rate curves for different

caching strategies and workloads. For our prototype, we

implemented hyperbolic caching in Redis and developed

Django middleware that uses the modified Redis. Our

code is open-source [28].

Redis. We modified Redis (forked at 3.0) to use the hy-

perbolic caching framework. This was straightforward be-

cause Redis already uses random sampling for eviction.

We included support for per-item costs (and size aware-

ness), cost classes tracked with an exponentially weighted

moving average, and initial priorities. Excluding diagnos-

tic code, this required 380 lines of C code.

We store the following metadata per item, using

double-precision fields: item cost, request count, and time

of entry (from Eq. 1 and §3.1). This is two doubles

of overhead per item compared to LRU. Our prototype

achieved similar miss rates to our simulations, suggest-

ing this precision is adequate. Exploring the trade-offs of

reduced precision in these fields is left to future work.

Django caching middleware. Django is a framework

for developing Python web applications. It includes sup-

port for middleware classes that enable various function-

ality, such as the Django whole-page caching middleware.

This middleware interposes on requests, checking a back-

end cache to see whether a page is cached, and if so, the

content is returned to the client. Otherwise, page process-

ing continues as usual, except that the rendered page is

cached before returning to the client. We added middle-

ware to track cost information for web pages; we mea-

sure cost as the CPU time between the initial miss for

a page and the subsequent SET operation, plus the total

time for database queries. This avoids time lost due to

processor scheduling. We subclassed the Django Redis

caching interface to convey cost information to our Redis

implementation. The interface supports caching a page
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with/without costs, and optionally specifying a cost class

for the former. Cost classes are associated with the par-

ticular Django “view” function that renders the page. In

total, this was implemented in 127 lines of Python code.

5 Evaluation
Our evaluation explores the following questions:

1. How does hyperbolic caching compare to current

caching techniques in terms of miss rate?

2. Does our implementation of hyperbolic caching in

Redis improve the throughput of web applications?

3. What effect does sample size have on the accuracy

and performance of our eviction strategy?

We use real application traces (§5.1) and synthetic

workloads designed to emulate realistic scenarios (§5.2).

We evaluate these questions using simulations as well as

deployments of Django and NodeJS, using our prototype

of hyperbolic caching in Redis. To drive our tests, our ap-

plications run on Ubuntu 14.04 servers located on a single

rack with Intel Xeon E5620 2.40GHz CPUs. Applica-

tions use PostgreSQL 9.3 as their backing database. For

throughput tests, our systems were loaded exclusively by

the test, and to measure max throughput, we increased the

rate of client requests until throughput plateaued and the

application server experienced 100% CPU load.

Methodology. For the majority of our standard work-

loads, we use a Zipfian request distribution with α ≈
1. This is the same parameterization as many well-

studied benchmarks (e.g., YCSB [15]), though some like

linkbench [5] use a heavier-tailed α = 0.9. When measur-

ing miss rates, we tally misses after the first eviction (i.e.,

we allow the cache to fill first). For workloads with associ-

ated item costs, misses are scaled by cost. For real traces,

we run the tests exactly as prescribed; for workloads based

on popularity distributions, we generate enough requests

to measure the steady state performance. When choosing

a cache size to compare performance amongst algorithms,

we use the size given by the trace, or if not given we

use sizes corresponding to high and middle range hit rates

(roughly 90% and 70%), which reflect the cache hit rates

reported in many deployed settings (e.g, [6,27]). In Face-

book [27], of the 35.5% of requests that leave a client’s

browser (the rest are cached locally), ~70% are cached in

either the edge cache or the origin cache. For our random

sampling, unless otherwise noted, we sample 64 items.

5.1 Real-world workloads
We evaluate real applications in two ways. When lack-

ing access to the actual application code or deployment

setting, we evaluate the performance through simulation.

For other applications, we measure the performance using

our prototype implementation of Django caching paired

(a) Simulated miss rates compared to the miss rate of LRU.

App Number 1 2 3 4 5 6 7 8

Mean Obj. Sz. (kB) 79.9 15.4 1.8 149.7 561.7 2.3 1.1 25.0

Stdev Obj. Sz. (kB) 116.5 40.4 9.0 254.5 100.8 3.1 7.9 46.6

App Number 9 10 11 12 13 14 15 16

Mean Obj. Sz. (kB) 5.4 8.1 7.2 5.5 2.2 30.8 26.0 9.0

Stdev Obj. Sz. (kB) 5.1 13.5 17.9 2.0 4.3 52.2 3.1 25.4

(b) Means and stdevs. of object sizes in app traces.

Figure 5: Caching performance on Memcachier app traces.

with Redis. The applications below were described in §3,

when we customized hyperbolic caching to each one.

5.1.1 Memcachier applications (from §3.1)

To evaluate the Memcachier applications, we processed a

trace of GET and SET requests spanning hundreds of ap-

plications, using the amount of memory allocated by each

application as the simulated cache size. We focused our

attention on the 16 applications with over 10k requests

whose allocation could not fit all of the requested objects

(many applications allocated enough memory to avoid any

evictions). We measured the miss rates of plain HC and

LRU, and then used the object sizes to evaluate our size-

aware extension, HC-Size, and the GD-Size [11] algo-

rithm. Fig. 5 show the performance of the algorithms over

a single execution of each application’s trace.

In our evaluation, HC outperforms LRU in many appli-

cations, and HC-Size drastically outperforms LRU. While

GD-Size is competitive with HC-Size, our framework al-

lows for the implementation of HC-Size with only two

lines of code, whereas implementing GD-Size from LRU

requires an entirely new data structure [11].

5.1.2 Decision Service (from §3.3)

The Decision Service [1,39] is a machine learning system

for optimizing decisions that has been deployed in MSN.

The service uses a cache to join information about each

decision with the corresponding reward signal. Because

rewards must be received within a given period of time,

information is cached with an expiration time.
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Decision Service Viral Search

Algo. Miss Rate (∆%) Miss Rate (∆%)

HC 0.60 (+0%) 0.17 (+0%)

HC-Expire 0.55 (-8%) —

LRU/GD 0.55 (-8%) 0.18 (+6%)

ARC 0.55 (-8%) 0.22 (+29%)

LFU 0.99 (+65%) 0.16 (-6%)

Cache Size 1k 35k

Figure 6: Simulated performance on real-world traces.

Cache Alg. Miss Rate (∆) Tput. (∆)

Default 0.681 (+0.0%) 21.1 req/s (+0.0%)

HC 0.637 (-6.5%) 23.7 req/s (+12.3%)

HC-Cost 0.669 (-1.8%) 21.1 req/s (+0.0%)

HC-Class 0.639 (-6.2%) 22.6 req/s (+7.1%)

Obj. Sizes µ = 32.0kB σ = 31.6kB

Figure 7: Performance of Django-Wiki application using HC Redis

compared to default Redis. The cache is sized to 1GB and the work-

load is a 600k trace of Wikipedia article requests.

In this workload, because items have the same expira-

tion time and are accessed only once after insertion (to

join the reward information), recency is roughly equal to

time-until-expiration. Therefore, LFU and HC perform

poorly in comparison to a recency strategy (Fig. 6). How-

ever, our expiration-aware extension allows HC-Expire to

perform just as well as the recency strategies.

5.1.3 Viral Search (from §3.1)

The Viral Search [25,51] application is an interactive web-

site that displays viral stories from a large social network.

Each viral story is represented as a tree that requires vary-

ing amounts of time to construct and layout on the server

side. We use this time as the per-item cost and apply our

cost-aware extension. Items are requested based on a pop-

ularity distribution given by each item’s “virality score”

and we measure performance over 10M requests.

Hyperbolic caching performs well on this cost-aware

workload, beating all algorithms except for LFU (Fig. 6),

and suffering 6% fewer misses than GreedyDual.

5.1.4 Django Wiki application (from §3.2)

We evaluate our caching scheme on an open-source

Django wiki app using our Django caching middleware.

The caching middleware stores cached data using a con-

figurable backend, for which we use either the default Re-

dis or our modified version with hyperbolic caching.

The wiki database serves a full copy of articles on

Wikipedia from Jan. 2008. We measured the throughput

and miss rate of the application using a trace of Wikipedia

article requests from Sept. 1, 2007 (Fig. 7). We see an

improvement in both miss rate and throughput when us-

ing HC rather than default Redis. Note that because the

pages are costly to render, even small improvements in

Trace P1 P2 P3 P4 S1 F WS

Cache Sz (objs) 32k 32k 32k 32k 525k 32k 525k

Miss Rate 0.72 0.73 0.88 0.91 0.81 0.50 0.85

Figure 8: Miss rates compared to HC on traces from the ARC paper

and SPC (HC’s miss rates are in the table). Cache sizes chosen based on

sizes given in the ARC paper.

miss rate increase the throughput of the application. For

this application, requests are only processed by two dif-

ferent Django views.

However, using HC-Cost reduces the system through-

put compared to HC. This is because the time to render

a page is similar across most pages, but has high vari-

ance: for one page, the mean time of fifty requests was

570ms with a deviation of 180ms. This leads a cost-aware

strategy to incorrectly favor some pages over others. HC-

Class alleviates this by reducing some of the variance, but

it still performs worse than the cost-oblivious HC. For this

application, using costs is counter-productive.

5.1.5 ARC and SPC traces

We additionally simulate performance on traces from

ARC [37] and SPC [48] (Fig. 8). The P1-4 traces are

memory accesses from a workstation computer; S1 and

WebSearch are from a server handling web searches; and

the Financial workload is an OLTP system trace. Caches

were sized according to the ARC paper, and these sizes

were used for the SPC traces as well. These traces have

very high miss rates on all eviction strategies. How-

ever, HC performs very well, outperforming LRU in every

workload and underperforming ARC in the P1-4 traces

only. Importantly, on workloads where LFU exhibits poor

performance, HC remains competitive with ARC, demon-

strating the effectiveness of our improvements over LFU.

5.2 Synthetic workloads

In this section, we simulate and compare the perfor-

mance of HC to three popular strategies—ARC, LFU, and

LRU—on synthetic workloads that reflect the demands

of today’s caches. For cost-aware workloads, we extend

LRU with GreedyDual, and we modify LFU by multiply-

ing frequencies by cost. (ARC is not amenable to costs.)

For each synthetic workload, we evaluate the perfor-

mance of each caching algorithm on two cache sizes,

corresponding to a 90% and a 70% hit rate with hyper-
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(a) Cache size fixed where hit rate of HC ≈ 90%.

(b) Cache size fixed where hit rate of HC ≈ 70%.

Figure 9: Miss rates on synthetic workloads with 10M requests. Miss

rates are compared to the performance of HC. For cost-aware strategies

(GD1-GD3), misses are scaled by the cost of the missed item.

bolic caching (Fig. 9). Note that while we simulated rela-

tively small key spaces, we evaluated our Redis prototype

on larger key spaces and found similar improvements in

miss rate and overall system throughput. In general, these

workloads suggest that HC can perform very well in a va-

riety of scenarios.

The most striking improvement relative to ARC is

on workloads GD1-3. These workloads have associ-

ated costs and are based on the workloads described in

GDWheel [35]. Since ARC is a cost-oblivious strategy, it

does poorly on these workloads. However, even in work-

loads without cost, our scheme is competitive with ARC.

5.2.1 Synthetic web application performance.

In order to understand how our improved miss rates affect

end-to-end throughput in modern web servers, we config-

ured a NodeJS web app to use a backing database with Re-

dis as a look-aside cache. We drive HTTP GET requests

to the web app from a client that draws from synthetic

distributions. The web app parses the URL and returns

the requested object. Objects are stored as random 32B

strings in a table with object identifier as the primary key.

Relating cache misses to throughput. To understand

the association between miss rate and throughput, we

scaled the size of our Redis cache to measure system

throughput with different miss rates (Fig. 10). Miss rate

has a direct impact on throughput even when many client

requests can be handled concurrently. Misses not only

cause slower responses from the backend (an effect which

can be mitigated with asynchronous processing), but they

Figure 10: Throughput of NodeJS using Redis as a look-aside cache for

PostgreSQL as the miss rate varies.

Default Redis HC Redis

Cache sz. Mean tput. Miss Mean tput. Miss ∆ tput.

(objs.) (kreq/s) rate (kreq/s) rate

Zipfian (α ≈ 1, N = 105)

39k 18.1 ± 0.22 0.11 20.2 ± 0.18 0.09 10.3%

3k 9.1 ± 0.09 0.38 10.5 ± 0.06 0.31 13.5%

Zipfian (α = 0.75, N = 106)

125k 7.5 ± 0.06 0.55 7.7 ± 0.16 0.49 3.2%

70k 6.8 ± 0.06 0.64 7.3 ± 0.12 0.56 6.3%

Zipfian (α ≈ 1, N = 106)

200k 14.6 ± 0.16 0.17 15.3 ± 0.13 0.16 4.4%

50k 11.2 ± 0.11 0.28 12.1 ± 0.20 0.24 7.1%

Dynamic Intro. (N = 105)

42k 19.3 ± 0.17 0.10 20.6 ± 0.16 0.09 6.3%

5k 10.0 ± 0.15 0.33 11.3 ± 0.12 0.27 11.6%

Figure 11: Miss rate and throughput of workloads running on NodeJS

with a Redis cache. Each configuration was executed 10 times with

workloads of 5M requests to objects of size 96B.

also require additional processing on the web server—on

a miss, the app issues a failed GET, a SQL SELECT, and

then a PUT request. This adds a direct overhead to the

throughput of the system.

Zipfian distribution. We measured the maximum

throughput of our NodeJS server when servicing requests

sampled from synthetic workloads with zipfian request

distributions (Fig. 11.) Depending on the workload, hy-

perbolic caching outperforms Redis’s default caching al-

gorithm (LRU approximated by random sampling) in miss

rates by 10-37%, and improves throughput by up to 14%

on some workloads. While throughput differences of 5-

10% on some workloads may be modest, they are not in-

significant, and come with little implementation burden.

Cost-aware caching. To measure the potential through-

put benefits of cost-aware caching, we wrote a NodeJS

app that makes two types of queries to the backend: (1) a

simple key lookup and (2) a join. The app measures the

latency of backend operations and uses that as the item’s

cost. In our experiment, the cache can hold 30k objects,

and we drive the app with 1M requests sampled from a

Zipfian distribution (α ≈ 1). When using normal HC, we

measured a throughput of 5.0 kreq/s and a miss rate of
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(a) Throughput measured over 30 second windows.

(b) Tail latency measured over 30 second windows.

Figure 12: Performance of NodeJS app fetching items from two differ-

ent PSQL servers using HC with per-item and per-class costs. After 2

minutes, one PSQL server is stressed and takes longer to fetch items.

The cache holds 30k objects and requests are Zipfian (α ≈ 1).

0.11. When using HC-Cost, the miss rate was 0.17, which

is 57% higher, but the throughput was 9.4 kreq/s, an 85%

improvement over HC. HC-Cost traded off miss rate for

lower overall cost, increasing overall performance.

Responding to backend load with classes. To demon-

strate how cost classes can be used to deal with backend

load, we designed a NodeJS application which performs

key lookups on one of two different PSQL servers. The

application measures the latency of the backend operation

and uses that as the cost in our Redis prototype. Addi-

tionally, it sets the class of each cached object to indicate

which backend served the object. This way, HC-Class

will use a per-class cost estimate (exponentially WMA)

when deciding which items to evict, rather than per-item.

We evaluate the application by driving it with requests

and measuring throughput and tail latency (Fig. 12). Two

minutes into our test, we stress one PSQL backend using

the Unix script stress. When one backend is loaded,

throughput decreases and tail latency increases. By using

per-class costs, HC-Class quickly adjusts to one class be-

ing more costly. With per-item costs, however, HC-Cost

is only able to update the costs of items when they are

(re)inserted. As a result, HC-Cost needs more time to set-

tle to steady state performance as item costs are slowly

updated to their correct values.

5.3 Accuracy of random sampling

Our eviction strategy’s sampling impacts its miss-rate.

Prior work [42] has studied the impact of this sampling in

detail. Using order statistics [17], one can easily show that

Figure 13: Simulated performance of HC for different sampling sizes

compared to finding the true minimum. The request workloads are Zip-

fian distributions with different skew parameters.

Figure 14: Simulation of HC using sampling technique that retains M

items [42] on a Zipfian workload with α ≈ 1.4, compared to the perfor-

mance of finding the true minimum.

the expected rank of an evicted item is n/(S + 1), where

n is the number of items in the cache and S is the sample

size. For example, a cache of n = 10k items and a sample

of S = 64 would evict the 154th lowest item on average.

In practice we found that this loss of accuracy is not prob-

lematic. Specifically, we measured and compared the miss

rate curves for varying sample sizes on two different pop-

ularity skews (Fig. 13). While the smoothness of the pri-

ority distribution impacts this accuracy—and extensions

like expiration may introduce jaggedness into priorities—

the dominating factor is how heavy the tail is and the like-

lihood of sampling an item from it. Sampling performs

worse on the lighter-tailed distribution because there are

fewer tail items in the cache, making them less likely to be

sampled. However, for the sample size we use (S = 64),

the performance gap relative to full accuracy is slight. Al-

though this varies depending on the workload and cache-

size, a sample of 64 items was large enough in all of our

experiments, so the additional improvement of better sam-

pling techniques would be limited. Further increasing the
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sample size is not without cost: each sampled item’s pri-

ority must be evaluated, which could become expensive

depending on the complexity of the priority function.

Psounis and Prabhakar [42] proposed an optimization

to random sampling that retains some number of samples

between evictions. This can boost the accuracy of ran-

dom sampling, however in our tests we found the miss

rate benefits to be minimal. On the light-tail distribution

(Fig. 14), we compare performance to the suggested set-

tings of their technique. While performance does improve

for smaller caches, the benefits are more limited as cache

size increases. We believe this is because tail items in a

large cache tend to be new items that are less likely to

be retained from prior evictions, though a more in-depth

analysis is needed to confirm this. As the benefits are lim-

ited (and parameters are sensitive to cache size and work-

load), we did not use this optimization.

6 Related Work
Our introduction and subsequent discussions survey the

landscape of caching work, including recency-based ap-

proaches (e.g., [16, 41, 53]), frequency-based or hybrid

approaches (e.g., [34,37]), marking algorithms and partial

orderings (e.g., [16, 22]), and function-based approaches

(e.g., [2, 46, 52]). All of these approaches rely on data

structures and thus cannot achieve the flexibility and ex-

tensibility of hyperbolic caching.

Consider the approaches that improve recency caching

by using multiple queues to incorporate some frequency

measures into eviction. LRU-K [41] stores items in k
queues and evicts based on the k-th most recent access.

Other works employing multiple queues include 2Q [30],

MQ [55], and LIRS [29]. ARC [37] automatically tunes

the queue sizes of an LRU-2-like configuration. Several of

these algorithms incorporate ghost caches, which track in-

formation about items no longer in the cache. (This tech-

nique could also be applied to hyperbolic caching, but we

focused our work on caches that store information about

items residing in the cache, as most production caches

do.) All of these strategies incorporate frequency to bal-

ance the downsides of LRU. However, they are difficult to

adapt to handle costs or other factors, due to their use of

time-of-access metrics and priority orderings.

GreedyDual [53] exemplifies this difficulty because it

attempts to incorporate cost into LRU, requiring a re-

design. Cao and Irani [11] implemented GreedyDual us-

ing priority queues for size-aware caching in web proxies,

and GDWheel [35] implemented GreedyDual in Mem-

cached using a more efficient wheel data structure. The

RIPQ system uses size awareness in a flash-based caching

system [49]. Other cost-aware strategies have incorpo-

rated properties such as freshness (e.g., [46]), which is

similar to expiration times but not as strict. In contrast to

these approaches, a priority function based on frequency

can easily adopt cost, expiration, or other factors.

Hyperbolic caching learns from the above and adopts

a function-based approach based on frequency. The

GDSF [13] work incorporates frequency into their priority

function, while Yang and Zhang [52] use a priority func-

tion that is also similar to ours. However, these strategies

build their solution on GreedyDual by setting an item’s

cost equal to its priority. In our tests, we found that the

interaction between GreedyDual’s priority queue and this

frequency led to poor performance (3-4x the miss rate of

LRU). Moreover, using a queue forces these strategies to

“freeze” an item’s priority once it enters the structure; in

contrast, our priorities evolve continuously and freely.

Recent work in the systems community has looked at

other aspects of caching that we do not address, such

as optimizing memory overheads [19, 21], multi-tenant

caching [14, 43], balancing memory slabs [14], cache ad-

mission [19], and reducing flash erasures when using flash

storage [12, 36, 49]. Hyperbolic caching does not require

memory for ordering data structures, but uses space to

store the metadata used to compute item priorities. We

have not studied allocation across multiple caches, but

note that our framework obviates the need for separately

tuned caches in some cases, e.g., by using our cost class

extension to manage the pools of caches described in [40].

7 Conclusion

We have presented the design and implementation of hy-

perbolic caching. Our work combines theoretical insights

with a practical framework that enables innovative, flex-

ible caching. Notably, the priority function we use re-

orders items continuously along hyperbolic curves. We

implemented our work in Redis and Django and applied

it to a variety of real applications and systems. By using

different extensions, we are able to match or exceed the

performance of one-off caching solutions. A deeper anal-

ysis of the described extensions, such as for cost classes

and expiration times, is part of our future work.
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