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HYPERBOLIC CONSERVATION LAWS
WITH LARGE INITIAL DATA.
IS THE CAUCHY PROBLEM WELL-POSED?

By

CHARIS TSIKKOU

Department of Mathematics, Brown University, Providence, RI 02912

Abstract. We present an example in which the Glimm estimate for a strictly hyper-
bolic system of two conservation laws is violated.

1. Introduction. Consider the Cauchy problem for a strictly hyperbolic system of
conservation laws in one space dimension:

Ui+ F{U), =0, —co<z<oo, 0<t<oo;
U(z,0) =Up(x), —oco<z<00.

(1.1)

It is known (Glimm [6], Liu [I3], Bressan [3], Bianchini and Bressan [2]) that when
TV(—o0,00)U0 () <0 (1.2)

for a small positive constant §, then there exists an admissible unique, globally defined
solution U (z,t) in the class BV of functions of bounded variation. Furthermore,

T‘/(—oo7oo)U('7t) < CT‘/(—OO,OO)UO('>7 (13)

where C' is a constant depending solely on F. The major open problem is whether global
existence of a weak solution and the fundamental estimate (I3) on the total variation
hold under the weaker assumption that the total variation, or even the oscillation, of the
initial data is large.

Existence for arbitrarily large initial data has been established for scalar conservation
laws (Kruzkov [12]). In general, the estimate (I3)), as it stands, is not valid when the total
variation of the initial data is large, as Jenssen [I0] provided a counterexample showing
blow up for certain 3 x 3-systems of strictly hyperbolic conservation laws, in which
repeated collisions of shocks drive the oscillation or the total variation of solutions to
infinity in finite time. It is important to identify classes of systems for which the estimate
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766 CHARIS TSIKKOU
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Fi1G. 1.1. Piecewise linear o(+).

([I3) is valid. For genuinely nonlinear, strictly hyperbolic systems of two conservation
laws, Glimm and Lax [7] showed existence of solutions to the Cauchy problem under
initial data with small oscillation but not necessarily small total variation. Assuming

that
sup |U(-,0)| <o (1.4)
(700700)
and
TV o) U(-0) < §73, (1.5)

where §, a are small constants, the solution satisfies (I3) and
L
TV, Ula,t) < =2 (L.6)

where T'Vy, stands for the total variation over any interval of length L, with L > ¢. Similar
estimates are derived in Dafermos [4] and Trivisa [16] by the method of generalized
characteristics.

However, the case of initial data with large oscillation is still open. In order to gain a
better understanding of this problem, we consider the initial value problem

U — vy =0, —oco<x<oo, 0L1t<oo;
vy —o(u), =0, —co<r<oo, 0<t<oo; (1.7)
(u(z,0),v(z,0)) = (up(x),vo(x)), —0o0 <z < 00,

where o’(u) > 0. We consider the simple case where o(-) is piecewise linear; that is
2 .
aju, ifu > 0;
= 1.8
o(u) { adu, ifu<0, (18)

with a; > as > 0, as in Figure [[LJI We show that it is possible to find a sequence
{(uon,vor)} of initial data with TV wg, + TV vg, uniformly bounded, with respect to
n, for which the estimate (3] is violated for any C. The reason is that, because of
our choice of ¢, one may encounter changes in the characteristic speed of order one even
when the change in v is arbitrarily small. The form of the system (7)) for that particular
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HYPERBOLIC SYSTEMS OF TWO CONSERVATION LAWS 767

choice of o allows one to treat large data as small. We feel that this example indicates
that even when o(+) is smooth, the estimate (3] may fail to hold if the oscillation of the
initial data is large. The results obtained here shall provide insight on this open problem.

2. Preliminaries. Standard information on the theory of hyperbolic systems of con-
servation laws is found in the books by Dafermos [4], Holden and Risebro [8], and Smoller
[15].

For the system (7)), the characteristic speeds are \y = —y/0’(u), Ay = y/o'(u) and
the Riemann invariants are r(u,v) = v — [;'\/0'(0) df, s(u,v) = v+ [;' \/o'(0) db.
Throughout the paper, we will be using bold and dotted lines to depict, respectively,
jump contact discontinuities with characteristic speeds +a; and +as. Thin lines will
depict compressive shocks with speeds +)\, where as < A < «a, as shown in Figures 2]
232 and 233 The 1-Riemann invariant r remains constant along jump discontinuities
with slope —(a;)™! or —(az)™!, and the 2-Riemann invariant s remains constant along
jump discontinuities with slope (a1)~! or (ag)~!, as depicted in Figures 2] and By
contrast, 7 and s vary along 1-shocks with slope —A™!, and 2-shocks with slope A~ '.

t
’ X
slope = —;2 slope = —a% slope = QLQ slope = a%
' up <0
‘-‘ Uy <0 Uy < 0
. R u; >0
\ ug >0 N
' u; >0 N us >0
u < 0 "‘ "'
Fic. 2.1. Left-propagating waves. Fic. 2.2. Right-propagating waves.
slope = —% slope = %
ug >0
up >0
ug <0
up <0

FiGg. 2.3. 1- and 2-shocks.

Self-similar solutions to the Riemann problems are generally obtained with the help
of shock and rarefaction curves. In our case, since o is piecewise linear, we do not
have centered rarefaction waves but only jump discontinuities. Jump discontinuities with
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768 CHARIS TSIKKOU

negative slope, connecting states (u1,v;) and (ug,v2), will be called shocks when 1y < ug
or rarefactions when w; > us. Jump discontinuities with positive slope, connecting states
(u1,v1) and (ug,v2), will be called shocks when u; > us or rarefactions when uy < us.
The states that can be connected to (u_,v_) by a 1-shock or 2-shock lie on the curve

S v—v-=(u—u_)(o(u) —o(u_)) =s(u;(u_,v_)), u>u_ (2.1)

or
Sy v—v_=/(u—u_)(o(u) —o(u_)) = so(u; (u_,v_)), u<u_. (2.2)
The states that can be connected to the state (u_,v_) by a 1- or a 2-rarefaction lie on
the curve "
Ry: v—w_ :/ Vo'(y) dy =01 (u; (u_,v_)), u_ > u, (2.3)
u—
or

Ry: v—wv_ = —/ Vo'(y) dy = 0a(u; (u—,v_)), u>u_. (2.4)
These curves are depicted in Figure 2.4

Syt v—v_ = sa(u; (u_,v_)) S1: v—v_ =sy(u;(u_,v_))

Ry: v—v_=01(u;(u_,v_)) Ry : v—v_=0s(u;(u_,v_))

F1G. 2.4. Shock and rarefaction curves.

The solution to the Riemann Problem, with left state (u_,v_) and right state (uy,vy),
has one of the following forms, depending on the sign of the end states, as seen in Figure

2.0)
vy —v- +ag(ugr +u_) <0 vy —v- +ag(ugr +u_) >0
wy <0, T = s1t up >0 T = Sot
u_ <0 N ue <0 u_ <0 uy <0
vy —v- +ar(ug +u_) >0 vy —v- +ap(ugr +u_) <0
uy >0 upe <9
u_ >0 uy >0 u_ >0 uy >0
v < vy V- > vy
upr >0 \I‘I»M<O,'l
u_ =0 uy =0 u_ =0 R uy =0

.
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HYPERBOLIC SYSTEMS OF TWO CONSERVATION LAWS 769

vy —U- < —aUug Vp — V- > —QaU4

Z‘MMSO,’I upy >0
u_ =0 A uy <0 u_ =0 uy <0

V- — U4 > a1U4

QlU_ > V- — Uy
u_ >0 uy =0
Uy —U- < —Qau_ Vp — V- > —Ql_
’L‘uM < O," uy >0
u_ <0 R uy =0 u_ <0 uy =0
vy —v- +aqugp +agu_ >0 vy —v- +aqug +agu_ <0

uny >0
u_ <0 uy >0 u_ <0

\

vy — V- +oju_ +azugy >0 vy — V- +Foju_ +azuy <0

uy >0
’U,+<0

3
v
<

f r=—At
ug >0

(u27v2)

(ulavl)
(T2782)

P (rlasl)

w
Wo h u; <0

Fic. 2.6. Jump f = Ar(-,r1 — s1) of a 1-shock.

Figure depicts a 1-shock, which connects the states (u1,v1) and (ug,v2) with
u1 < 0, us > 0. The speed of the shock is —\ where as < A < a;. The corresponding

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



770 CHARIS TSIKKOU

Riemann invariants are (r1, s1) and (rs, s2). We express the jump in r, Ar =ry — 7y, in
terms of the jump in s, As = s5 — s1, and r; — $1; namely,

Ar = f(As,r1 — s1)

where
%, 0<w<h;
f(hyw) = (2.5)
0, w > horw<0,
and
1 _ 4o g (2.6)

% o (a1 — a2)2 ’
It should be noted that &k — 0 as (a1 — az) — 0. The form of the function f, depicted in
Figure [2.6] will be very useful for our purposes.

If we solve the system (7)) with o piecewise linear, and ¢’ has more than one jump
point, then nothing changes, as we can find again a solution with uncontrollable growth.
In Tsikkou [I8], we recover the Glimm estimate for smooth fluxes by approximating
the smooth function ¢ by piecewise linear functions o,,(-). This does not contradict the
results of the present paper, because as the approximations get tighter, that is, modifying
o, in a small neighborhood of the jump points of o/, so that o is in C*, the jumps in the
slopes of o,(+) and thereby the k corresponding to each such jump get smaller.

3. Solutions with uncontrollable growth. It is more convenient to use the vector
(r,s) of Riemann invariants in the place of the original state vector (u,v). The goal is
to show that there are wave interactions inducing increase in the total variation that
violates the estimate

TV r(-t) + TV s(,t) < C{TV ro(-) + TV s0(-)}

for any C. For that purpose, we construct a sequence of initial data (ro,,So,) with
TVron(-) + TVson(-) = 1, for every n, and show that the sequence of solutions (r,, s,)
satisfies TVry, (-, tn) + TV $n(-, tn) > ¢n, where ¢, — 0o. To define the sequence of initial
data, we will use as parameters the positive numbers «, 8,b, L, Q and the two positive
integers M, N. We introduce two step functions, x(z;a,b, L, M) and ¥(z;3,b,Q,N),
depicted in Figure Bl defined by

X =2z—q, —b<ux;

X=2z—q, —b—2wL<z<-b—(2v—-1)L, v=1,..., M,

X = 2, -b—(2v+1)L<z<—-b-—2vL, v=0,...,M—1,
ey =z, T < +b;

Y =z—0, +tb+2wQ <z <+b+2v+1)Q, v=0,....,N—-1;
Y=z, +b+ (2v —1)Q <z < +b+ 2vQ, v=1,...,N.

The function x is a step function with 2M jumps on the negative semi-axis and constant
on the positive semi-axis. The function ¥ is a step function with 2N jumps on the
positive semi-axis and constant on the negative semi-axis.
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HYPERBOLIC SYSTEMS OF TWO CONSERVATION LAWS 771

X
o
a
¢
. —b-4L —b-2L  —b .
-b-2ML  -b-3L —-b-L
()
z
!
s
i
[? ‘ b.|‘.2Q e ‘ ‘ T
b+ Q| b+3Q Cb+2NQ
Fia. 3.1. Step functions x and .
For the sequence {rqg,, son } of initial data, we take
« L
n = x(x; b M(1 + 2k)*N
Ton X('rv (1+2k)2nN’ 7(1+2]€)2an ( =+ ) )a
Son = ’Q[J(.’L’, §7b>Q7nN)u
n
where k is defined by (2Z.0)), and the constants «, 3,b, L, M, Q, N are such that
TVro, + TVsg, =2Ma+2NS3 =1, (3.1)
oL +2b < 29 (3.2)
a1 — Q2
2%a(f — @) o 2kdB(1 - d)
——— (14 2k _ 3.3
Bioka VTR <o (3:3)
2k - V2k? + 3k k-1
o+ KB =) o1 oVt ) < gV SRS (3.4)

B+ 2ka 2k2 + 2k ’

where

L VIR k-1

2k2 + 2k ’
We have scaled the initial data so that their total variation remains fixed. Since o in
(L7 is invariant under rescaling of u, one may treat large data as small. It will suffice to
describe (r1, s1), as exhibited below, because (r,, s,) may then be obtained by rescaling.
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772 CHARIS TSIKKOU

In the solution we encounter interactions of 1-shocks with 2-shocks, of 1-shocks with 2-
rarefactions, and of 1-rarefactions with 2-shocks, as depicted by Figures B.2] B3] and B.6]
respectively. We also have interactions of 1-rarefactions with 2-rarefactions, as depicted
in Figures [3.4] and

t

<
V)

v S
A A
3
2 ° °
(r2,82) / (r3,53)
4
°
1 >
slope = a% slope = — (r1,s1)  (ra, s4) T
u > g where
as < A< ag
Fic. 3.2. Interaction of a 1-shock with a 2-shock.
v S
A 2 A
3
. °
(r3,83) / (r2,52)
1
4
°
>
r

(ra,84) (71,51)

U1 < Ug

Fic. 3.3. Interaction of a 1-shock with a 2-rarefaction.

In the interaction depicted in Figure B2] the incoming wave strength is |r; —rs|+|s3 —
34|, the outgoing wave strength is |r; —r3| 4 |s1 — s2|, and therefore there is no change in
the wave strength. Similarly for the interactions depicted in Figures[3.4] B.5 and [3.6] the
total wave strength of incoming and outgoing shocks remains the same. By contrast, in
the interaction depicted in Figure B3] the incoming wave strength is |ry — r1| + |s4 — s3],
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slope slople
W bs (rs.s5) (ri,s1)
° °
2
(r2,52)
.
4
r4,54) (73, 83)
b b >
r
Fic. 3.4. Interaction of a l-rarefaction with a 2-rarefaction.
Vuz <0 Ay A
2
°
(T5,85) (7'2782)
°
4 7)4554) (T3,$3)
-
r
Fic. 3.5. Interaction of a 1-rarefaction with a 2-rarefaction.
5 (rlv Sl)
°
4 (T5a 55)
ug <0 1
(r2s2) (7”4, 54)
°
2
»
r

F1G. 3.6. Interaction of a 1-rarefaction with a 2-shock.

the outgoing wave strength is |rqy — 4| + 2|r1 — 2| + |s1 — s2|, and thus the wave strength
increases by 2|ry — ra.

The resulting solution (r1, s1) is depicted in Figure B7l Starting from the origin and
moving to the left along the z-axis, we first encounter a 2-rarefaction generation point,
then a 2-shock generation point, then a 2-rarefaction generation point and so on, until we
end up with the Mth 2-shock generation point. These waves issue from the z-axis, with
speed a; and at a distance L from each other. Starting again from the origin but now
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Ry Sy L R, 2b Q z

Fic. 3.7. Interaction pattern. The resulting solution (71, s1).
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HYPERBOLIC SYSTEMS OF TWO CONSERVATION LAWS 775

Fic. 3.8. Strips By, 6 = 1,..., N, in the upper half plane.

moving to the right along the x-axis, we first encounter a 1-rarefaction generation point,
then a 1-shock generation point, then a l-rarefaction generation point and so on, until
we end up with the Nth 1-shock generation point. These waves issue from the z-axis
with speed —a; and at a distance @) from each other. Every 2-wave, shock or rarefaction,
originating from a point on the negative semi-axis propagates to the right and collides
with each and every one of the N 1-waves, but never collides with any one of the other
2-waves. After the N interactions are completed, the wave propagates undisturbed with
constant speed «y. Similarly every 1-wave, shock or rarefaction, originating from a point
on the positive semi-axis, propagates to the left and collides with each and every one of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf
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6[ 2+2k722k:/ 2k+1 ] ...................

« 1 T W1 Wy
Fic. 3.9. Jump f = Ar(-,7 —3).

the M 2-waves, but never collides with any of the other 1-waves (as we shall see, this holds
under the assumption ([32))). After the M interactions with the 2-waves are completed,
the wave propagates undisturbed with constant speed —«y. All the interactions, 4M - N
in number, occur before time ¢1, where

INQ+2b  2ML+2b
(65) (69 '

t1 <

Beyond time ¢, the total variation remains constant. To estimate the total variation of
the solution TV ri(-,t1) + TV s1(-,t1) at time ¢;, we calculate the change in the wave
strength at each interaction point. As noted above, we have change in the wave strength
only at interactions of 1-shocks with 2-rarefactions; see Figure B3l The sum of all these
changes is denoted by V. Therefore the total variation is greater than the sum of the
total variation of the solution at t =0, TV r1(-,0) + TV s1(-,0), plus V.

The next step is to estimate V. We divide the upper half-plane into strips By, 6 =
1,..., N, as shown in Figure[3.8] constructed by the following procedure. The boundaries
of the strips are generated by the l-rarefaction shocks which emanate from the positive
semi-axis and have slope —(ay)~!. We let Vj denote the change in the total variation
in such a strip. Since V = 25:1 Vg, we need to estimate each Vp. From Figures B.1]
and 3.8 we see that M interactions take place in each strip and each one yields the
same amount of increase in the wave strength. Hence Vjy is M times the amount of
wave strength increase at the first interaction point at the right end of the strip By. We
need the following preparation. Consider a 1-shock connecting the left state @ < 0 and
the right state u > 0, the corresponding Riemann invariants being (7, 5) and (r, s). The
jumps Ar =71 — 7 and As = s — § are related by
2k(7 — 5)[As — (T — §)]

As+2k(F—35)
We keep As fixed and equal to 3, and then draw f as a function of 7 — 5; see Figure B.0l
The slope of the tangent at (0, f(5,0)), (w1, f(5,w1)), (wo, f(B,wo)) and (B, f(5,5)),

Ar = f(As, 7 —35) =

where
V2k+1-1 V2k2+3k+1—-k—1
wo=p YLD g : ] = ds,
2k 2k% + 2k
is 2k, k, 0, and —%, respectively. In the solution, we select the initial data in such a

way that As = 8 and 7 — 5§ < wy for each 1-shock that participates in the interactions
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r—Q=-a1t

w Q

r=—ayt

Fic. 3.10. Left-propagating waves.

R2 S] 0] x
Fic. 3.11. Right-propagating waves.

with a 2-rarefaction wave, Figure 3.3l and is the first one we encounter at the right end
of each strip By. This guarantees that the slope of the tangent at (7 — 3, f(8,7 — 5)) will
lie between k and 2k.

Figure B.10 depicts the two straight lines x — Q = —a;t and £ = —a»st which intersect
at © = —w, where

azQ)
a1 — Q2 '
To guarantee that the solution (r1,s;) is as depicted in Figure B and the 1-waves
never intersect with one another, we use Figures B.I0 and B.11], and pick the constants
a,B,b, L, M,Q, and N so that

w =

oM 42 < 29
a1 — g
and

2Ma +2NB = 1.

In what follows, we will use the function f defined by (2.X). The 1-shock that partici-
pates in the interaction at the point Ky (Figure [31), namely the first point at the right
end of the strip By, has ¥ — 5 = o, As = 3, and Ar = x1, where z7 = % The

1-shock that participates in the interaction at the point Kg, namely the first point at the
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5 51 #2409 —1 40 IN
R s e SRS S S :
T
1 A
1 A
| IR | |
I Vo | | ! |
1$o¢ ! ; ! 1
- o « To—1
.
5 10 2 11 2
L *--------- ® - * -
RSN N N 2
| 5 o |
84— e : :
JUE R b .
T 6 13 28
Pk x1 T2
) T

F1a. 3.12. Observations concerning right-propagating waves.

right end of the strip B, has ¥ — 5 = a + x1, As = 3, and Ar = z5. From Figure 3.9
we can see that zo = f(8,« + x1). From the slopes we also obtain that % =k >k,
so 9 = x1(1 + k1) > x1(1 + k). The 1-shock that participates in the interaction at Kig,
namely the first point at the right end of the strip B3, has ¥ —§ = a + 1 + z2, As = 3,
and Ar = x3, where x3 = f(8, «+x1 +x2). From the slopes we see that % =ko >k,
and thus
Tr3 = Ig(l + kQ) = Il(l + kl)(l + k2) Z .Il(l + k)2
Since f(w;) = 2X801=9d) "4nd under the assumptions (3), (34), we get

1+2kd

vt 2hd5(1 = d)
1+42kd
atar 4oy <a+ (2k) e [(1+28)V T — 1) < wy.

1(L+k1) - (1 +kno1) < ai(1+ 2k)
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We follow the same idea for the 1-shock that participates in the first interaction at
the right end of the strips By, ..., By. Therefore, the 1-shock that participates in the
interaction at the first point at the right end of the strip By has F —s = a + z1 + 22 +
<o+ mxg_1, As = B, and Ar = xy, where 9 = f(B, a0+ 1 + 22+ -+ + xg_1). From the
slopes we will have

Tg = 1‘1(1 + kl) e (1 + kg_l) Z Il(l + k)eil.

Thus, starting from a 1-shock where ¥ — 5 = a and Ar = z1, and moving in the “north-
easterly” direction, for § = 2,..., N, we arrive at a 1-shock with 7 — § = a + z7 and
Ar = z9 and eventually to a 1-shock with ¥ —5§ = a+x1+xzo+---+xzy_1 and Ar = zy.

Since our goal is to estimate the change in the total variation for each strip By, we
focus our attention to this region and after some calculations we obtain, from Figure

B.12

|re —r11| = 21, |riz — rog| = Ta.
Using Figure 3.7 we estimate the change in strength for each interaction in the strip By
and obtain the following inequality:
Vo > 2Maxi (14 k)7L
We denote by I the increase in the wave strength at the point K. When we check all
interaction points we conclude that for the first term of the sequence of solutions (r1, s1),

2NQ +2b 2ML +2b
1 < @ +

(6%) (6] ’
TWI r+ TWI s1=TVror +TVso1 + IKl + IK2
+ IK4 + IKG + IKs + IKg + IK11
+IK14 +IK18 +IK19 +IK20 +IK21 e

Therefore we have

N
TVi, 4+ TV 812 TVt TVsor + ) Vo
0=1

N
Z TVT01+TV801 —+ 2M£L'1 Z(l —+ k‘)eil.
=1

To define {(ry,,s,)} for n =2,3,..., let u, be the integer part of (1 + 2k)?""; we then
L
keep @, b fixed, we change N to nN, ( to é, a to g, Lto—, M to pu, M, and x;
n u

n n

to x—l. Thus we get
Hn

TVron +TVsg, =2Ma+ 2N

and for

_2NnQ+2b  2ML+2

n = I
Q2 Q2
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Nn
TVi, o+ TVi, sp>TVron+TVson +2Mzy » (1+k)"!
0=1

1
. {TVTOn + TVSOn}

>(14+ ——c,
=+ e ang ™
> Cp - {TVTOn + TVSO'IL} = Cn,

where
Nn 1
s =2M L+k)° =14 st
¢ 33192_;( +K) ¢ +2Ma+2NBC

The series lim,,_, o ¢, is divergent. Thus, TVr, (-, tn) + TV sp (-, tn) > ¢pn, where ¢, — 00.
Therefore we notice that we have a violation of the Glimm estimate (L3).
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