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ABSTRACT 

A new class of distributions called the hyperbolic cosine – F (HCF) distribution is introduced and its properties are 
explored. This new class of distributions is obtained by compounding a baseline F distribution with the hyperbolic 
cosine function. This technique resulted in adding an extra parameter to a family of distributions for more flexibility. 
A special case with two parameters has been considered in details namely; hyperbolic cosine exponential (HCE) 
distribution. Various properties of the proposed distribution including explicit expressions for the moments, 
quantiles, moment generating function, failure rate function, mean residual lifetime, order statistics, stress-strength 
parameter and expression of the Shannon entropy are derived. Estimations of parameters in HCE distribution for two 
data sets obtained by eight estimation procedures: maximum likelihood, Bayesian, maximum product of spacings, 
parametric bootstrap, non-parametric bootstrap, percentile, least-squares and weighted least-squares. Finally, these 
data sets have been analyzed for illustrative purposes and it is observed that in both cases the proposed model fits 
better than Weibull, gamma and generalized exponential distributions. 
 
Keywords: Hyperbolic cosine function, Exponential distribution, Mean residual lifetime, Maximum product of 

spacings, Maximum likelihood estimation, Bootstrap. 

 

1. INTRODUCTION  

Statistical distributions are commonly applied to describe 
real world phenomena. Due to the usefulness of statistical 
distributions, their theory is widely studied and new 
distributions are developed. Numerous classical 
distributions have been extensively used over the past 
decades for modeling data in several areas such as 
engineering, actuarial, environmental and medical 
sciences, biological studies, demography, economics, 

finance and insurance. However, in many applied areas 
such as lifetime analysis, finance and insurance, there is a 
clear need for extended forms of these distributions. For 
that reason, several methods for generating new families 
of distributions have been studied. The well-known 
generators are the following: Azzalini’s skew family by 
Azzalini (1985), Marshal-Olkin generated family (MO-
G) by Marshall and Olkin (1997), exponentiated family 
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(EF) of distributions by Gupta et al. (1998), beta-G by 
Eugene et al. (2002) and Jones (2004), Kumaraswamy-G 
(Kw-G) by Cordeiro and de Castro (2011), McDonald-G 
(Mc-G) by Alexander et al. (2012), gamma-G (type 1) by 
Zografos and Balakrishnan (2009), gamma-G (type 2) by 
Ristić and Balakrishnan (2012), gamma-G (type 3) by 
Torabi and Hedesh (2012), log-gamma-G by Amini et al. 
(2012), logistic-G by Tahir et al. (2016), exponentiated 
generalized-G by Cordeiro et al. (2013), geometric 
exponential-Poisson family Nadarajah et al. (2013a), 
truncated-exponential skew-symmetric family by 
Nadarajah et al. (2014), logistic-generated (Lo-G) family 
by Torabi and Montazari (2014), Transformed-
Transformer (T-X) by Alzaatreh et al. (2013), 
exponentiated (T-X) by Alzaghal et al. (2013), Weibull-G 
by Bourguignon et al. (2014), Exponentiated half logistic 
generated family by Cordeiro et al. (2014a), 
Kumaraswamy Odd log-logistic-G by Alizadeh et al. 
(2015b), Kumaraswamy Marshall-Olkin by Alizadeh et 
al. (2015c), Beta Marshall-Olkin by Alizadeh et al. 
(2015a), Type Half-Logistic family of distributions by 
Cordeiro et al. (2016) and Odd generalized exponential-G 
by Tahir et al. (2015b), Another Generalized Transmuted 
Family of Distributions by Merovci et al. (2016), 
weighted exponential by Gupta and Kundu (2009), 
generalized weighted exponential by Kharazmi et al. 
(2015). These families of distributions have received a 
great deal of attention in recent years. 

The aim of this paper is to propose a new family of 
continuous distributions, called the hyperbolic cosine – F 
(HCF) family, and to study some of its mathematical 
properties. Moreover, we provide general properties, 
different estimation procedures for the unknown 

parameters and applications of a special model of the 
HCF family so-called the hyperbolic cosine –exponential 
(HCE) distribution.  

The rest of the paper is organized as follows. In Section 
2, we introduce the HCF model and discuss some general 
properties of this family of distributions. In Section 3, we 
consider the HCE distribution and discuss its different 
properties. We discuss different estimation procedures of 
the unknown parameters in Section 4. The analysis of two 
real data sets has been presented in Section 5. Finally in 
Section 6, we conclude the paper.  

2. HYPERBOLIC COSINE – F (HCF) FAMILY OF 

DISTRIBUTIONS 

In this section, we introduce a new class of distributions 
named hyperbolic cosine –F (HCF). Also, two 
representations and some basic properties including 
probability distribution, survival, hazard rate and quantile 
functions of this model are given here. This new class of 
distributions is obtained by compounding a baseline 
probability distribution F with the hyperbolic cosine 
function. Before introducing the HCF family, we recall 
the definition of the hyperbolic cosine function. The 
hyperbolic cosine has similar name to the trigonmetric 
functions, but it is defined in terms of the exponential 
function as follows. 

 

The function  is even and has a Taylor series 

expression with only even exponents for  as follows 

 

 

Definition 1. Let  be a continuous random variable with cumulative distribution  function (CDF) , then model (2) 

called hyperbolic cosine – F (HCF) distribution and its probability density function (PDF) is  as follows                                                                     

 

where . Clearly  reduces to  when  

To motivate the introduction of this new family of distributions, we give two representations as follows. 

 Representation 1 

 Suppose that the failure of a device occurs due to the presence of an unknown number, , of initial defects of some 

kind. Let  denote the failure times of the initial defects. Let  denote the failure time of the device. Then 

. Suppose  is a discrete random variable with a probability mass function as  

 

where . Suppose also that  is a random sample from the baseline distribution with PDF 

 and CDF , then 
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and the marginal probability density function of  is 

 

 

Representation 2 

Using the series expansion (1), the HCF distribution can be stated as a mixtures of generalized  ( ) distributions as 

follows. 

 

where generalized  as 

 

 and   . 

Now let us consider some main  properties of the  HCF distribution.The corresponding CDF associated with (2) is 

 

The survival reliability and the hazard rate function (HRF) 

for HCF distribution are in the following form 

 

and 

 

respectively.The  quantile  of the HCF distribution can be obtained as 

 

 

, then we get Since 

 

Hence, If the baseline F distribution is invertable then we can easily generate random samples from the HCF distribution.        

 

3. HCE DISTRIBUTION AND ITS PROPERTIES 

In this section we apply the HCF method to a specific class of distribution functions, namely to an exponential distribution 
and call this new distribution, two-parameter HCE distribution.                                                                                                                                    

Definition 2. A random variable  has hyperbolic cosine - exponential , denoted by , if its probability density 

function (PDF) is given by            
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where . Fig. 1 shows the shapes of  for different values of  and   

 

Fig. 1. Plots of the  for different values of  and  

To investigate the effect of parameters  and  on the skewness of  the HCE distribution we plotted  the 3D-Plots of 

 for different values of  and  in Fig. 2.                                           

 

 

Fig. 2. 3D-Plots of the  for different values of  and . 
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3.1. Statistical and reliability properties 

In this section we study several statistical and reliability properties of the HCE distribution, such as the distribution function 
(CDF), survival function (SF), conditional survival function (CSF), failure rate (or hazard) function (FR), moment generating 

function (MGF), mean residual life (MRL) time, th moment, order statistics, stress-strength parameter and Shannon entropy 

measure.                                                                                                                              

3.1.1 Distribution, survival, quantile, conditional reliability and failure rate functions                                                                                         

The CDF of (3) can be written as 

 

also, survival , quantile and conditional reliability functions are given by 

 

 

= 

(  

 

and 

 

respectively. Conditional survival function plays an important role in classifying life time distributions. From (3) and (4) it is 
easy to verify that the failure rate function is given by        

 

The failure rate is a key notion in reliability and survival analysis for measuring the ageing process. Understanding the shape 
of the failure rate is important in reliability theory, risk analysis and other disciplines. The concepts of increasing, decreasing, 
bathtub shaped(first decreasing and then increasing) and upside-down bathtub shaped(first increasing and then decreasing ) 
failure rates for univariate distributions have been found very useful in reliability theory. The classes of distributions having 
these ageing properties are designated as the IFR, DFR, BUT and UBT distributions, respectively. For the HCE distribution 
hazard rate function  can be decreasing, increasing, upside-down bathtub-shaped and constant. Figs. 3(a) and 3(b) illustrate 

some samples of possible shapes of the hazard rate function in IFR and DFR cases for certain values of the vector . 

Although we can not provide an analytic proof in upside-down bathtub-shaped case, using Glaser (1980)’s result, we have 

confirmed our claim by plotting  in Fig. 3(c). We observe that  may be having one 

change of sign from negative to positive. 
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Fig. 3(a). failure rate function shapes for for selected values of the parameters. 

 

Fig. 3(b). failure rate function shapes for selected values of the parameters. 

 

Fig. 3(c).  for selected values of the parameters 

3.1.2. Moment generating function and mean residual life time 

Now let us consider different moments of the  distribution. Some of the most important features and 

characteristics of a distribution can be studied through its moments, such as moment generating function, the th moment and 

interested reliability properties such as mean residual life time. The moment generating function of form (3) is immediately 
written as                                                                                                                                                    
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The th moment and th central moment of the HCE distribution can be derived as 

 

in particular, its mean and variance are given, by 

 

and  

 

One of the well-known properties of the life time distribution is mean residual life time. For the HCE distribution it can be 
written as 

 

 

3.1.3. Order statistics, stress-strength parameter and Shannon entropy measure   

Here we provide an order statistics result. Let  be a random sample from a , and let 

denote the order statistic. The PDF of  is given by 

 

 

 

Now we obtaine the stress-strength parameter. Suppose  and  

 are independently distributed, then 

 

 

                                                                                                                                                      

The entropy of a random variable measures the variation of the uncertainty. A large value of entropy indicates the greater 

uncertainty in the data. Shannon entropy Shannon (1948) of  Can be obtained as 
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4. DIFFERENT METHODS OF ESTIMATION 

 

In this section, we describe the eight estimation methods considered in this paper for estimating the parameters  and  of 

the HCE distribution. For all methods we consider the case when both  and  are unknown.  

4.1. Maximum likelihood estimation  

Let  be a random sample from the distribution with density . The likelihood function based on 

observed values  is given by 

 

The estimator obtained by maximizing (5) is called the MLE estimator of . In case of the HCE distribution.The log-

likelihood function of the parameter is given as 

 

so, the MLEs of  and , say , and , respectively, can be obtained as the simultaneous 

solutions of 

 

 

Due to the non-linearity of these equations the MLEs of parameters can be obtained numerically. In this paper we use 
statistical software R (R Development Core Team, 2011) to solve these equations. Here we use the Method of Moment 
Estimation (MME) to specify initial values.                                                                                                                                            

4.2. Maximum product of spacings estimator 

Maximum product of spacings (MPS) method was introduced by Cheng and Amin (1983) as an alternative to the MLE 
method. Ranneby (1984) derived the MPS method from an approximation of the Kullback-Leibler divergence (KLD). 

Kullback-Leibler divergence between   and  is given by 

 

The KLD is zero if and only if  for all . 

Let  be a sample from a CDF  Let  denote the corresponding PDF. For estimating  a perfect 

method should make the KLD between the model and the true distribution as small as possible. In applications, this can be 
approximated by estimating 

 

So, by minimizing (6) with respect to , the estimator of  can be found. Ranneby (1984) suggested another 

approximation of the KLD, namely 
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where   denotes the ordered sample and   

The estimator obtained by minimizing (7) is called the MPS estimator of . It is clear that minimizing (7) is equivalent to 

maximizing  

 

In case of the HCE distribution, the MPSs of  and , say , and , respectively, can be obtained by minimizing 

 

 

with respect to  and . 

4.3. Estimators based on percentiles 

Estimation based on percentiles was originally explored by Kao (1958,1959). In fact the nature of percentiles estimators is 
based on distribution function. can be obtained by minimizing 

 

where  and  denotes the ordered sample. So to obtain the PC estimator of  and , we 

use the same method as for the ML estimator. In case of the HCE distribution, the PCEs of  and , say , and , 

respectively, can be obtained by minimizing 

 

 

with respect to  and . 

 

4.4. Least squares and weighted least squares estimators 

In this section, we derive regression based estimators of the unknown parameter. This method was originally suggested by 
Swain et al. (1988) to estimate the parameters of beta distributions. It can be used for some other distributions also. 

Suppose  is a random sample of size  from a CDF  and suppose  

denote the ordered sample in ascending order. The proposed method uses . For a sample of size , we have 

 

. 
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Using the expectations and the variances, two variants of the least squares method follow. 

 

Method 1: Least squares estimators 

The least squares estimators can be obtained by minimizing 

 

with respect to the unknown parameters. In case of the HCE distribution, the LSEs of  and , say , and , 

respectively, can be obtained by minimizing 

 

 

with respect to  and . 

Method 2: Weighted least squares estimators 

The weighted least squares estimators can be obtained by minimizing 

 

with respect to the unknown parameters, where 

 

In case of the HCE distribution, the WLSEs of  and , say , and , respectively, can be obtained by 

minimizing 

 

 

with respect to  and . 

 

4.5. Bootstrap estimator (bootstrap confidence intervals) 

 The uncertainty in the parameters of the fitted distribution can be estimated by parametric (resampling from the fitted 
distribution) or nonparametric (resampling with replacement from the original data set) bootstraps resampling Efron and 
Tibshirani (1994). These two parametric and nonparametric bootstrap procedures are described as follows. 

Parametric bootstrap procedure 

1. Estimate  (vector of unknown parameters), say , from sample on the MLE procedure. 

2. Generate a bootstrap sample , using . Obtain the bootstrap estimate of , say , from the bootstrap 

sample based on the MLE procedure. 
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3. Repeat Step2 NBOOT times. 

4. Order  as . Then obtain quantiles and  confidence 

intervals of parameters. 

In case of the HCE distribution, the parametric bootstrap estimators (PBs) of  and , say , and , respectively. 

Nonparametric bootstrap procedure 

1. Generate a bootstrap sample  with replacment from original data set. Obtain the bootstrap estimate of  

with MLE procedure, say  using the bootstrap sample. 

2. Repeat Step2 NBOOT times. 

3. Order  as .Then obtain quantiles and  confidence 

intervals of parameters. 

In case of the HCE distribution, the nonparametric bootstrap estimators (NPBs) of  and  , say , and , 

respectively. 

 

4.6. Bayesian estimation 

In this section, we have a short note on the Bayes estimation of the parameters of HCE distribution.To do this, assume that 

the vector of unknown parameters  have independent prior distributions. Then, by attention to  and , 

we consider 

 and  

where all of  and  are positive parameters. Then, the joint posterior probability density function of  and  given 

 can be written as: 

  

where  is the joint prior distribution of the parameters. Since this posterior distribution is cumbersome, we can not 

provide posterior estimates of the parameters theoretically, but, by using MCMC algorithm in WINBUGS software we will 

obtain this estimators. The Bayesian estimators (Bs) of  and , say , and , respectively. 

.   

5. DATA ANALYSIS AND APPLICATIONS 

In this section, we illustrate the usefulness of the  HCE distribution. First, The parameters of HCE distribution are estimated 
for two data set by eight estimation methods. Second, we fit this distribution to these data sets by ML method and compare 
the results with the gamma ,Weibull and generalized exponential (GE) with respective densities 

 

 

 

 

First data set:Stress-rupture life data 

We consider a data set of the life of fatigue fracture of Kevlar 373/epoxy that are subject to constant pressure at the 90% 
stress level until all had failed, so we have complete data with the exact times of failure. For previous studies with the data 
sets see Andrews and Herzberg (1985) and Barlow et al. (1984). These data are: 

0.0251  0.0886  0.0891  0.2501  0.3113  0.3451  0.4763  0.5650  0.5671  0.6566  0.6748  0.6751  0.6753  0.7696  0.8375  
0.8391  0.8425  0.8645  0.8851  0.9113  0.9120  0.9836  1.0483  1.0596  1.0773  1.1733  1.2570  1.2766  1.2985  1.3211  
1.3503  1.3551  1.4595  1.4880  1.5728  1.5733  1.7083  1.7263  1.7460  1.7630  1.7746  1.8275  1.8375  1.8503  1.8808  
1.8878  1.8881  1.9316  1.9558  2.0048  2.0408  2.0903  2.1093  2.1330  2.2100  2.2460  2.2878  2.3203  2.3470  2.3513  
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2.4951  2.5260  2.9911  3.0256  3.2678  3.4045  3.4846  3.7433  3.7455  3.9143  4.8073  5.4005  5.4435  5.5295  6.5541  
9.0960. 

 

Second data set: Service times of 63 Aircraft Windshield 

The windshield on a large aircraft is a complex piece of equipment, comprised basically of several layers of material, 
including a very strong outer skin with a heated layer just beneath it, all laminated under high temperature and pressure. 
Failures of these items are not structural failures. Instead, they typically involve damage or delamination of the nonstructural 
outer ply or failure of the heating system. These failures do not result in damage to the aircraft but do result in replacement of 
the windshield. We consider the data on service times for a particular model windshield given in Table 16.11 of Murthy et al. 
(2004). These data were recently studied by Ramos et al. (2013). These data are: 

 0.046  1.436  2.592  0.140  1.492  2.600  0.150  1.580  2.670  0.248  1.719  2.717  0.280  1.794  2.819  0.313  1.915  2.820  
0.389  1.920  2.878  0.487  1.963  2.950  0.622  1.978  3.003  0.900 2.053  3.102  0.952  2.065  3.304  0.996  2.117  3.483  
1.003  2.137  3.500  1.010  2.141  3.622 1.085  2.163  3.665  1.092  2.183  3.695  1.152  2.240  4.015  1.183  2.341  4.628  
1.244  2.435  4.806  1.249  2.464  4.881  1.262  2.543  5.140. 

Before analyzing these data sets, we use the scaled-TTT plot to verifiy our model validity, see Aarset (1987). It allows to 
identify the shape of hazard function graphically. We provide the empirical scaled-TTT plot of two above data sets. Fig. 4 
and Fig. 5  show  the scaled-TTT plots are concave. It indicates that the hazard function is increasing; therefore it verifies our 
model validity.  

 

Fig. 4. Scaled-TTT plot of  the first data set . 

 

Fig 5. Scaled-TTT plot of  the second data set . 
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Now we apply different estimation methods to estimate parameters of HCE distribution. Also, The performances of 
estimators can be compared through log-likelihood function. Table 1 shows the estimation of parameters of HCE distribution 
and corresponding log-likelihood function for the two data sets obtained by eight estimation methods: maximum likelihood, 
Bayesian, maximum product of spacings, parametric bootstrap, non-parametric bootstrap, percentile, least-squares and 
weighted least-squares.     

 

Table1. Estimates of the parameters and the corresponding log-likelihood for the two data sets. 

    Data set         Method           Estimate of                             Estimate of                                  Log-likelihood    

 

 

 

 

 

 

 
 
 
 
 
 
First data set 

 
MLE                     3.235                                  0.923                                               -121.56                 
         
LSE                       3.624                                 1.028                                               -122.0478 
     
WLSE                    3.501                                1.003                                               -121.8512 
 
PCE                       3.094                                 0.908                                               -121.5863 
 
MPS                      2.967                                0.868                                                -121.6907 
 
PB                         3.249                                0.924                                               -121.5603 
 
NPB                      3.306                                0.933                                               -121.5666 
  
Bayes estimation under quadratic loss function 
 
B                               3.086                              0.897                                               -121.5925 
                                  
Bayes estimation under absolute loss function 

 
  B                               3.11                                 0.890                                             - 121.6082 
 

 
 
 
 
 
 
Second data set  

MLE                      3.694                                    0.876                                           -99.817                 
           
LSE                       3.811                                    1.028                                           -99.919 
   
WLSE                   3.805                                     0.890                                          -99.854 
 
PCE                       2.675                                    0.690                                          -102.136 
 
MPS                      3.493                                     0.863                                          -99.877 
 
PB                         3.805                                     0.907                                          -99.830 
 
NPB                      3.776                                     0.907                                          -99.827 
 
Bayes estimation under quadratic loss function 
 
B                           3.674                                     0.886                                          -99.825 
                                  
Bayes estimation under absolute loss function 

  
  B                          3.678                                     0.882                                           -99.34 
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Analysis of the first data set 

We fit the HCE distribution to the first data set and compare it with the gamma, generalized exponential and Weibull 
densities. Table 2 shows the MLEs of parameters, log-likelihood, Akaike information criterion (AIC), Cramér–von Mises 

( ) and Anderson–Darling ( ) statistics for the first data set. The selection criterion is that the lowest AIC,  and 

correspond to the best fit model. Thus, the HCE distribution provides the best fit for the data set as it shows the lowest 
AIC,  and  than other considered models. The relative histograms, fitted HCE, gamma, generalized exponential and 

Weibull PDFs for the first data set are plotted in Fig. 6(a). The plots of empirical and fitted survival functions, P-P plots and 
Q-Q plots for the HCE and other fitted distributions are displayed in Fig. 6(b), Fig. 6(c) and Fig. 6(d), respectively. These 
plots also support the results in Table 2. 

Table 2. The MLEs of parameters for the first data set. 

  Model         MLEs of parameters           Log-likelihood       AIC                                     

  HCE            3.239  0.923    -121.56     247.12       0.577     0.088 

 

                                                                                

 gamma        1.641  0.838    -122.249    248.498      0.674     0.113 

                                                                  

                                  

 Weibull        1.326  2.133    -122.525    249.049      0.788     0.135     

                                                                  

 GE                  1.709  0.703     -122.244    248.487      0.671     0.1                         

 

 

Fig. 6(a). The fitted PDFs and the relative histogram for the first data set. 
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Fig. 6(b). Empirical and fitted survival functions for the first data set. 

 

Fig. 6(c). P-P plots of fitted PDFs for the first data set. 

 

Fig. 6(d). Q-Q plots of fitted PDFs for the first data set. 

 

Analysis of the second data set 

We fit the HCE distribution to the second data sets and compare it with the gamma, generalized exponential and Weibull 
densities. Table 3 shows the MLEs of parameters, log-likelihood, Akaike information criterion (AIC), Cramér–von Mises 

( ) and Anderson–Darling ( ) statistics for the second data set. The HCF distribution provides the best fit for the data 
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set as it shows the lowest AIC,  and  than other considered models. The relative histograms, fitted HCE, 

gamma,generalized exponential and Weibull PDFs for second data are plotted in Fig. 7(a). The plots of empirical and fitted 
survival functions, P-P plots and Q-Q plots for the HCE and other fitted distributions are displayed in Fig. 7(b), Fig. 7(c) and 
Fig. 7(d), respectively. These plots also support the results in Table 3. 

 

Table 3. The MLEs of parameters for the second data set. 

 

  Model         MLEs of parameters           Log-likelihood       AIC                                     

  HCE           3.694  0.896    -99.817     203.634      0.454      0.074   

 

                                                                                

 gamma       1.908  0.915    -102.832    209.664      1.162      0.200 

                                                                  

                                  

 Weibull       1.629  2.310    -100.318    204.636      0.642      0.093     

                                                                  

GE                  1.897 0.692     -103.547    211.094      1.315      0.233 

 

 

Fig. 7(a). The fitted PDFs and the relative histogram for the second data set. 
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Fig. 7(b). Empirical and fitted survival functions for the second data set. 

 

Fig. 7(c). P-P plots of fitted PDFs for the second data set. 

 

Fig. 7(d). Q-Q plots of fitted PDFs for the second data set. 
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6. CONCLUSION 

In this paper, we have proposed a new class of 
distributions called the hyperbolic cosine – F (HCF) 
distribution. The HCF model is constructed by 
compounding a baseline F distribution  with the  
hyperbolic cosine function. It is expected that this family 
will be widely applicable in reliability theory, risk 
analysis and other disciplines. The HCE distribution, as 
an important special case of this family, is very strong 
competitor to other well-known distributions commonly 
used in literature for fitting statistical data. For two real 
datasets the estimation of parameters is approached by 
the method of maximum likelihood, Bayesian, maximum 
product of spacings, parametric bootstrap, non-parametric 
bootstrap, percentile, least-squares and weighted least-
squares. Moreover, two applications of the HCE 
distribution to real data sets are provided to illustrate that 
this distribution provides a better fit than Weibull, 
gamma and generalized exponential distributions. 
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