
Hyperbolic Embedding and Routing for
Dynamic Graphs

Andrej Cvetkovski
Department of Computer Science

Boston University
Email: andrej@cs.bu.edu

Mark Crovella
Department of Computer Science

Boston University
Email: crovella@cs.bu.edu

Abstract—We propose a scalable scheme for routing in arbi-
trary network connectivity graphs, based on greedy routing and
utilizing virtual node coordinates. In dynamic multihop packet-
switching communication networks, routing elements can join or
leave during network operation or exhibit intermittent failures.
We present an algorithm for online greedy graph embedding
in the hyperbolic plane that enables incremental embedding of
network nodes as they join the network, without disturbing the
global embedding. Even a single link or node removal may
invalidate the greedy routing success guarantees in network
embeddings based on an embedded spanning tree subgraph. As
an alternative to frequent reembedding of temporally dynamic
network graphs in order to retain the greedy embedding prop-
erty, we propose a simple but robust generalization of greedy
distance routing called Gravity–Pressure (GP) routing. Our rout-
ing method always succeeds in finding a route to the destination
provided that a path exists, even if a significant fraction of links or
nodes is removed subsequent to the embedding. GP routing does
not require precomputation or maintenance of special spanning
subgraphs and, as demonstrated by our numerical evaluation, is
particularly suitable for operation in tandem with our proposed
algorithm for online graph embedding.

I. INTRODUCTION

The applicability of the greedy geometric packet routing
paradigm to large internetworks was studied in details by Finn
[1] as an alternative to the classical routing table approach.
According to this type of addressing and routing scheme,
each router in the network is assigned a coordinate denoting
its location – a process referred to as network embedding –
and the shortest path geometric distances between the nodes
can be calculated based on these coordinates. Each packet is
then forwarded toward the destination, choosing intermediate
routing elements that provide most progress toward the desti-
nation. This makes the straight-line distance from the packet
to the destination node a monotonically decreasing function
throughout the journey, thus eventually reaching zero – when
the packet arrives at the destination.

The simplest deterministic greedy routing rule picks as a
next hop a directly connected neighboring node that would
decrease the distance of the packet to the destination the
most. The notable advantages of greedy routing – its small
computational complexity, the small memory requirement per
node, and the use of local information only (each node finds
a next hop based on the coordinates of its neighbors), make

this scheme suitable for distributed operation in large scale
networks.

Greedy geometric routing using the actual physical coordi-
nates of the nodes has been studied due to its simplicity and
scalability ([1]–[3]), and regained popularity in the research
community recently with the proliferation of GPS-capable
communication devices ([4], [5]). Greedy routing based on
node locations and Euclidean distances has been shown to
have a high rate of success, but fails when a packet reaches
a node that is closer to the destination than all of its direct
neighbors even if a path to the destination exists (e.g. [6]).

Changing the actual physical locations of nodes to address
this issue and improve the success rate of a greedy routing
scheme is perhaps a rather impractical idea, but the observation
that the distance-to-destination function of each path in an
embedded graph is determined by the embedding motivated
the quest for network embeddings that would support a 100%
successful greedy routing, even if nodes have to be assigned
artificial, virtual coordinates that do not necessarily represent
locations in physical space ([4], [5]). Limiting this quest to
true metric spaces, R. Kleinberg, in his groundbreaking work
[7] presented a constructive proof that every finite, connected,
undirected graph has a greedy embedding in two-dimensional
hyperbolic space – that is, an embedding that allows greedy
routing for all source-destination pairs.

The embedding in [7] uses the hyperbolic plane as an
underlying space, and the corresponding distance function is
the standard hyperbolic distance (see e.g. [8]). The generic
algorithm of [7] can find a greedy embedding of an infinite
d-regular tree for any integer d ≥ 3. To embed an actual graph
G, first a spanning tree T of G is chosen to serve as a minimal,
loop-free subgraph that spans all the vertices and provides a
unique simple path between any two of them. Subsequently,
the maximal degree d of T is determined. Finally, the nodes
of T are identified with the embedded nodes of the d-regular
tree, as obtained by the embedding algorithm. This completes
the greedy embedding of the tree T . It is easy to see that this
embedding is also a greedy embedding of the graph G.

Although the procedure described in [7] is aimed at ad-
hoc wireless networks and sensornets, there seem to be some
obstacles to successful application of this type of embedding
to communication networks whose topology can change over

2

time. In [7], the entire embedding is a function of a local
topological property of the graph, namely the maximum degree
of the chosen spanning tree T . Since newly added nodes
increase the node degree locally, their embedding is not always
possible without changing the coordinates of all nodes in
the network. Further, the greediness of the embedding in
[7] depends critically on the connectivity provided by the
underlying embedded spanning tree. This implies that local
changes in connectivity caused by nodes leaving the network
or failing links, can invalidate the greedy property of the entire
embedding. Such properties are undesirable of embedding
algorithms intended for distributed operation.

Our goal in this paper is to address the above issues by (i)
constructing a greedy graph embedding that supports addition
of an arbitrary number of nodes to the embedding in an online
fashion while requiring no changes to the previously assigned
node coordinates in order to retain the greedy property; and
(ii) constructing a greedy routing procedure that guarantees
delivery even in the presence of disturbances of the greedy
property of the embedding caused by nodes and/or links failing
unexpectedly or exhibiting intermittent periods of downtime or
standby-time.

Toward this end, in this paper we present an algorithm for
online calculation of a greedy embedding in the hyperbolic
plane for a given arbitrary, connected graph with edges repre-
senting the two-way connectivity in a communication network.
Our algorithm supports incremental embedding of network
nodes as they join the network during network operation time,
without affecting the rest of the embedding.

In greedy embeddings with guarantees based on the exis-
tence of “at least one” greedy next hop at each node, even
a single node or link failure may invalidate the greediness
of the embedding, thus causing the need to re-embed the
entire network if the greedy property is to be reestablished.
As an alternative to frequent reembedding of network graphs
due to intermittent node or link failures, or nodes leaving
the network, in this paper we propose a simple but robust
greedy routing method called Gravity–Pressure (GP) routing.
Our routing algorithm can be viewed as a generalization of
the simplest greedy distance routing, and always succeeds in
finding a route to the destination if a path in the network exists.
Since no assumptions are made about the type of the network
coordinates, GP routing can be applied to embedded networks
using physical coordinates as well as virtual coordinates in
Euclidean or hyperbolic space. However, as the results of our
experimental study show, GP routing is particularly suitable
for application in graphs embedded using the online embed-
ding procedure described in this paper. For its operation, GP
routing does not require precomputation or maintenance of
special spanning subgraphs.

The rest of this paper is organized as follows. In Section
II-A we formulate a sufficient condition for a graph embedding
to be greedy. Based on this formulation, we present our online
embedding algorithm in Section II-B and further discuss its

construction and properties in Section II-C. Section III-A
offers an intuitive overview of the Gravity–Pressure routing,
and a precise algorithm statement is given in Section III-B.
Section IV presents a brief experimental evaluation of the
overall proposed routing and addressing scheme. Concluding
remarks and future considerations are given in Section VI.

II. ONLINE GREEDY EMBEDDING

A. Preliminaries

We start by considering graph embeddings in a d-
dimensional Euclidean or hyperbolic space.

Definition 1: Given a connected finite graph G with vertex
set V , an embedding of G in Rd resp. Hd is a mapping C (G) :
V →Rd resp. C (G) : V →Hd that assigns to each vertex v∈V
a virtual coordinate C (v).

Definition 2: For two points v,w ∈ Rd resp. Hd , the Eu-
clidean resp. hyperbolic bisector of the Euclidean resp. hy-
perbolic line segment determined by v and w is the locus of
points in Rd resp. Hd equidistant from v and w in terms of
Euclidean resp. hyperbolic distance.

In Rd , the bisector is the Euclidean hyperplane perpendic-
ular to the segment [v,w] at its midpoint. In Hd , the bisector
is the hyperbolic hyperplane perpendicular at the segment’s
midpoint to the hyperbolic line segment joining v and w.

Lemma 1: Let X be either Rd or Hd and ρ be the corre-
sponding distance function. Let v and w be different points in
X and let b be the bisector of the segment joining v and w.
Then for all u∈ X it holds that ρ(v,u) < ρ(w,u) if and only if
v and u are in the same half-space with respect to the bisector
b.

Proof. Follows from the triangle inequality applied to the
triangle determined by v, u and x, where x is the intersection of
b and the segment joining u and w. Namely, ρ (v,u) < ρ (v,x)+
ρ (u,x). From the definition of the bisector, ρ (v,x) = ρ (w,x),
and from the definition of x, ρ (u,x) + ρ (x,w) = ρ (u,w).
Combining these yields ρ(v,u) < ρ(w,u). �

Likewise, for all u ∈ X it holds that ρ(w,u) < ρ(v,u) if and
only if w and u are in the same half-space with respect to b.

Definition 3: For a graph G(V,E) and its embedding C (G)
in Rd resp. Hd , let e ∈ E be an edge connecting the vertices
u and v. An embedded edge of G is the Euclidean resp.
hyperbolic line segment C (e) =C (u,v) joining the points C (u)
and C (v) in Rd resp. Hd .

Lemma 2 (Greedy Embedding): For a graph G with embed-
ding C(G), let T be a spanning tree of G. For each edge
e ∈ T , let b(e) be the perpendicular bisector of the embedded
edge C (e). Then a sufficient condition for C to be a greedy
embedding of G is that for each e ∈ T , b(e) intersects no
embedded edges of T other than C (e).

Proof. Consider any edge (u,v) ∈ T . To prove the lemma,
it suffices to show that u has a greedy route to any node s for
which the path in the tree from u has next hop v. Consider the
bisector b of (u,v). Since b intersects no other edges of T , s
must be in the half-space of v with respect to b (cf. Lemma

3

1). Therefore ρ(v,s) < ρ(u,s), so u has a greedy next hop to
s, namely v. Applying this argument to each edge on the path
from u to s confirms that the route in T (and thus in G) from u
to s has a monotonically decreasing distance to the destination
i.e. is a greedy route. Consequently, C is a greedy embedding
of G. �

The rest of this section concentrates on two-dimensional hy-
perbolic space and systematizes the concepts from hyperbolic
geometry that will be used in the subsequent presentation.

The Poincaré Disk model will be used throughout for
visualization purposes. That is, we will use complex numbers
from the set D = {z ∈ C | |z|< 1} to represent the virtual co-
ordinates of the embedded vertices in the hyperbolic plane. An
introductory characterization of the more common hyperbolic
geometry models and their elementary geometric objects can
be found e.g. in [8].

As a distance function for the greedy embeddings consid-
ered in this section, we use the standard hyperbolic distance
ρ for the Poincaré Disk model: ∀z1,z2 ∈ D,

coshρ (z1,z2) =
2 |z1− z2|2

(1−|z1|2)(1−|z2|2)
+1. (1)

The existence of a closed-form expression for the hyperbolic
distance in D makes the choice of this model suitable for the
implementation of greedy embedding algorithms. The element
of hyperbolic length

2 |dz|
1−|z|2

(2)

associated with this distance has circular symmetry: all points
on a Euclidean circle in D centered at the origin have same
distortion of the Euclidean element of length |dz|.

The Euclidean circle ∂D = {z ∈ C | |z|= 1} represents the
boundary at infinity of this model. We also refer to this circle
as the horizon and to its points as the points at infinity of D
or ideal points.

In hyperbolic geometry, the path that realizes the hyperbolic
distance between two points (i.e. the shortest path) is the
hyperbolic line or geodesic. In the Poincaré Disk model, paths
realizing (1) are represented by arcs of Euclidean circles in D
that are perpendicular to ∂D. Two distinct points on ∂D thus
determine a hyperbolic line in D. For a hyperbolic line in D
determined by two ideal points, of interest in this work are the
center and the radius of the Euclidean circle in the Riemannian
sphere C = C∪{∞} containing the line. It is easy to show that
given two ideal points a = eiα and b = eiβ , the center of the
Euclidean circle in C containing the hyperbolic line whose
endpoints at infinity are a and b, and the corresponding radius
are given by

c = 1/m∗, R2 = 1/ |m|2−1 (3)

where m = (a+b)/2 is the midpoint of the Euclidean chord
joining a and b, and m∗ is the complex conjugate of m.

Two hyperbolic lines disjoint in D are said to be parallel.
Specifically, parallel hyperbolic lines in D contained in disjoint

Euclidean circles in C are termed ultraparallel, to be distin-
guished from parallel hyperbolic lines that share an endpoint
at infinity.

B. Online Greedy Embedding

In this section, we present our algorithm for computation
of a greedy embedding of a given graph. The algorithm
takes as input a connected graph G = (V,E) specified by
a set of vertices V and the connections between them E =
{(u,v) | u,v ∈V}. The graph G serves as an abstraction of a
communication network – the nodes in the network correspond
to the vertices of the graph and two vertices in the graph are
connected if and only if the corresponding nodes can exchange
data bidirectionally. The neighbors of a vertex v ∈ V are the
directly connected vertices: Nv = {u | (u,v) ∈ E}.

As noted in Sec. I, a greedy embedding of a tree graph
T which spans a given connected graph G is also a greedy
embedding of the graph G. Thus as a first step, the network
constructs a spanning tree T of the graph G. Any type of
a spanning tree can be used. A type of tree suitable for
distributed construction is the minimal-depth tree. To form a
minimal-depth tree, first the network nodes elect a root node.
Subsequently, each node n elects from Nn its parent node to be
the node that has the smallest distance in hops to the root node.
Except for the root node r, each node in G is thus assumed to
have identified a parent node for itself. The parent of a node
n is referred to as pn.

Fig. 1 contains a precise statement of the online embedding
algorithm.

Procedure Online Embedding C (G)

1) Initialize by assigning to the root node r of the tree: (i)
a virtual coordinate C (r) in the hyperbolic plane; and
(ii) the angles αr = π and βr = 2π corresponding to the
ideal points ar = eiαr and br = eiβr .

2) For each node n ∈ G:
a) Its parent pn: (i) sends C (pn), αn = αpn and βn =

(αpn +βpn)/2 to n; and (ii) updates αpn := βn.
b) Node n: (i) calculates c and R according to (3) with

an = eiαn and bn = eiβn and its own coordinate

C (n) =
R2

(C (pn))
∗− c∗

+ c (4)

and (ii) updates αn := (αn +βn)/2.

Fig. 1. Online embedding procedure

In the initialization step of the algorithm, the values of αr
and βr determine the possible choices for the root location
C (r). C (r) is chosen from the interior of the hyperbolic
triangle OAB defined by the geodesic G1, its bisector OB, and
the ray OA defined by βr as shown in Fig. 2. With this choice
of initial conditions, the assignment of virtual coordinates to
the vertices of the spanning tree T (and thus the graph G)

4

obtained using the procedure in Fig. 1, corresponds to a greedy
embedding. We formalize this claim in the following

Oα
r β

r

(α
r
+β

r
)/2

B

A
r

G
1

Fig. 2. Positioning of the root node for a greedy embedding

Proposition 1 (Correctness): If C (r) is an interior point of
the hyperbolic triangle OAB as in Fig. 2, then the embedding
C (G) obtained with the online embedding algorithm for an
arbitrary graph G with a spanning tree T is a greedy embed-
ding.

Proof. According to the greedy embedding lemma from Sec.
II-A, it suffices to show that no bisector of an edge e ∈ T
embedded in the hyperbolic plane intersects other edges of
the embedded tree. We begin by observing several properties
of the online embedding procedure above.

For a node n ∈ T , let Gn be the hyperbolic line in D
associated with n, whose endpoints at infinity are an and
bn as in step 2a of the algorithm, and denote by Hn the
corresponding region of D bounded by Gn and containing
the point C (n). The virtual coordinate of the node n obtained
via (4) is the reflection of the location of the parent node
C (pn) in the hyperbolic line Gn. Therefore, the hyperbolic
line segment joining C (pn) and C (n) is the embedded edge
C (pn,n) of T and that Gn is its perpendicular bisector. To
see this, pick an isometry transform on D that maps the
endpoints of the segment of the embedded edge to a point p on
the imaginary axis in D and its complex conjugate p∗ while
mapping the intersection of Gn and C (pn,n) to the origin.
Since the isometries on D are conformal, it is easy to see
that under the chosen transform, the image of the Euclidean
circle in C containing Gn maps to the extended real axis
R = R∪ {∞}. From the symmetry of the hyperbolic length
element (2), R is the perpendicular hyperbolic bisector of the
hyperbolic line segment joining p and p∗ and consequently,
Gn is the bisector of the embedded edge C (pn,n) as desired.

It remains to show that for any node n ∈ T , Gn intersects

no embedded edges of T other than C (pn,n). We observe
that a point in D, its reflection in a hyperbolic line, and the
center of the Euclidean circle containing the hyperbolic line
are collinear in the Euclidean sense. Therefore a point p in D
and its reflection from a hyperbolic line Gn always lie in the
same half of the subspace Hn with respect to the Euclidean
bisector b(Gn) of the arc in D containing Gn. Since a node n
and the hyperbolic line Gc associated with a child node of n
c are by construction contained in opposite halves of Hn with
respect to b(Gn), it follows that the embedded edge C (pn,n)
and Gc are disjoint. Finally, note that by construction, for any
node n∈ T , the hyperbolic line containing the embedded edge
C (pn,n) is ultraparallel to the hyperbolic line associated with
any sibling of n. Thus any embedded edge C (pn,n) is disjoint
with the hyperbolic bisector of any other embedded edge of
the tree T . Consequently, the embedding C (G) is a greedy
embedding. �

When a new node, say n, joins an already embedded graph,
it can obtain a virtual coordinate simply by identifying a parent
node for itself, say pn, and executing step 2) of the algorithm
in Fig. 1. Note that this method does not require changes to
the virtual coordinates of the existing nodes when a new node
enters the graph. This is possible since our algorithm allows
allocation of disjoint subspaces of the hyperbolic plane in an
online fashion. By construction, the number of child-nodes any
node can have is not limited, and there is always free space
to be allocated for a newly added node.

Figure 3 illustrates an example of a graph embedded in the
Poincaré Disk according to our online embedding procedure.
The figure shows the embedded edges of a spanning tree of
the graph; for clarity, the non-tree edges are not shown.

r

Fig. 3. Example of a greedy embedding of an irregular spanning tree in the
Poincaré disk model

C. Remarks

All steps of the presented algorithm are suitable for dis-
tributed and asynchronous computation. Communication takes
place only between a node joining the embedded graph and its
parent node, which is elected from the immediate topographic
neighborhood in the graph.

The online embedding algorithm presented in Sec. III-B
generates node coordinates without use of any information

5

about physical locations of the nodes. The only initial virtual
coordinate needed is the root coordinate, which can easily be
chosen by the elected root node.

The region of allowable virtual coordinates for the root
node in the initialization of the algorithm can be derived from
the requirement in the proof of Proposition 1 that the point
in D representing any embedded node n and the associated
hyperbolic line of any child-node of n be at the opposite
sides of the Euclidean bisector of the region Hn associated
with n. This requirement ensures that no hyperbolic bisector
associated with an embedded node intersects the embedded
edge of its parent node. The allowable region for the root node
is obtained as the intersection of the allowable regions with
respect to the associated geodesics of all possible child-nodes
of the root node:

J =
∞⋂

n=1

Jn.

It is easy to show that the region J corresponds to the
hyperbolic triangle OAB whose vertices are the origin O, the
ideal point A with coordinate −eiβr and the midpoint B of
the arc containing the geodesic G1 associated with the first
child-node of the root node. (See Fig. 2.) It can be shown
that for this triangle to have a non-zero area, it is sufficient to
choose values of αr and βr that satisfy βr −αr < 4π/3. Fig.
3 illustrates the case when βr −αr = π .

Satisfying the condition of the greedy embedding lemma in
Sec. II-A is not the only way to achieve a greedy embedding,
but is sufficient. We remark that the construction implied by
the lemma is possible in the hyperbolic plane owing to the
fact that parallelism is a less restrictive quality in hyperbolic
space than in Euclidean space. More specifically, parallelism
is not a transitive relation in hyperbolic space and allows
every embedded edge to be parallel to the bisectors of all
other embedded edges. This is not possible in Euclidean
space without violating the condition of the greedy embedding
lemma, but is easily done in hyperbolic space. The online
embedding algorithm can thus embed an irregular tree directly
rather than identifying a regular tree as a superset of nodes to
be embedded in the hyperbolic plane.

III. THE GRAVITY–PRESSURE

GREEDY ROUTING ALGORITHM

A. Overview

The choice of a spanning tree as a subgraph type to be used
in the graph embedding procedure described in Sec. II is based
on the fact that spanning trees have simple enough structure to
allow incremental embedding, yet they contain a path between
any two nodes in the original graph. Adding a new node to
an existing spanning tree amounts to adding a single edge to
the already embedded spanning subgraph, and the condition
of Lemma 2 can be easily satisfied.

However, every spanning tree provides exactly one path for
each pair of nodes in the graph. Thus removal of any graph
edge that is a non-leaf tree edge in the embedded subtree,

partitions the spanning tree into two unconnected subgraphs.
Similarly, removal of any node from the original graph other
than leaf nodes in the tree, partitions the spanning tree into a
forest of d subtrees, where d is the node degree of the removed
node, and thus disturbs the connectivity property of the tree.
It is easy to construct examples of graphs where partitioning
of the embedded spanning tree violates the greedy property of
the embedding. In fact, we have produced a number of such
embedded graphs for the purposes of Sec. IV of this paper.

To cope with greedy routing failures caused by local max-
ima of the packet progress toward the destination, one could
reinitiate the network embedding procedure on demand, or use
more sophisticated routing schemes that would either be able
to avoid such local maxima, or to continue the routing after a
data packet had reached a dead end. For the latter approach,
numerous advanced routing and route discovery procedures
have been proposed in the recent literature on location-based
routing (see e.g. [9]). These procedures can be roughly divided
into proactive, reactive, and hybrid, based on whether they
precompute auxiliary data structures for possible use in finding
a non-greedy route if a greedy route to the destination does
not exist.

In real network environments, link and node failures are
expected to happen often. Recent experimental studies have
shown that most failures are temporary, and in fact very short-
lived (e.g. [10]). In such conditions, repeating the embedding
procedure to regain the greedy property, or precomputing data
structures every time a network element or link becomes
unavailable, may be unjustified from the standpoints of ef-
ficiency and conservation of resources. Instead, we propose
a simple generalization of the greedy distance routing rule
that does not require proactive computation or maintenance
of special data structures for its operation, and as such, is
suitable for application in temporally dynamic graphs. Our
routing method, called Gravity–Pressure (GP) routing, always
succeeds in finding a route to the destination, if a path in the
network exists.

In the rest of this section we provide an intuitive overview of
the GP routing procedure. A precise statement of the routing
algorithm is postponed to Section III-B. We will discuss some
of the advantages and disadvantages of GP routing when used
in conjunction with the greedy embedding algorithm of Sec.
II in more detail in Section V.

GP routing normally forwards packets to the neighbor that
provides most progress toward the destination. By analogy
with a liquid flowing through a system of pipes in gravitational
field of spherical symmetry toward the center located at the
destination node, we refer to this routing mode as the gravity
routing mode. The packet may occasionally reach a local
minimum, or a “valley”. In that case, GP forwards the packet
to a next hop that provides the least negative progress with
respect to the location of the destination. To deal with the
possibility of the packet entering a loop and periodically
returning to the same local lowermost point, we introduce the

6

concept of pressure as a second “field” that helps steer the
packet out of the valley. We refer to this routing mode as
the gravity–pressure routing mode. We note that in contrast
to other proposed routing procedures that switch to another
routing mode when a packet reaches a dead-end, GP retains the
locally greedy decision making process and thus can be viewed
as a generalization of greedy distance routing as opposed to a
hybrid, dual routing technique.

Fig. 4 illustrates the principle of the GP routing technique.
We note that while this example uses physical Euclidean node
coordinates and Euclidean distances to facilitate understand-
ing, GP is by no means limited to this metric space. The packet
starts from the source node in gravity mode, but reaches a
dead end at node N1. At this point, the packet enters gravity–
pressure mode and the trajectory it follows subsequently is
shown with a dashed line. The backpressure that helps the
packet get out of the valley is realized by keeping track of the
number of visits of each node until node N2 is reached, which
is closer to the destination than the node where a dead end
was detected (N1). At this point the packet switches back to
greedy mode.

← Source

Destination→

Obstacle

← N
1

← N
2

Fig. 4. An example route of Gravity–Pressure route discovery in an ad-hoc
wireless network using physical node locations and Euclidean distance

B. Formal Statement of the GP Algorithm

Fig. 5 contains a precise statement of the Gravity–Pressure
(GP) routing algorithm. An instance of this algorithm is
assumed to run at each node in the network. At present, the
network graph is assumed to be connected. The discussion of
the extensions of the algorithm for handling partitioned graphs
is relegated to Sec. II-C.

Each packet in the network is assumed to contain a flag bit,
determining the current routing mode of the packet. When a
packet is created, its packet mode flag is initially set to gravity
mode, but can be toggled at each routing element between
gravity and pressure mode, as described below. The originator

of the packet, say Nsrc, is assumed to know the ID of the
destination Ndest as well as its virtual coordinates, and these
data are also included in the packet header.

When a packet arrives at a routing node, say Ni, it is either
in gravity or in pressure mode. The preferred forwarding mode
of the GP algorithm is the gravity mode. Thus, if the packet is
in gravity mode, node Ni first tries to forward the packet to the
next hop Nnext in gravity mode (block (b1) in Fig. 5), and uses
pressure mode only if it is not possible to forward in gravity
mode (block (b2)). On the other hand, if the arriving packet is
in pressure mode, node Ni forwards in pressure mode (block
(b3)), but only until the packet gets closer to the destination
than the valley distance dv, that is, the distance from the node
where pressure mode was last set to the destination. Once the
packet is closer to Ndst than dv, the forwarding mode of the
packet is changed back to gravity mode (block (b4)) and the
packet is forwarded accordingly. All distances in Fig. 5 are
calculated according to Eq. (1), using the virtual coordinates
of the pair:

dist(N1,N2) = ρ (C (N1) ,C (N2)) . (5)

In pressure mode, the next hop is also chosen greedily to be
the node that makes most progress to the destination. However,
in pressure mode, the next hop is chosen from the subset of
neighbor nodes that share the lowest number of visits.

Proposition 2 (Correctness): The GP routing algorithm al-
ways succeeds in finding a path from the source to the
destination node, if a path in the network exists.

Proof. The routing algorithm always finds a next hop. If
the packet reaches a dead end in gravity mode, it enters
pressure mode, and can only switch back to gravity mode
if it gets closer to the destination than dv. The sequence of
valley distances dv is thus monotonically decreasing and a
packet cannot enter the same valley point in gravity mode
more than once. (That is, the packet cannot “get stuck” at the
same node more than once.) On the other hand, provided that
there is a path to the destination, the packet cannot stay in
pressure mode indefinitely – it will either go to gravity mode
or reach the destination in pressure mode. Namely, assuming
on the contrary, that the packet keeps looping in the network
in pressure mode indefinitely without reaching the destination
implies that the pressure on the set of nodes L that form the
loop increases indefinitely. But since there is a path from any
node of this loop to the destination, this implies that some
node n ∈ L has a neighbor with a constant pressure that is
never chosen as a next hop in block (b3) of the algorithm –
a contradiction. �

The Visits vector is stored in the data packet and is
implemented as a table containing the nodes that the packet
visited and the corresponding numbers of visits. Regarding the
storage of the Visits vector, we note that several optimizations
are possible. First, only nodes visited in pressure mode need
be kept in the table. Those nodes not found in the table are
assumed to have 0 visits in (b3). This reduces the space

7

Procedure Forward Packet (at node Ni)

On arrival of packet P at node Ni:
Initialize Visits=[];

If Ni 6= Ndest {

Gravity:
If Pkt mode = Gravity {

Nnext := argmin
M∈Nbrs(Ni)

dist(M,Ndest);

If dist(Nnext, Ndest) < dist(Ni, Ndest) { (b1)
Forward pkt to(Nnext);

}
Else { (b2)

Pkt mode := Pressure;
dv := dist(Ni, Ndest);
Visits(Ni) + = 1;

}
}

Pressure:
If Pkt mode = Pressure {

If dist(Ni, Ndest) ≥ dv { (b3)
Visitsmin := min

M∈Nbrs(Ni)
Visits(M);

Candidates(Ni) :=
{M ∈ Nbrs(Ni) | Visits(M) = Visitsmin};

Nnext := argmin
M∈Candidates(Ni)

dist(M,Ndest);

Visits(Ni) + = 1;
Forward pkt to(Nnext);

}
Else { (b4)

Pkt mode := Gravity;
Goto Gravity;

}
}

}
Else If Ni = Ndest { process packet(); }

Fig. 5. Packet forwarding procedure at node Ni

needed for storage of the Visits table. Second, data packets
that require pressure mode can serve at the same time as route
discovery packets for subsequent communication. Namely, the
sequences of nodes that were visited in pressure mode suffice
to reconstruct the route. Routing between these segments can
be done in gravity mode. Finally, it is possible for a packet
to return to a node visited earlier in pressure mode. In such
case all nodes in the Visits table after the revisited node can
be deleted. If this is done, then the discovered route is loop
free. We implemented these optimizations for the purposes of
the experimental evaluation presented next.

IV. EXPERIMENTAL EVALUATION

In this section we briefly report the results of an experimen-
tal evaluation of the GP routing algorithm running on graphs
embedded in the hyperbolic plane using the online embedding

algorithm of Sec. II. For each source-destination pair, we use
the relative path stretch metric, defined as the ratio of the hop
length of the path found by GP routing to the corresponding
shortest path in the graph.

GP routing can always find a route to the destination, but it
is easy to contrive node coordinates, at least in the Euclidean
plane, where GP routing would produce paths with rather
unfavorable stretch. Further, since node failures impair the
greedy property of the embedding, one might expect that GP
stretch increases adversely with the increase of the number of
nodes that failed since the graph was last embedded. The goal
of the experiments presented here is to show that this is not the
case when GP routing is used in conjunction with the virtual
coordinates produced by the online hyperbolic embedding
algorithm.

To examine the path stretch distribution and its scaling with
the fraction of failed nodes in the graph, we have conducted a
series of experiments using synthetic graphs of 50 nodes each,
with randomly generated edges. The average node degree is
3. We embedded each graph in hyperbolic space using the
algorithm of Fig. 1. For each generated graph we produced
several versions with different fractions of randomly chosen
failed nodes. For each such graph version, we exhaustively
enumerated the routes found by GP routing for all possible
source-destination pairs.

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Stretch wrt Shortest Path

F
ra

ct
io

n
of

 S
ou

rc
e−

D
es

tin
at

io
n

P
ai

rs

0%
10%
20%
30%

Percent of Failed Nodes

Fig. 6. Distribution of GP route stretch after a fraction of the nodes is
removed. The network was initially embedded in a hyperbolic space

Figures 6 and 7 show the results of the path stretch distribu-
tion measurement. The results are averaged over 30 randomly
generated graphs. For the greedy embedding (no failed nodes),
72% of the nodes had stretch <1.1 and 94% had stretch <1.5.
The stretch distribution did not change significantly even for
large fractions of failed nodes, such as 10, 20 and 30%. Figure
7 shows the stretch distribution only for those routes that
needed to use the pressure mode of GP. 43% of those had
stretch <1.1 and 80% had stretch <1.5.

Figures 8 and 9 show the results of the average stretch
measurement. Each point is the average stretch for all possible
source-destination pairs of 30 randomly generated graphs.

8

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stretch wrt Shortest Path

F
ra

ct
io

n
of

 S
ou

rc
e−

D
es

tin
at

io
n

P
ai

rs

10%
20%
30%

Percent of Failed Nodes

Fig. 7. Distribution of GP stretch, for source–destination pairs requiring
pressure mode routing, vs. GP route stretch after a fraction of the nodes is
removed. The network was initially embedded in a hyperbolic space

Figure 8 shows that the fraction of path grows significantly
with the number of defunct nodes. From this, one would
expect that the average stretch would grow similarly. However,
Figure 9 shows, on the contrary, that the average stretch, after
reaching a maximum of around 1.2, starts to decrease. This
behavior is the result of the reduction of the node degree with
the removal of nodes from the network. As the graph gets
sparser, even though the number of valleys grows significantly
(as implied by Fig. 8), the number of possible paths decreases
and the packets in pressure mode are able to find their ways
out of the valleys more efficiently.

0 10 20 30 40

0

0.1

0.2

0.3

0.4

0.5

Percent of Failed Nodes

F
ra

ct
io

n
of

 R
ou

te
s

U
si

ng
 P

re
ss

ur
e

M
od

e

Fig. 8. Fraction of source-destination pairs using pressure mode routing
vs. the percentage of nodes that was removed after the initial embedding in
hyperbolic space

V. DISCUSSION

The statement of the GP routing algorithm (Fig. 5) assumed
that a path does exist between the source and the destination
node. To avoid packets wandering in the network indefinitely
in case a path does not exist, a hops-to-live parameter should
be introduced in the packet header. Another possible limiting

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Percent of Failed Nodes

A
ve

ra
ge

 R
el

at
iv

e
S

tr
et

ch

Fig. 9. Average path stretch of a network graph embedded in hyperbolic
space vs. the percentage of nodes that was removed after the initial embedding
in hyperbolic space

parameter is the maximum allowed distance from the packet
to the destination. In case the distance from the packet to the
destination exceeds this limit, the packet is dropped.

GP routing can be classified as reactive, on-demand rout-
ing technique. It does not require advance computation or
maintenance of special spanning subgraphs or other structures
for its correct operation. Each node needs to keep alive
only the communication with its one-hop neighborhood in
order to perform the routing function. GP routing requires no
more information to be stored at each routing element than
needed by the simplest greedy routing based on geometric
distances. No assumptions are made about existence of super
nodes in the network distinguished by larger energy supply,
communication, or computational capabilities. These proper-
ties, combined with the notable simplicity of implementation,
make GP routing suitable for distributed operation in networks
containing a large number of nodes.

The GP routing algorithm is applicable to networks em-
bedded in any metric space. Specifically, it can be used
in Euclidean space, if the corresponding Euclidean distance
function is used in (5) instead of (1). Further, GP routing
can work with either physical or virtual node coordinates.
Thus, it can be used in conjunction with any algorithm for
network embedding and in networks that are not aware of
their own physical locations. In this work, GP routing was
applied to virtual coordinates generated by our online embed-
ding algorithm. While optimality of stretch is not guaranteed,
for the coordinates generated by the online embedding, we
demonstrated experimentally that the relative path stretch is
reasonably close to its optimal value of 1.

The embedding and routing algorithms presented in this
paper do not make any restrictive assumptions about the
graph type. This makes the algorithms usable not only for
typical wireless graphs where connectivity is largely correlated
with the geometric distance between the terminals, but also
for general internetworks, where the topology is much less

9

predictable from the node positions. No requirements are made
for a particular distribution of the nodes in physical space.

Several routing algorithms proposed in the research litera-
ture on position-based routing in ad-hoc networks utilize ideas
related to the concept of pressure introduced in the GP routing
algorithm in this paper. These ideas could perhaps be jointly
termed as “cost-based void handling” [9]. [11] proposes virtual
repositioning of network nodes embedded in an n-dimensional
space, by adding an (n+1)-th “height” coordinate. Node
height, like the pressure field in GP, is intended to help the
routing algorithm steer the packets away from zones in the
network where packets are likely to encounter local minima
in the distance-to-destination function. However, the routing
scheme in [11] requires several auxiliary algorithms to be
executed proactively and periodically in order to maintain the
height data structure. While the success rate of the routing
algorithm is high, this scheme is not guaranteed to always
find a route to the destination even when a physical path to the
destination exists. In contrast, GP routing always find the route
to the destination if a such exists, and does not need the help
of any auxiliary algorithms once the network is embedded.

The PAGER-M [12] and DUA (distance upgrading) [13]
aim to remove all dead-end parts of the network by virtually
changing the existing node coordinates (as opposed to adding
new dimensions, as in [11]) of the nodes where packets
encounter a dead end. By contrast, a premise made in the
GP routing paradigm is that one and the same node may be
a dead end for some subset of destinations, while at the same
time being a valid greedy hop for another subset. Therefore,
in GP the pressure values are associated with the packets,
and not with the network nodes. Also, while in [12] and
[13] distances are upgraded greedily, GP’s pressure values are
always incremented conservatively, by a constant amount.

Finally, a loose analogy can be formed between GP’s con-
cept of pressure and the generalized node numbers introduced
in [14].

VI. CONCLUSION

In this paper, we present an embedding and routing scheme
for point-to-point geometric routing in arbitrary, internetwork
graphs using generated, artificial node coordinates in the
hyperbolic plane.

Desirable properties of network embedding and routing
schemes are the ability to embed newly added nodes in an
online fashion, without having to change the coordinates of
previously embedded nodes, as well as the ability to provide
routing success guarantees in embedded networks where nodes
can join or leave during network runtime or can exhibit
unscheduled downtime periods.

Our proposed embedding algorithm supports an arbitrary
number of online node joins by providing incremental em-
bedding that does not affect the rest of the embedding, and
requires only local communication for its operation.

Our proposed routing algorithm, the Gravity–Pressure rout-
ing, provides guarantees of 100% routing success, even in

the presence of a significant fraction of link or node failures
or nodes leaving the network after the network embedding
was completed. Unlike other position routing techniques for
embedded graphs which include a separate routing “mode”
for routing around local minima in the distance-to-destination
function, the technique presented in this paper can be viewed
as a generalization of the greedy principle, that always suc-
ceeds in finding a route to the destination if a path in the
network exists. GP routing is stateless in the sense that each
node participating in packet forwarding needs to be aware only
of its one-hop neighboring nodes and their locations in order
to perform the routing function. GP routing does not make
any restrictive assumptions about network node capabilities,
graph types, or coordinate types and can work with physical
Euclidean coordinates as well as virtual node coordinates
in any metric space. As the results of our experimental
study show, GP routing is particularly suitable for application
in graphs embedded using the online embedding procedure
described in this paper.

REFERENCES

[1] G. G. Finn, “Routing and addressing problems in large metropolitan-
scale internetworks,” Univ. of Southern California, Information Sciences
Institute, Tech. Rep. ISI/RR-87-180, March 1987.

[2] H. Takagi and L. Kleinrock, “Optimal transmission ranges for randomly
distributed packet radio terminals,” IEEE Transactions on Communica-
tions, vol. 32, no. 3, pp. 246–257, 1984.

[3] R. Nelson and L. Kleinrock, “The spatial capacity of a slotted aloha
multihop packet radio network with capture,” IEEE Transactions on
Communications, vol. 32, no. 6, pp. 684–694, Jun 1984.

[4] M. Mauve, A. Widmer, and H. Hartenstein, “A survey on position-based
routing in mobile ad hoc networks,” Network, IEEE, vol. 15, no. 6, pp.
30–39, Nov/Dec 2001.

[5] S. Giordano, I. Stojmenovic, and L. Blazevic, “Position based routing
algorithms for ad hoc networks: a taxonomy,” in Ad Hoc Wireless
Networking. Kluwer, 2003, pp. 103–136.

[6] B. Leong, “New techniques for geographic routing,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, May 2006.

[7] R. Kleinberg, “Geographic routing using hyperbolic space,” in Proceed-
ings of the 26th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2007), May 2007.

[8] J. W. Anderson, Hyperbolic Geometry, 2nd ed. Springer, 2007.
[9] D. Chen and P. Varshney, “A survey of void handling techniques for

geographic routing in wireless networks,” Communications Surveys and
Tutorials, IEEE, vol. 9, no. 1, pp. 50–67, Quarter 2007.

[10] G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,
“Analysis of link failures in an IP backbone,” in Proc. ACM Sigcomm
Internet Measurement Workshop, Nov. 2002.

[11] N. Arad and Y. Shavitt, “Minimizing recovery state in geographic ad-
hoc routing,” in MobiHoc ’06: Proceedings of the 7th ACM international
symposium on Mobile ad hoc networking and computing. New York,
NY, USA: ACM, 2006, pp. 13–24.

[12] L. Zou, M. Lu, and Z. Xiong, “A distributed algorithm for the dead
end problem of location based routing in sensor networks,” Vehicular
Technology, IEEE Transactions on, vol. 54, no. 4, pp. 1509–1522, July
2005.

[13] S. Chen, G. Fan, and J.-H. Cui, “Avoid ”void” in geographic routing for
data aggregation in sensor networks,” International Journal of Ad Hoc
and Ubiquitous Computing (IJAHUC), Special Issue on Wireless Sensor
Networks, vol. 2, no. 1, 2006.

[14] E. Gafni and D. Bertsekas, “Distributed algorithms for generating loop-
free routes in networks with frequently changing topology,” Communi-
cations, IEEE Transactions on, vol. 29, no. 1, pp. 11–18, Jan 1981.

