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Abstract—Estimating distances in the Internet has been studied
in the recent years due to its ability to improve the performance of
many applications, e.g., in the peer-to-peer realm. One scalable ap-
proach to estimate distances between nodes is to embed the nodes in
some dimensional geometric space and to use the pair distances
in this space as the estimate for the real distances. Several algo-
rithms were suggested in the past to do this in low dimensional Eu-
clidean spaces.

It was noted in recent years that the Internet structure has a
highly connected core and long stretched tendrils, and that most
of the routing paths between nodes in the tendrils pass through
the core. Therefore, we suggest in this work, to embed the Internet
distance metric in a hyperbolic space where routes are bent toward
the center. We found that if the curvature, that defines the extend
of the bending, is selected in the adequate range, the accuracy of
Internet distance embedding can be improved.

We demonstrate the strength of our hyperbolic embedding with
two applications: selecting the closest server and building an appli-
cation level multicast tree. For the latter, we present a distributed
algorithm for building geometric multicast trees that achieve good
trade-offs between delay (stretch) and load (stress). We also present
a new efficient centralized embedding algorithm that enables the
accurate embedding of short distances, something that have never
been done before.

I. INTRODUCTION

I
NTERNET distance estimation is important to improve per-

formance of many applications, such as peer-to-peer appli-

cation and application layer multicast. The network distance

matrix can be compactly represented by mapping its nodes to

a real geometric space. Such a mapping, called embedding, is

designed to preserve the distance between any pair of network

nodes close to the distance between their geometric images. A

small subset of nodes, called Tracers, is embedded first, con-

sidering all inter Tracer distances. The coordinates of each of

the other nodes is calculated by minimizing the distortion of the

distances from this node to several or all Tracers. Euclidean em-

bedding for predicting network distances was first suggested by

Ng and Zhang [1], which named it Global Network Positioning

(GNP). Lim et al. [2] suggest to use uncorrelated and orthogonal

Cartesian coordinates to replace the minimization suggested at

GNP. Tang and Crovella [3] suggest to use Lipschitz embed-

ding, which ignore the distance between Tracers, and thus is

less accurate.
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Recently, we introduced BBS [4], a new numerical method

for Euclidean embedding. Euclidean BBS had achieved the

lowest embedding distortion with relatively low complexity

compared to other numerical methods. In particular for AP

embedding, defined hereon, our method was more accurate and

far more scalable than DHS, the numerical method of GNP.

While we achieved good embedding in [4] the results are far

from perfect due to the Internet AS topology structure, which

was shown to have a core in the middle and many tendrils

connected to it [5], [6].

To understand the problem, consider embedding of the In-

ternet in two dimensions. If the tendrils are placed with the cor-

rect distance from the core and are well spaced in all directions,

the distance between them in the plane makes a shortcut not

passing through the core and thus underestimates the real graph

distance. Embedding in higher dimension space enables us to

spread the tendrils tips farther apart, and thus improves the em-

bedding, but at some point an increase in the number of dimen-

sions gives us diminishing return. To overcome this effect and

thus improve distance estimation accuracy, we introduced in [4]

a threshold criteria above which simple triangulation is used.

Although the threshold can be tuned, it does not reveal the geo-

metric shape of the Internet structure.

In this paper we take a new and different approach for embed-

ding the Internet graph in a geometric space. The core idea is to

bend the line between two points in the tendrils to pass through

the core and thus, follow the true Internet route. To make this

happen we use hyperbolic geometric space where a distance

unit decreases as one moves away from the origin. The calcula-

tion of distances in hyperbolic spaces is not significantly harder

than in Euclidean spaces, which makes our approach practical.

Our algorithm embeds the Internet graph into a hyperbolic space

with preselected curvature, but was found to be insensitive to the

exact curvature value. Therefore, we obtained the curvature to

be used by an off-line iterative guessing algorithm. We were able

to improve the performance of three applications: delay estima-

tion (which can be used for QoS threshold estimation), server

selection, and application level multicast.

A. Embedding Algorithms

An integrated embedding mechanism consists of three ingre-

dients that distinguish it from its counterparts. The geometric

space and the geometric distance function it defines is the first

ingredient. The second ingredient is the algorithm of selecting

one or more subsets of the pair distances in a given input metric.

The third is the numerical method that calculates from the input

of subset pair distances, the coordinates of each node, which

minimize the symmetric distortion of these pairs. The symmetric
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pair distortion is defined for each pair as the maximum of the

ratio between the original and the geometric distance and its in-

verse. The three selection algorithms we are aware of are

1) All Pairs (AP)

2) Two phase (TP)

3) Log-Random and Neighbors (LRN)

The input to AP Euclidean embedding is the entire -nodes

metric, and these distance pairs are embedded at

once.

In TP Euclidean embedding, named GNP in [1], a small

subset of Tracers is embedded first, considering all

pair distances. The coordinates of other nodes

are calculated from their distance to several or all Tracers by

minimizing the symmetric distortion of these node-Tracer

distance pairs.

We introduce here a third selection algorithm called

Log-Random and Neighbors (LRN) embedding. Short dis-

tance pairs were largely overlooked by previous research, since

their estimation errors were insignificant in some applications

such as server selection. In [4] we compared distance estimation

accuracy of GNP, TP Euclidean BBS, and IDMaps triangula-

tion. For small distances, below 20% of the network diameter,

all these methods yielded large relative estimation errors. TP

embedding completely ignores the neighbor distances, whereas

the input of AP embedding consists all distance

pairs, which is not a practical alternative. Aiming to increase

neighbor distances accuracy, the LRN algorithm concurrently

embed a subset of the entire metric, comprising the pairs whose

distance is below a certain threshold, and the set of randomly

sampled pairs. The pairs in are selected uniformly at random

with probability , and thus . The distance

threshold is selected so that the number of distance pairs below

the threshold is also . Thus, the total number of pairs

in the embedded subset is .

Although the number of input pairs to LRN is similar to that

of TP embedding, LRN cannot be calculated distributively since

it embeds all the nodes concurrently. The CPU complexity of

the LRN calculation is higher than TP embedding, thus, BBS

was the only scalable method that could handle medium to large

LRN group sizes, .

B. Internet Embedding in Hyperbolic Space

As an Euclidean line, the hyperbolic line between two points

is defined, as the parametric curve, connecting between the

points, over which the integral of arc length is minimized.

Unlike the Euclidean line, a hyperbolic line bends toward the

origin point, , see Fig. 2. The amount of bent depends on

the curvature of the hyperbolic space. As the space curvature

increases, the bending becomes larger, and thus the hyperbolic

distance between the points increases.

The Internet structure has been the subject of many recent

works. Researchers have looked at various features of the In-

ternet graph, and proposed theoretical models to describe its

evolvement. Faloutsos et al. [7] experimentally discovered that

the degree distribution of the Internet AS and router level graphs

obey a power law. Barabási and Albert [8], [9] developed an

evolutionary model of preferential attachment, that can be used

for generating topologies with power-law degree distributions.

Fig. 1. An eight-node graph example in .

Around the core of the AS graph there are several rings of nodes

all have tendrils of varying length attached to them [5], [6]. The

average node degree decreases as one moves away from the

core. Due to BGP policy based routing paths between periph-

eral nodes often pass through the core.

A very simplified example of the above structure is the

eight node graph in Fig. 1. The shortest path distance between

its four exterior nodes, denoted , and cannot be

embedded without distortion in the two-dimensional Euclidean

space. However, as we show below, there exist an embedding of

these four points in a hyperbolic Poincaré disk with a specific

curvature for which the hyperbolic distance matches the net-

work distance between each of the node pairs. For this optimal

curvature the ratio between shorter and longer pair hyperbolic

distance, , matches the corresponding network

distances ratio. As can be seen in Fig. 1 the hyperbolic lines

connecting the nodes A and B with D (dashed lines) indeed

seem to pass through the core nodes.

In general, the metric curvature is defined as the Gaussian

curvature of the geometric space in which this metric can be em-

bedded with optimal embedding accuracy, that is with minimal

embedding distortion. We embed the metric in a -dimensional

hyperbolic target space of varying curvature values, and deduct

the optimal curvature by comparing their distance error results.

If the longer original distances are underestimated, it indicates

that the target space curvature is too small (see Fig. 1). We found

that the sensitivity to the exact curvature value is mild.
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Fig. 2. Poincaré disk model.

TABLE I
GEOMETRIC SPACE AND ALGORITHM COMPARISON. THREE STARS (***) MARK

THE METHOD WITH THE BEST PERFORMANCE, FEWER STARS MARK THE

METHOD WITH DEGRADED PERFORMANCE, AND A DASH (—) INDICATES THE

METHOD IS RULED OUT DUE TO ITS POOR PERFORMANCE OR COMPLEXITY

Table I summarize the 5 combinations of embedding space

and algorithms. In general, short distances are harder to esti-

mate using all scalable methods, but as we see we are able to

achieve a good enough estimation of these, as well. While the

performance of all applications depends on the accuracy of the

distance estimation, application level multicast is more sensitive

to the accuracy of estimating short virtual links (distances) be-

cause these links are reused by many of the multicast tree paths.

For server selection, the estimation accuracy of long distances,

which we want to avoid, is more important.

The rest of this paper is structured as follows: In the next sec-

tion we develop the hyperbolic space model and show how it

is incorporated into the BBS numerical method. In Section III

we present embedding results for the weighted and unweighted

single instance of the AS topology, using different hyperbolic

space curvatures, and compare the resulting distance distortion

with GNP. We repeat this experiment in Section IV, for multiple

BA generated graphs. Finally, in Section V we evaluate the per-

formance of our hyperbolic embedding for the above mentioned

three applications.

II. HYPERBOLIC EMBEDDING MODEL

In this section we discuss the embedding of network dis-

tances in hyperbolic spaces. First we review hyperbolic geom-

etry models and the principles of the Poincaré disk model. Next

we quote, in Section II-B1, the formulas of arc-length, distance

and Gaussian curvature of this model, and demonstrate the cur-

vature on hyperbolic embedding of the simple graph depicted

in Fig. 1. Finally, we define in Section II-C1 the embedding po-

tential function using the ’Loid model of hyperbolic space, and

derive the field forces induced on BBS particle in Section II-C2.

A. Models of Hyperbolic Spaces

There are five models of hyperbolic spaces [10, Ch. 7]:

• H, the Half-space model;

• I, the Interior of, or Poincaré, disk model;

• J, the Jemisphere model;

• K, the Klein model;

• L, the ’Loid model (short for hyperboloid).

Our embedding solver described in Section II-C1 uses the ’Loid

model. However, most of our analysis here utilizes the interior

disk model, since it makes the derivation clearer. The distance

formula for the ’Loid model, as well as the transformation be-

tween the two models, are detailed in the Appendix.

The interior of unit disk in Euclidean space can be taken

as a map of the -dimensional hyperbolic space. In case

this disk becomes the unit circle depicted in Fig. 2. A hyper-

bolic line in this model (see Fig. 2 left pan) is any Euclidean

circle that is perpendicular to the boundary of the unit disk.

This model is conformally correct, i.e., hyperbolic angles agree

with Euclidean angles. A hyperbolic circle maps to a Euclidean

circle. Except when their center is at the origin, the two circles

are not concentric. Distances in the hyperbolic space are greatly

distorted, due to the element of arc length given by

(1)

where is the Euclidean arc length, and is the Euclidean

norm. Indeed, the Euclidean image of a hyperbolic object, Fig. 2

right pan, as it moves away from the origin, shrinks in size

roughly in proportion to the Euclidean distance from (when

this distance is small).1

Anderson [12] covers in details the upper half-plane model

and has a chapter on the Poincaré disk model in case .

B. Analysis of Hyperbolic Space

In order to be able to embed an input metric in a geometric

space, e.g., in the Poincaré disk model, we must first calculate

the geometric distance determined by the element of arc-length

defined for that space.

1) Distance, Metric, and Stretching: Consider the interior

disk model with the canonical element of arc length given in

(1) for the case of . The hyperbolic distance between

, denoted , is given [12], 4.1 by

(2)

where

(3)

With the contracted element of arc length

(4)

1This picture and the discussion of Poincaré disk, are taken from [11], 2.1.
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the hyperbolic distance is also contracted by , i.e.,

(5)

Let denote an input metric, being embedded into a Hy-

perbolic space with the contracted element of arc length defined

by (4). Consider a stretched metric, , being embedded in

hyperbolic space with canonical element of arc length, .

The canonical hyperbolic distance approximates the stretched

metric, that is

(6)

Dividing by and substituting (5) we find

Thus embedding of the stretched metric, , in space with

canonical arc length, is equivalent to embedding of the input

metric in space with the contracted element of arc length, .

2) Hyperbolic Curvature: The Gaussian curvature of a

metric induced by an element of arc length is

given by

(7)

where denote the Laplacian

For the interior disk model, the element of arc length given in

(1) is , yielding

(8)

Similarly the Gaussian curvature for the contracted element of

arc length (4) is given by

(9)

Namely, by contracting the element of arc length we can achieve

any curvature in the Interior disk model.

3) Embedding Example in Disk: Examine the eight node

graph of Fig. 1 and consider the four exterior nodes, denoted A,

B, C, and D. These four nodes measure the internodal distances

among themselves. The induced metric is

and . Dividing

the two metric values we have

(10)

where is the ratio between the length of the inner and

outer edges of the graph. Taking the limit as approaches 0

or we have

Fig. 3. The Hyperbolic curvature of the graph from Fig. 1.

(11)

Embedding of this metric in Euclidean plane must form a

A-B-C-D square with diagonal length of .

Substituting in (10) and extracting, we see that only the ratio

can be exactly embedded in Euclidean plane.

However, in the Hyperbolic disk, the metric curvature can

be adjusted to achieve an exact embedding of all values. We

normalize the multiplier by the maximal metric value, and

define

(12)

Due to metric symmetry the four points must be placed on

a circle centered at the unit disk origin. We can assume

that the points reside on the XY axis at the four points

. Substituting the stretched dis-

tance pairs and for in (2) we get

(13)

(14)

Multiplying (13) by 2, subtracting it from (14), and substituting

(10) we obtain

(15)

This implicit function can be solved numerically, and the an-

alytic derivative can then be calculated.

Fig. 3 depicts the resulting normalized curvature and its first

derivative for the interval .

C. Hyperbolic Embedding Solver

Embedding of network distances in geometric space is a map-

ping between its nodes to points in the -dimensional space,
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such that the geometric distances between pairs of points ap-

proximates the input network distances metric .

1) BBS Embedding Method: For calculating this mapping

we use the same minimization method we used earlier for Eu-

clidean embedding [4], with adaptations to Hyperbolic space.

This method, Big-Bang Simulation or BBS, minimizes the en-

ergy of a set of particles, traveling in the geometric space under

the affect of a force field. Each of the network nodes is repre-

sented by a particle. We define the potential energy as the em-

bedding error

(16)

Here are vectors designating the coordinates

of the network nodes in the Hyperbolic space . The pair

embedding error is the embedding error of the distance be-

tween a pair of particles.

Our embedding solver uses the ’Loid model of hyperbolic

space, which averts the distance singularity on the boundary of

the Poincaré disk. As in [4] we divide the embedding into four

calculation phases. The phase pair embedding error function de-

noted by , assumes the form

(17)

where is the Hyperbolic distance in , the upper sheet

of hyperboloid

(18)

(19)

For simplicity, we denote . At the end of

each phase, the particles reach a least energy configuration. Fi-

nally, at the end of the last phase, each network node is mapped

to the coordinates of the corresponding particle in the final low

energy configuration.

2) Potential Field Force: The particle movement equations

and their initial conditions were derived in [4], sec. 2 that dis-

cusses friction force and other implementation details. The po-

tential force field in Hyperbolic space is different from the Eu-

clidean space, since the two distance expressions differ. We thus

redo here the calculation of potential force field for Hyperbolic

case.

The field force that is derived from the potential energy

(16), is given by

(20)

(21)

where denotes the pair hyperbolic distance

between and , and its gradient with respect to

is given by

(22)

III. HYPERBOLIC EMBEDDING IN REAL TOPOLOGIES

In Section III-B we use the Internet router topology extracted

from Tel-Aviv University DIMES database [13] dated October

23–24, 2005. In Sections III-C and III-D we use the AS topology

instance from the University of Oregon RouteViews database

dated March 31, 2001.

A. Experiment Details and Legend

We use two measures to compare the accuracy

• Symmetric Pair Distortion Defined for each node pair as

the maximum of the ratio of the measured to the geometric

distance, and its inverse.

• Directional relative error Defined by [1], (4) as the ratio

of the difference between the geometric and measured dis-

tances, to the minimum of the two distances.

The Symmetric pair distortion can be calculated by adding 1 to

the absolute value of the directional relative error [4].

We experiment with different curvatures of the target hyper-

bolic space. In Section II-B2 we showed that embedding a given

metric in hyperbolic space with curvature is equivalent to em-

bedding the metric in canonical hyperbolic

space. Before stretching we first divide the distances of each

metric by

(23)

The following legend notations were used in all the figures:

“GNP” stands for DHS (which was used by GNP) and “HYP,#”

stands for hyperbolic BBS with normalized stretch “#”. Positive

stretch stands for dividing by for AP and TP,

respectively, whereas negative stretch, that is legend “HYP,-#”,

stands for dividing by , and for TP and LRN, re-

spectively.

In each experiment we select a group of the router or AS

nodes, called an overlay, and embed the shortest-path distances

among these overlay nodes. The overlay from the routers

topology in Section III-B consists of the 190 traced access

routers of the DIMES agents used to measure the router

topology instance. We combined the traceroute information For

this relatively small overlay we evaluate the relative distance

error of all pairs of overlay members. In Sections III-C and

III-D, two overlays of 2000 low degree AS nodes are randomly

selected from the AS topology. We select 400 of the overlay

ASs, and evaluate for each one of them the relative error of all

distance pairs from it to all other 1999 overlay members.

B. Embedding Measured Internet Distances

To generate the router level topology, we selected about 900

DIMES agents and performed UDP traceroute to each other.
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After combining agents with the same first hop address (agents

in the same LAN), and removing nodes that were either unreach-

able or could not perform UDP traceroute, we were left with

540 nodes. Due to the way the experiment was executed, we did

not receive all the possible distances between node agent pairs.

Thus, we removed all nodes that did not measure to enough

other nodes and were left with 460 nodes. Among them we had

almost 35 000 measured paths (we used the shortest of the two

unidirectional paths between two nodes), which constitute 33%

of the node pairs.

The simulated Tracers were selected randomly among the 31

nodes that could see over 90% of the other nodes, and no two

Tracers from the same AS were selected. We end up with six

nodes in the USA, one in Denmark, three in Great Britain, one

in Norway, two in Israel, and two in Australia. Only two of

the Tracers were inside universities, at UTDallas and TAU. 350

nodes were seen by all these Tracers, and the rest were seen by

at least 10 of them.

We compare our TP hyperbolic embedding results with

Euclidean Down-Hill-Simplex (DHS) embedding, the method

used in Global-Network-Positioning (GNP) [1]. For this com-

parison we did not to compare hyperbolic BBS with Euclidean

BBS, since for a small number or Tracers, , Euclidean

BBS and GNP, yields similar intra-Tracers distortion [4],

and are thus comparable. For TP embedding we selected the

same Tracers used in Section V-A, and embed all 15

node-Tracer distances.

The centralized step of the TP embedding, that is the embed-

ding of the Tracers matrix holding Tracer-Tracer

pairs (Fig. 4), is very efficient compared to other embedding al-

gorithms. For instance the embedding in -dimensional

space, took 0.5 and 1.75 CPU seconds for -stretched

and -stretched, respectively, on a PIV-1.5 GHz. Eu-

clidean DHS embedding of the same matrix took 0.33 seconds.

Indeed with larger curvature HYP is considerably slower than

GNP. Nevertheless, HYP’s absolute CPU time is negligible,

considering that the centralized step is performed infrequently.

Fig. 4 compares Euclidean and Hyperbolic embedding, for

different embedding dimensions . Fig. 4(c) depicts

the 5, 25, 50, 75, and 95 percentile lines of the directional rel-

ative error. In Figs. 4(a) and (b) depict the accuracy statistics

of embedding of the measured hop distance and delay, respec-

tively. The mean and median relative error and its standard de-

viation are depicted on the left, center and, in reverse -axis, on

the right side respectively.

Fig. 4(a) indicates that GNP has slightly better median and

average error but its variance is significantly worse. This fact

can be clearly seen even for , where it performs best, in

Fig. 4(c). Fig. 4(b) shows that there is no clear advantage for

either method. The results above are depicted in more details

in Section V-A. The surprising finding regarding delay, may be

attributed to the strong correlation of Internet delay with geo-

graphic distance, while BGP policy routing is more dominant

regarding hop distance.

C. Two-Phase Hop Distance Embedding

The distribution of the directional relative error, estimating

hop distance in the AS topology, is depicted in Fig. 5. The re-

Fig. 4. DIMES Router Relative Error versus Embedding Dimension and Cur-
vature: (a) & (c) hop count, (b) delay.

sults of five-dimensional TP embedding, with HYP and GNP,

are depicted on the top part. We select the Tracers ran-

domly among overlay members and embed all 15 node-Tracer

distances.

The frequency of pair distances is depicted by the thick black

curve. We group the directional relative errors for the same

network hop distance pairs. The vertical lines correspond to in-

tegral hop distance, in the unweighted AS graph. The method

marker is placed at the average directional relative error, and the

star marker depicts the median. Each method line has whiskers

at the 5, 25, 75, and 95 percentiles.

As we reported in [4], GNP underestimates longer

hop distances, having negative relative errors. The

-stretched metric has the best relative hop error.

For 4–6 hops distances the 5 to 95 HYP relative error percentiles
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Fig. 5. AS Graph Relative Hops Error.

are inside , compared to for

GNP. In the two-hops distances the corresponding percentiles

are for HYP, compared to for GNP.

The interval of relative error for which the rounded distance

is an exact estimate of the hop distance ,

is depicted in Fig. 5 between the GNP and TP percentile lines.

For 3–7 hops distances the hop distance estimate of HYP coor-

dinates is exact in 70 of the pairs!

D. LRN Hop Distance Embedding

The results of five-dimensional LRN embedding are depicted

on the bottom of Fig. 5. The dotted black curve depicts the

frequency of the pairs embedded by LRN, whereas

the solid black curve depicts the frequency of the other pairs.

Each curve is scaled by its maximum frequency to enable plot-

ting both curves together. The input to LRN embedding is iden-

tical to the one in Section III-C(two overlays of the AS topology,

each containing nodes). As indicated by the two

curves, the group members are not directly connected to each

other, as expected for stub ASs. Because the neighboring pairs

threshold is a hard limiter, all two-hops pairs are embedded.

There are approximately two-hops pairs, while there are

less than half random pairs . As in the case of AP

embedding, only BBS could handle 2000 members group and

concurrently embed over 70 distance pairs. The CPU time,

running on PIV-1.5 GHz, was up to 300 seconds.

The dashed vertical lines, with “HYP k” legend, depict the

directional relative error percentiles of embedded pairs, whereas

the solid vertical lines depict percentiles of other pairs.

As expected, for short distance pairs, LRN is far more accu-

rate than TP (and GNP). For two-hops distances the hop dis-

tance estimate of LRN is exact in over 75% of the pairs, and

just 5% of all pairs are overestimated. This higher accuracy of

two-hops pairs, is gained by compromising accuracy for

the rest of the pairs which are three-hops or more apart.

Indeed, among four to six hops distances, the 5 to 95 HYP rela-

tive error percentiles are inside , which is approx-

imately double than the gap of TP HYP with similar

curvature.

IV. HYPERBOLIC EMBEDDING OF GENERATED

POWER-LAW GRAPHS

We evaluate the hyperbolic embedding of five 1000 node

Barabási–Albert (BA) topologies [9]. The overlay nodes are

selected at random from the group of low degree nodes. For

we evaluate the relative embedding error of all

pairs. For , we select members,

and evaluate for each one of them the relative error of all dis-

tance pairs from it to all other members.

To increase the confidence each experiment was conducted

using 3 sets of random weights per generated topology. The

weights drawn here, are i.i.d. random variables, distributed

uniformly in the interval [1,1000]. From each random weights

graph we embedded two random overlays as explained above.

Namely each point in the comparison graph results from 30

embedding experiments, 6 per a generated BA topology.

Fig. 6(a) compares TP HYP and GNP with different embed-

ding dimensions. We select the Tracers randomly among

overlay members and embed all 15 node-Tracer distances. The

mean standard deviation of the relative estimation error are de-

picted on the left and, in reverse -axis, on the right side, re-

spectively. The accuracy of our method is far better than GNP

for all HYP stretch values. The figure also demonstrate the in-

sensitivity to the curvature: for , there is little difference

between stretch values 6 to 9. Fig. 6(b) compares TP HYP and

GNP, with embedding dimension , for different overlap

sizes ranging from 20 to 800 members.

The standard deviation with optimal HYP stretch is minimal

and the mean error is closest to 0. The common optimal stretch

for all overlay sizes and larger embedding dimensions is

, moreover, all values in the range

gives superb results.

V. APPLICATIONS

In this section, we evaluate Two-Phase embedding with

varying hyperbolic curvature, in three applications: delay es-

timation, server selection, and application level multicast. We

present only TP results, since the TP embedding can be com-

puted distributively, while LRN requires central calculation.

A. Delay Estimation

In this application we are interested in estimating the delay

between a single source node and all other nodes of the graph.

This can be used by a VoIP exchange that can connect its clients

either through its (almost) free Internet connection, or if the

delay is too long through the POTS system.

The distribution of the directional relative estimation error,

for the DIMES Router topology of Section III-B, are depicted

in Fig. 7. The measured Route Delay and Path Length results are

depicted in Fig. 7(a) and (b), respectively. The delay and path

length data were measured during two days, October 23–24,

2005, among 460 DIMES agents. The results of seven-dimen-

sional TP hyperbolic embedding are compared with GNP. All
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Fig. 6. Generated BA graphs with random weights. Relative error versus group
size, embedding dimension and curvature.

HYP and GNP embedding depicted in Fig. 7 use Tracers

and 15 host-Tracer measurements.

In order to capture the distribution of the estimation error, we

group the pair distances in 25 ms wide bins. Surprisingly, for

this experiment the difference between HYP and GNP was neg-

ligible (see Fig. 7(a)). However, the picture is different for the

hop distance as depicted in Fig. 7(b). While the average direc-

tional relative error is similar for both methods, GNP has a no-

ticeable larger spread almost for the entire hop distance range.

B. Server Selection

This experiment used two Internet AS data sets, the Univer-

sity of Oregon RouteViews dataset and the combined Route-

View with looking glass and router registry, as described in [14].

The nine couples of peering data sets were collected weekly

starting March 2001. To increase the confidence each experi-

ment was conducted using 3 sets of random weights per each of

the peering topologies.

Following [15] we randomly selected 10 mirror servers and

estimated the closet mirror to each of the rest of the graph nodes

Fig. 7. DIMES router map relative error: (a) delay and (b) minimum hop.

acting as clients. A client’s decision is considered correct if it

selects the mirror whose client-mirror distance is at most

times the optimal distance. We used . For each mirror

group, rank accuracy is defined as the percentage of correct

client decisions.

Fig. 8 depicts the average cumulative distribution function

(CDF) of rank accuracy for the IDMaps, GNP, and TP HYP

methods. For all three methods, we used in this experiment

low degree Tracers and 8 measurements per node. Each

mark is the average of the CDFs from the sim-

ulated graphs, where each CDF consists of 300 mirror group

experiments performed on a single graph. Marks denoted with

the postfix depict the effect of the “leaf correction” proce-

dure. In leaf correction, the distances from a degree-1 node are

estimated by the geometric distance to the adjacent node, plus

the distance between the degree-1 node and the corresponding

neighbor.

Figs. 8(a) and (b) depicts the results for the RouteViews

dataset, and for the combined dataset, respectively. IDMaps

ranking performance are nearly perfect, achieving at least 98.5

correct answers in 99% of the mirror experiments. GNP how-

ever, has the worst ranking accuracy, due to underestimating of

all the distances, and is thus ruled out as a practical method for
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Fig. 8. RouteViews AS graph with random weights: mirror selection for var-
ious curvatures.

server selection with accuracy . Our method ranking

accuracy improves with increasing the embedding curvature,

and is comparable with IDMaps performance for the stretch

of . For the RouteViews dataset, our performance

even slightly supersedes IDMaps, achieving, at least, 99 correct

answers in 99 of the mirror group experiments.

C. Application Level Multicast

In application level multicast [16], [17], we wish to build a

multicast tree without network support. To make the tree effi-

cient, we need to know the distances among the multicast group

nodes. Otherwise, one may build a tree where the delay to some

nodes is a large multiple of the unicast delay.

The first scalable approach for building application layer mul-

ticast trees was CAN [18], [19] and its derivatives [20], [21].

Due to the high accuracy of our embedding we are presenting

smaller stretch factors for distances, i.e., the delays on our trees

are shorter, while maintaining good stress factor distribution,

namely, most of our tree links are not congested.

Fig. 9. RouteViews AS graph with random weights: 3-D multicast tree layout.

An alternative tree-first approach is NICE application multi-

cast [22], which creates a hierarchy of clusters while selecting

the same or adjacent cluster for all nodes that are “close by”.

CAN and NICE both have low, and thus scalable, link stress and

control overhead. However, NICE incurs higher control load on

the root node and its direct descendants.

We are given a multicast group, , which is a subset of the

graph nodes, a source node, ; and we construct , a

multicast tree from to all the nodes in . Latency Stretch is de-

fined per member as the ratio of the path length

along the tree from to to the length of the direct unicast

path. Link Stress is defined per link of the underlying topology

and counts the number of identical packets sent between mem-

bers of M over that link. This definition of stress, following [23],

is from the network’s perspective, rather than the application’s.

Fig. 9(a) depicts the three-dimensional multicast tree con-

structed by our algorithm. Fig. 9(b) and (c) depict the hyperbolic

distance stretch and node stress of that tree. The constructed tree

follows the structure of the underlying “physical” network, and

thus reduces the latency stretch. The tree roots are the 20 largest

degree nodes, depicted by the marker in the vicinity of the hy-

perbolic origin. From these roots the tree descends to medium

degree nodes and then reaches the leaves that are the lowest de-

gree nodes.

The JoinNode procedure listed in Fig. 10 is run by nodes

that join the multicast tree and by tree nodes with large latency

stretch that wish to reduce this stretch. The procedure descends

down the tree in BFS order searching for candidate parents for

the given node . In the first BFS iteration it scans the orphans

group . If no candidate parent is found in this iteration than

is added to the orphans group .

Otherwise, each of the following iterations (lines 2-8) checks

the children of the candidate parent nodes found in the previous

BFS iteration. The number of candidate parents found in each it-

eration is bounded (line 5). Only the candidate parents that

are the nearest to are scanned in the next BFS iteration. After

the last BFS iteration that does not find any more candidates,

assigns the nearest available candidate found in all iterations as

its parent. A parent is considered available if the number of its

children is smaller than (line 8).

The QueryBranch(Broot, ) function listed in Fig. 11 checks

the children of a given node Broot and returns the ones which
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Fig. 10. The JoinNode function.

Fig. 11. The QueryBranch function.

are candidate parents of . For a node to be a candidate parent

of , it must satisfy the two conditions in line 2

• ’s -distance is less than ’s -distance

• ’s -distance is small relative to ’s -distance

Alternatively, if and satisfies the above two conditions with

switched roles (line 4), then if or the ’s distance from

its current parent is less than its distance from ,

then assigns as its parent (line 6).

The tree origin distance of an orphan node is given

by , i.e., the hyper-

bolic distance to the origin. For the rest of the tree nodes

, that is the dis-

tance along the tree path to their root ancestor plus ancestor’s

origin distance.

Our Iterative-Geometric-Tree (IGT) (see Fig. 12) assumes

no topology or routing information from the underlying “phys-

ical” network, and uses only the hyperbolic coordinates, as-

signed by the embedding of each node. For clarity, the algorithm

is presented as central. However, the algorithm can be easily dis-

tributed since all data structures used, except the orphans groups

, can be managed locally by each of the nodes.

Following are the parameter values for the IGT algorithm:

Fig. 12. The Iterative Geometric Tree algorithm.

Initially, all nodes execute JoinNode once, and are assigned

either to an existing parent or to the orphans group . The

constructed tree is then improved by several rewire sweeps. All

recently rewired nodes, having , participate in the next

rewire sweep. Each such node compares (line 7, Fig. 12) its

tree origin distance with its hyperbolic distance to the origin.

If the tree distance is significantly larger than the hyperbolic

distance the node executes the JoinNode function again. If

the new parent reduces the tree distance significantly, then

the node rewires to the new parent. The algorithm ends after

sweeps or if the ratio of rewired nodes to

is less then .

To evaluate our algorithm we performed the following ex-

periment. Select members of randomly among low-degree

nodes of the graph. Use TP embedding with Tracers and

15 measurements per node to embed these nodes in five-dimen-

sional Hyperbolic space, and run our IGT algorithm from 40 dif-

ferent source nodes. We also use TP embedding in five-dimen-

sional Euclidean space, and run the Geometric-Multicast-Tree

algorithm of [24], Fig. 10 from these source nodes.

Fig. 13(a) depicts the calculation results on the AS topology

instance from the University of Oregon RouteViews database

dated January 2, 2000, for a group of members. We

use the same legend as above, which is “HYP,#” for hyperbolic

BBS with normalized stretch “#”. The legend “GNP” marks the

Geometric Multicast Tree algorithm which run using GNP co-

ordinates.

The complementary distribution function, depicted on the left

hand side, was aggregated from latency stretches of all the nodes

, from each of the 40 source nodes. The average stress

frequency, depicted on the right hand side, is the total number

of links having a given stress value, averaged over the 40 source

node trees.

The multicast tree in application level multicast is constructed

from shorter pairs, among which LRN estimation is more accu-

rate. Nevertheless, TP performance is better since the two-hop

pairs consist of the distance pairs, which are negligible

among pairs for which TP estimation is better.



SHAVITT AND TANKEL: HYPERBOLIC EMBEDDING OF INTERNET GRAPH FOR DISTANCE ESTIMATION AND OVERLAY CONSTRUCTION 11

Fig. 13. Latency Stretch versus Stress and multicast group size: (a) Routeviews
AS graph with random weights, (b) generated GA-Tech graph.

Fig. 13(a) shows a clear trade-off between stretch and stress.

An increase in the HYP curvature yields smaller (better)

stretch and larger (worse) stress. The stress of GNP is sim-

ilar to “HYP,-25” stress, with normalized stretch .

However, the 95 percentile latency stretch of HYP with this

curvature is 1.95, compared to 11.2 of GNP (omitted from

plotted range).

For comparison with [19], [23] we performed the above ex-

periment also for a Transit-Stub topology of 10000 nodes. The

effect of multicast tree size on latency stretch is depicted in

Fig. 13(b). With normalized stretch ( marker) our

average latency stretch depicted on the left graph, is comparable

with topology aware CAN [19], Fig 9. Note that results for CAN

assume global and perfect knowledge of the topology.

VI. CONCLUDING REMARKS

Given the fact that Internet distances tend towards the core,

we suggested to embed the Internet graph in hyperbolic space.

We showed that this idea works well for generated power-law

graphs (Fig. 6), and for calculated minimum hop distances of

the RouteViews AS topology. Indeed, all three studied applica-

tions distance estimation, mirror selection, and application layer

multicast (Figs. 7, 8, and 13, respectively) benefited from our

approach.

However, for distances measured between endpoints in the

Internet the picture is surprisingly different (Figs. 4 and 7). For

the hop distance estimation, hyperbolic embedding is still better

than Euclidean. Interestingly, for delay estimation there is no

clear advantage for using the hyperbolic space. This puzzling

point is the subject of our future research.

APPENDIX

The following formulas for hyperbolic distance in ’Loid

model, are derived in [11], 2.6. This ’Loid space is embedded

in the upper sheet of the hyperboloid (18), (19).

The Hyperbolic distance in ’Loid model is given by

(24)

where denotes the Minkowski inner product, defined as

(25)

Here and are defined by (19). The hyperboloid is

isometrically transformed to the Poincaré disk

, via stereographic projection through the point

. The equations of this transformation

are

(26)

In Poincaré Disk, , the hyperbolic distance between each

pair , is given in [12], 4.1 by,

(27)

(2), where is given by (3). Applying the Euclidean cosine

law in the triangle and substituting with the

normalized inner product yields
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Substituting the images of the projected ,

respectively, as given in (26) we have

(28)

according to (24).
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