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FEI~EUCCIO COLOli-BINI - E N R I C O  ~ANI~ELLI  - SEI~GIO SPAGI~0L0  

S u m m a r y .  - We consider the solvability in the Mandelbrojt classes ~(Mh} (]or the de]initio~v see 
(6), (7), (8), (9) below) o] the Cauehy problem ]or hyperbolic equations o] the type ~ - -  
-- a(t)uz~ = O, where a(t) is a strictly positive continuous ]unction. More precisely, we give 
an example o] a ]unetio~ a(t) ]or which the Cauchy problem is not well-posed in any class 
~(Mh} containing a non-trivial ]unction with compact s~pport. 

1.  - I n t r o d u c t i o n .  

The object  of this paper  is the  s tudy  of the hyperbol ic  Cauchy problem 

{ u ~ - a ( t ) u ~ - - O  onR~• T] 
(1) u(x, O) = ~(x) , u~(x, O) = ~(x) 

where 

(~) a(t) is  a cont inuous  ]unct ion such that a(t)>~v > O . 

One of the  most  meaningful  phenomena  concerning problem (1) is the f ini te  

speed oJ propagat ion  of the  solution: if ~(x) and ~o(x) vanish on some D c c  R~, then  
u(x, t) vanishes on the  conoid 

t 

0 

Now i t  is known tha t  problem (1) m a y  be not  well-posed (1) in the  space g of 
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(1) We say that problem (1) is well-posed in a linear topological space ~ of functions or 
functionals on R,  if, for any initial data ~ and ~ in Y, there exists a unique solution u e 
e c~([0, T], a') o2 (I). 
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infinitely differentiable functions on R~  while i t  is always well-posed in the space 
of the  real analyt ic  fnnctions on R~ (see th.  10 (iii) and th,  4 (i) of [1]). 

Unfortunately,  due to the non existence of analyt ic  functions with compact 
support, the property of finite speed of propagation jus t  given above looses its 
meaning in the case of analyt ic  solutions. 

To overcome this difficulty, one could replace the notion of ~ analyt ic  function 
vanishing on some open f2 ~> by the  one of <~ sequence of analyt ic  functions con- 
verging to zero in A(K2) >>; al ternatively,  one could s+~udy problem (1) in the  space A' 
of real ~nslyt ie  fnnctionals. 

Kowever, as the classical notion of finite speed of propagation seems to be more 
natttral, we ~re induced to investigate about a possible well-posedness of problem (1) 
in some funct ion space Y with 

(3) ~ c Y c g  

sKch that 

(4) ~- contains non-trivial  functions with compact suppor t .  

i f  (4) holds, the class $- is called no~ quasi-analytic. 
The most famot~s classes verifying {(g), (4)} are the Gevrey classes 8 ~, 1 < s < co (~), 

which arise in ~ quite na tura l  way in the s tudy  of some evolution equations. But ,  
if st(t) is only continuous, problem (!) m a y  be not  well-posed in any  8~ with  s > 1 
(see th,  10 (i) of [1]). 

Kence, we are forced to look for some non quasi-~nalytic class ~-, in which 
problem (1) is well-posed, such tha t  

(5) A c  .~c  I~ 8 ' .  
s > l  

We shall look for such a class ~- among the function spaces g{Mh} which have 
been introduced and developed as a na tura l  extension of the Gevrey classes by 
]~ADA~ff_ARD, ])EN3-0I, CARLEiKAN, OSTt{OYSKI and ,  more  e x t e n s i v e l y ,  b y  1V[A~DEL- 

]~oJ~ (for a detailed bibliogr~phy about this subject,  we refer to [5] and [4]). 
We recall tha t  an infinitely differentiable function F is said to belong to 8{Mh}, 

where {M~} is a sequence of positive nmnbers, if, for any  compact set K ccR~, 
there exist CK and A~ such tha t  

(6) 

(3) An infinitely 4ifferentiable lunction ~ is s~i4 to belong to 8~ if, for any compeer sub- 
set K ecru, ~here exist C x and A~ such that  

ID(n)r < CxA~(h!)', Vx e K, Vh. 
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In  order to ensure tha t  the  class g{M~} be stable under  the more usual operations,  
we shall assume tha t :  

(s) 3I~+, < X~2g,~ 

hl/M ~ k|/r~ for h<k (9) Vh!  ~<B V k! 

for some constants  A and B. 
Assumption (7) (logarithmical convexity of {M~}) ensures tha t  g{Mh} is stable 

under multiplication, while (8) and (9) ensure respect ively the  stabil i ty under dif- 
ferentiation and under  le]t-composition by an entire ]unction (see [5] and [6]). 

The Denjoi-Carleman theorem states tha t  a class ~{M~} is non quasi-analytic,  
in the sense of (4), if and only if 

(10) ~ Mh 1 
h=l ~ <  @ OO 

(let us observe that ,  if (10) holds, then ~{Mh} o A). 
We arc now in the posit ion to make precise the  problem which has originated 

the present  work. 

P~o:aL]~r. - i) Is it possible to lind a non quasi-analytic class g{Mh} in which every 
problem like (1), with a(t) satis]ying (2), is well-posed? 

Or, at  least, 

ii) Is  it possible to find~ for any a(t) satis/ying (2), a non quasi-analytic class 
~{M~} (depending on a(t)) in which problem (1) is well-posed? 

The aim of this paper  is to give a negative answer to both  questions;  this will 
result  as a consequence of the  following 

Tn-EOR]~3~ 1. -- For any T > 0 and any pair o] C | periodic data q) and % having 
the same period, which are not both analytic, there exists a strictly positive continuous 
eoef/icient a(t), defined on [0, T]~ such that problem (1) does not admit, as a solution, 
any distribution (and not even any Gevrey ultradistribution). 

Now, if g{M~} o A, there  exists a 2~-periodic function V ~ fi{M~}~A (see 
th. 6 .6 . ! i i  and th. 6 .7.III  of [5]); therefore,  as a consequence of theorem 1, we have 
the following 

GOROLLA~u 1. -- ~'or any ~(M~} which contains A strictly there exists a coefficient 
a(t), ~eri]ying (2), such that problem (1) is not well-posed in ~(2d7~}. 
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In  other words, question i) has a negative answer. On the other hand,  a theorem 
due to W. I~vDI~ (see [6]) states tha t  every nou quasi-analytic class 8(M~,} (verify- 
ing (7), (8) and (9)) contains the class ~{(h.ln h)~'}. Hence, from corollary i we deduce 
tha t  also question ii) has a negative answer, i.e. 

C0~0LLA~u 2. - Thore exists a ]unction a(t) satis]ying (2) such that problem (1) 
is not well-posed in any non quasi-analytic class 8{M~} (veri]ying (7), (8) and (9)). 

Let  us finally observe tha t  we can weaken questions i) and ii) by  requiring only 
t ha t  g{M~} contains A strictly,  ins tead of supposing tha t  8{M~} be non quasi- 
analyt ic:  in this case corollary 1 gives once agMn a negative answer to the first 
question, whereas the euergy est imate (90) of [1] permits us to say tha t  the second 
question has an adfirmative answer. 

2. - The proof  of  theorem 1. 

As in the counter-examples of [1] (see also [3] and [2]), the construction of the 
coefficient a(t) will be based upon the  function 

(11) ~(e; ~) ~- 1 --  4e sin 2~ --  8~(1 --  cos 2~) ~ . 

Let  us observe tha t  l < ~ ( s ;  z )<2  for 0 <  s < l / 1 0 .  
The interest  of this function consists for us in the fact  t h a t  the ordinary problem 

t 
h a w §  

(12) ~ ~(s;~)w=o 
w(o)=o; w'(o)=r 

has the following explicit solution: 

(13) w(~) = C sin ~.exp {e(~ --  �89 sin 23)}. 

In  order to construct the wished coefficient a(t), we shall consider, in dependence 
on the initial data ~ and % a double sequence of subintervals of [0, T], Jk ~ [ ~-i, tk], 

I~ = [{ .  t~], with 

(1~) o = to< t~< t~< . . .  

(15) sup tk' = sup tk" = T ,  < T 
k k 

(16) t~- t~: ~ ,  
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so that 

[0, T] = J1~) llk) J~k) I2D ... U [T,, T] . 

Then the function a(t) will have the following form: 

! 
(18) a(t) = e(ekl hT~(t--tk)) on Ik ,  

where e(s; T) is defined by (11), while {s~}, {.ok} are two sequences of positive real 
numbers and {hk} is a sequence oi na tura l  numbers (depending on ~ and ~o). All 
these sequences will be specified later, and they  will be chosen in such a way tha t  

(19) 

(2o) 

(21) 

1 <a(t) <2 ,  Vt ~ [0, T] 

a(t) e C([0, ~]) 
a(t) is lipschitz-continuons on [0, Y . - -  d] for any  d > 0 .  

Now, going into the details of the proof, we assume (without loss of generality) 
tha t  the assigned initial da ta  ~v(x) and ~0(x) are 2z-periodic, and hence we write 

+ o o  4~oo 

(22) ~(x) = ~ a~ exp  (ihx) ; ~(x) = ~ b~ exp  (ihx) . 
h = - -  ca h =  - -  oo 

Iu  vir tue of (19) and (21), problem (!) will have a (unique) solution u(x, t) on 
R~• T.[;  as a consequence of (22), this solution may  be wri t ten as follows: 

-~-oo 

(23) u(x, t) : ~ %(t) exp (ihx) 
h =  - -  o o  

where 

{ vi(t) § h2a(t)v,~(t) = 0 

v~(0) = a~, vi(0) = b~. 

Our aim is to prove that there exists an increasing sequence of positive real 
numbers {t~} converging to T .  such t h a t  the sequence of functions {u(., t~)} is un- 
bounded in every space of Gevrey ultradistr ibutions,  more precisely such tha t  

(25) sup I%(t~)l exp ( -  (&)l~ 0 = + ~o, Vs > 1 
k 

where {h~} is the sequence which appears in (18). 

13 - . d n n a l i  d i  M a t e m a t i c a  
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B u t  (25) holds if and only if 

sup ti~e %(t~>l exp (-- (h~,~) ~/~) --= d- cr  Vs > 1 
k 

o r  

sup IIm%(t~)lexp(-(h~o)~/~) = -? oo, Vs>l ;  
k 

therefore, spht t ing any  vh(t) into its real and imaginary par t  and taking into account  
the reali ty of a(t), we can suppose wi thout  loss of generali ty tha t  

(26) the  Fourier  coefficients a~, and b~ of (22) are real. 

We now choose the sequences (sk}, {o~} and (h~}: {s~} and {@~} are two sequences 
of posit ive real numbers  such tha t  

(27) / s~§  (k-+oo), 

~ < T/2 
]z=l 

s~<i/lO , Vk, 

while {hk} is a str ictly increasing sequence of posit ive integers (depending on % iv, 
{s~} and {~}) such that ,  when ]c-+ oo, 

(28) 

(29) s ~ h ~  (hT~) 11~- Thk_l-~ ~- oo, 
2 

V s > l .  

We remark  that ,  once (e~} and (e~} have been fixed (with ~o~ -+ 0), the  existence 
of a sequence (hk} such tha t  (28) holds is equivalent  to the  fact  tha t  ~(x) and iv(x) 
are not  both  analyt ic  functions,  while (29) may  be always obtained passing to some 
subsequence of h~. 

For  technical reasons tha t  will be clear later, we would like tha t  

h~ ~k (30) is an integer for any k; 

in order to obtain (30), it is sufficient to replace ~ok by  ~ ~ o~--zO~/hk, for some 
0~e [0, 1]. Since this slight modification does not affect (27), (28) and (29), we shall 
denote ~ again by  ~k. 

Later  on, we shall use an immedia te  consequence of (30), namely  the  inequali ty 

71 
(31) h-~ < e~" 
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t f g Now we construct ,  by  induct ion on k, the sequences (~}, {t,}, and hence the  
, ~ ~ ~ t  ~ t ~,- intervals  J~= [t~_~,t~] and I~ /~, ~J, as well as the coefficient a(t) on J~WI~. 

! 
For  k = 1 we take  t~ equal  ~o the  first posi t ive zero of the  iunc t ion  

1 
(32) ~(t) = a~ cos (h~t) ~- ~ .b~ sin (h~t) ; 

(t~ exists, since a~ and b~ are real  numbers;  see (26)). ~oreover ,  we take  

! 
(33) t~ = t~ + ~ 

and finally we define a(t) on J ~ u  I~ by  means of (17) and (!8). 
l /! 1 f t z Assume now tha t  tl, t~, t~, ..., t~_~ k-~ and a(t)]co,t~_,] have been constructed,  

//  

so t ha t  also the  functions v~(t) of (24) are well defined on [0, t~_~]. Then,  we take  t' 
tl 

equal to the first zero greater  t han  t~_~ of the - func t ion  

(34) 1 
~( t )  = vh~t't"~_~j' cos (h~(t-  ~;_~)) + ~v~(tk-x)' " sin (h~(t-  t~_~)) ; 

moreover,  we t~ke 

t! F (35) t~ = t~-~- ~o~ 

and finally we define a(t) on or~3 I~ by  means of (17) and (18). 

We remark  tha t  T , < 2 ' ;  indeed, the length of J~ m ay  be es t imated  by  

(36) tk -- ~k-1 ~< ~ 

~ 09 
+ . t g  I f f! a.nd, therefore,  T ,  = [( +-- tk) -~- (t+-- t+_l) ] ~< ~ Q~o + 7c ~ 1/h+ <~ T, where, in the  

k = l  k = l  k = l  

last  inequal i ty ,  we h~ve used (27) and (31). 

In  such a w~y, we have constr t tcted a(t) on [0, T . ] ;  if we set, in conformity  
with (17), a(t) ~ 1 on IT. ,  T], we see t h a t  a(t) verifies (19), (20) and (21). 

Now we define the  sequence 

(37) tk = t ~ - -  
2h~ 

and we prove tha t  (25) holds for this sequence, giving the explicit  expression of 
vh~(t) on J~t3 Ik. 

i n  the  in te rva l  J~, we have  a(t) ~ 1, and therefore  v~(t) coincides with the 
funct ion ~(t)  of (34). By  the  ve ry  definition of t'k, we obta in  in par t icu lar  t h a t  

(38) %(t'~) = o .  
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As regards the  expression of vh~(t) on I~, taking (18) into ~ecount, we perform 
the change os variable 

(39) T = h~(t - -  t'k) (t e I~) 

and we set 

(40) %(t) = wn(~) (rein). 

Hence, we see by  (24) and (38) tha t  w~(~) coincides with the solution of problem 
(12) with s = s~ and C = (1/hn)v'~(t'~); thus, by  (]3), we have 

(41) vh,~(t) -= v;~(t'k) sin(hn(t-- t;)) exp en hn(t-- t ;)--  ~ sm (2hk(t-- t;)) . 

Now, in vir tue of (31), t~ belongs to In (see (37)), and (41) gives 

( 
f 

In  order to obtain (25) we es t imate  lv~(tn)[ from above:  to this end we consider 
the energy function 

(43) E~(t) -~ hga(t)[v~(t)[2 _~ iv~(t ) p .  

Then, by  (43) and (24) we easily get 
tZ 

(42) E~(t;)>E~(O) exPl-- f ~ d s }  , 
0 

by which, using the  fact  tha t  a(t)>�89 and [a'(t)[<h~_~ on [0, t'n], we obtain 

Eh~(t'k) > E~(O) exp (-- 2Thk_~) . (44) 

~Tow 

(45) 2 2 2 E~(o) = (hn% § b~) 

while, by  means of (38), we get 

(46) E,~(t'~) = l~'~(t~)l ~ 

Subst i tut ing (45) and (46) into (44) we get 

' ' b ~ ~ exp (--Thn_l) ; (47) ]%(t~)l>~(h~a~ + ~, 



~F. COLO~INI - E. JANNELLI - S. SPAC~NOLO: Hyperbolic equations, etc. 195 

then,  t~king (47) into account ,  (42) gives 

(is) t%(tDl'exp (- (h,)',/}~ 

( v} th2 a ~ . �9 ~>~ ~ h~-? b~)~/~'exp r (hD ~'~- Th,~_~-- in h~-- 

Using (28) and (29), by (48) we get (25), i.e. the conclusion of theorem t .  [] 

]:~E!VZARK. -- The conclusion of theorem 1 can be used to p rove  tha t ,  for ~ny 

T > 0 and  a n y  pair  of C| ini t ia l  d_at~ ~ and  V wi th  compact support, there  

exists ~ coefficient a(t) ver i fy ing (2) for which the  solution of p rob]em (1) blows up 

on [0, T]. 
indeed, assume that the supports of ,~(x) and V(x) are included in the interval 

[-- L~ Z] ~nd set 

+oo 

= + + w z)) 
+co 

= + + r ) )  

The funct ions @ and ~ are 2 ( L - ~  ~ 2 f ) - p e r i o d i c ,  hence we can find the cor- 

responding coefficient 5~(t) in the  sense of t heo rem ].  Owing to the  finite speed of 

p ropaga t ion  (which m a y  be e s t ima ted  by  means  of (19)) we easi ly get  t h a t  theorem 

holds for p rob lem ]_ wi th  a(t) = 5(t) ~nd ini t ia l  da ta  F(x) ~nd ~(x). 
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