Hyperbolic Equations
and Classes of Infinitely Differentiable Functions (*) (*+).

FERRUCCIO COLOMBINI - ENRICO JANNELLI - SERGIO SPAGNOLO

Summary. - We consider the solvability in the Mandelbrojt classes 8{M,} (for the definition see
(6), (7), (8), (9) below) of the Cauchy problem for hyperbolic equations of the type w,—
— a(t)u,,= 0, where a(t) is a strictly positive continuous function. More precisely, we give
an example of a function a(t) for which the Cauchy problem is not well-posed in any class
§{ M} containing o non-irivial function with compact support.

1. — Introduction.

The object of this paper is the study of the hyperbolic Cauchy problem

{ Ugr— Q) thyy =0 on wa[o’ T]

1

) u@, 0) = g(@),  wla, 0) = p(a)

where

(2) a(t) is a continuous function such that  a{t)>y > 0.

One of the most meaningful phenomena concerning problem (1) is the finite
speed of propagation of the solution: if p(») and y(z) vanish on some Q cc R,, then
u(x, t) vanishes on the conoid

i
]’g:{(m, t): dist (z, [Q)> f\/ﬁds}.
0
Now it is known that problem (1) may be not well-posed (1) in the space & of
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€ C([0, T, &) of (1).
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infinitely differentiable functions on R,, while it is always well-posed in the space £
of the real analytic functions on R, (see th. 10 (iii) and th. 4 (i) of [1]).

Unfortunately, due to the non existenee of amnalytic functions with compact
support, the property of finite speed of propagation just given abpove loosges its
meaning in the case of analytic solutions. .

To overcome this difficulty, one could replace the notion of «analytie function
vanishing on some open £» by the one of «sequence of analytic funetions con-
verging to zero in A(L2) »; alternatively, one eould study problem (1) in the space A’
of real analytic functionals.

However, as the elassical notion of finite speed of propagation seems to be more
natural, we are induced to investigate about a possible well-posedness of problem (1)
in some function space F with

(3) ACFCE
such that
(4) F contains non-trivial functions with compaet support.

If (4) holds, the class & is called non quasi-anaiytic.

The most famous classes verifying {(3), (4)} are the Gevrey classes &, 1< s<C oo (2),
which arise in a quite natural way in the study of some evolution equations. But,
if a(t) is only eontinuous, problem (1) may be not well-posed in any & with s > 1
(see th. 10 (i) of [1]).

Hence, we are forced to look for some non quasi-analytic class &, in which
problem (1) is well-posed, such that

(5) AcFc)&.

s§>1

We shall look for such a class F among the function spaces &{M,} which have
been introduced and developed as a natural extension of the Gevrey classes by
HADAMARD, DENJOT, CARLEMAN, OSTROYSKI and, more extensively, by MANDEL-
BrOJT (for a detailed bibliography about this subject, we refer to [5] and [4]).

We recall that an infinitely differentiable function ¢ is said to belong to &{M,},
where {M,} is a sequence of positive numbers, if, for any compact set K cc R,,
there exist O, and Ay such that

(6) [DWg(o)| < Oxdik My, VrzekK, Vhx0.
() An infinitely differentiable function ¢ is said to belong to & if, for any compact sub-

set K ccR,, there exist Op and Ay such that
|IDP p(x)| < Og AZRY, Vwe K, Vh.
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In order to ensure that the class §{M,} be stable under the more usual operations,
we shall assume that:

(M M§<Mh—l'Mh+1 (h>1)
(8) My <A M,
hy 1 k
M M,
(9) h—,” <B '/ k!’ for h<k

for some constants A and B.

Assumption (7) (logarithmical convexity of {M,}) ensures that &{M,} is stable
under multiplication, while (8) and (9) ensure respectively the stability under dif-
ferentiation and under left-composition by an entire function (see [5] and [6]).

The Denjoi-Carleman theorem states that a class &{M,} is non quasi-analytic,
in the sense of (4), if and only if

i My _y

10
( ) h=1 MIL

< o0

(let us observe that, if (10) holds, then &{M,} > 4).
We are now in the position to make precise the problem which has originated
the present work.

PrOBLEM. — 1) Is it possible to find o non quasi-analytic class &{ M} in which every
problem like (1), with a(t) satisfying (2), 15 well-posed?

Or, at least,

ii} Is it possible to find, for any a(t) satisfying (2), @ non quasi-analytic class
8{ My} (depending on a(t)) in which problem (1) is well-posed?

The aim of this paper is to give a negative answer to both questions; this will
result as a consequence of the following

THEOREM 1. — For any T >0 and any pair of C* periodic data ¢ and v, having
the same period, which are not both analyiic, there ewists a strictly positive continuous
coefficient a(t), defined on [0, T, such that problem (1) does not admit, as a solution,
any distribution (and not even any Gevrey wliradistribution).

Now, if &{M,} 2 #, there exists a 2m-periodic function ¢ e M N\ A (see
th. 6.6.IIT and th. 6.7.IIT of [5]); therefore, as a consequence of theorem 1, we have
the following

COROLLARY 1. — For any &{M,} which contains 4 strictly there exists a coefficient
a(t), verifying (2), such that problem (1) is not well-posed in &{M,}.
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In other words, question i) has a negative answer. On the other hand, a theorem
due to W. RUDIN (see [6]) states that every non quasi-analytic class &§{M,} (verify-
ing (7), (8) and (9)) contains the class &{(k-In h)*}. Hence, from corollary 1 we deduce
that also question ii) has a negative answer, i.e.

COROLLARY 2. — There exists a function a(t) satisfying (2) such that problem (1)
is not well-posed in any non quasi-analytic class &{M,} (verifying (1), (8) and (9)).

Let us finally observe that we can weaken questions i) and ii) by requiring only
that &{M,} contains & strictly, instead of suppesing that &{M,} be non quasi-
analytic: in this case corollary 1 gives once again a negative answer to the first
question, whereas the energy estimate (90) of [1] permits us to say that the second
question has an aedfirmative answer.

2. — The proof of theorem 1.

As in the eounter-examples of [1] (see also [3] and [2]), the construction of the
coefficient a(f) will be based upon the funection

(a1) o(e; T) = 1 — 4e 8in 27 — 2(1 — cos 27)2.

Let us observe that 1 <a(e; 7)<2 for 0 < e<1/10.
The interest of this function consists for us in the fact that the ordinary problem

41“*_14_}
(12) dz?
w(0) =0; w(0)=7C

+oa(e;T)w =10

has the following explicit solution:
(13) w(tr) = O sin v-exp {e(r — } sin 27)} .

In order to construct the wished coefficient a(2), we shall consider, in dependence
on the initial data @ and y, a double sequence of subintervals of [0, T, J, = [t,_,, t,],
I= [tz,w tZL with
(14) 0 =1t <t < t;< ...
(15) sup t,= sup ¢ty = T, <T
k k

(16) ti— b= 045
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so that

0, 7MN=J,0LUJ,UVLU..JU[T,, T].
Then the funetion a(f) will have the following form:

(17) af) =1 on (G Jk) U [Ty, T1

k=1
(18) a(t) = afey; h(t —1,))  on I,

where «(e; 7) is defined by (11), while {e.}, {0s} are two sequences of positive real
numbers and {h:} i3 a sequence of natural numbers (depending on ¢ and ¢). All
these sequences will be specified later, and they will be chosen in such a way that

(19) P<at)<2, Vtelo,T]
(20) a(t) € C([0, T1)
(21) a{t) is lipschitz-continuous on [0, T, — 48] for any 6 > 0.

Now, going into the details of the proof, we assume (without loss of generality)
that the assigned initial data @(») and y(z) are 2m-periodic, and hence we write

-+ oo

4o
(22) @®) = 3 arexp (ihz); (@) = 3 by exp (ihx).

he=—oc h=—oco

In virtue of (19) and (21), problem (1) will have a (unique) solution %(z,?) on
R, %[0, T,[; as a consequence of {22), this solution may be written as follows:

(23) w(w, ) == ¥ v,(t) exp (ihw)
h=—o0
{ vy(t) -+ hra(t)v,(t) = 0
Q)h(O) == ah, ’U;’L(O) - bh .
Our aim is to prove that there exists an increasing sequence of positive real

numbers {t,} converging to 7', such that the sequence of funetions {u(-,%;)} is un-
bounded in every space of Gevrey ultradistributions, more precisely such that

(25) SUp fon, ()| €xp (— (h)#) = 4 00, Vs >1
where {h,} is the sequence which appears in (18).

13 - Annali di Malematica
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But (25) holds if and only if

sup [Re vy, (¢:)] exp (— (Ay)Ys) = + 00, Ve>1
k
or

sup [Im v, (t,)] €xp {— (h)') = + o0, Vs> 1;
k

therefore, splitting any v,(¢) into its real and imaginary part and taking into account
the reality of a(t), we can suppose without loss of generality that

(26) the Fourier coefficients a, and b, of (22) are real.

We now choose the sequences {z.}, {ox} and {:}: {e,} and {o,} are two sequences
of positive real numbers such that

& >0 (k>o0), e<1/10, VEk,

=) S gt
K1

while {h,} is a strictly increasing sequence of positive integers (depending on ¢, v,
{exy and {os}) such that, when % — oo,

(28) (h;‘c“ik -+ b;%k) exp (ex0rhy) — - oo

€ O hk _

(29) (hi)s— Thy_,— + o0, VY¥s>1.

We remark that, once {¢,} and {g,} have been fixed (with .0, — 0), the existence
of a sequence {k;} such that (28) holds is equivalent to the fact that ¢(x) and y(»)
are not both analytic functions, while (29) may be always obtained passing to some
subsequence of k.

For technical reasons that will be eclear later, we would like that

(30) h;gk is an integer for any Fk;

in order to obtain (30), it is sufficient to replace o, by g, = 9,— @0s/hy, for some
6,€[0,1]. Since this slight modification does not affect (27), (28) and (29), we shall
denote g, again by gx.

Later on, we shall use an immediate consequence of (30), namely the inequality

(31) = < Q-
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I

Now we construet, by induction on %, the sequences {t,'c}, {t.}, and hence the
intervals J, = [¢,_,,t] and I, =[¢,,%,], as well as the coefficient a(t) on J,U I,.
For k =1 we take t; equal to the first positive zero of the function
1

(32) &) = a, 008 () + 3 Dy, sin (1)

(t, exists, since @, and b, are real numbers; see (26)). Moreover, we take
(33) h=t+e

and finally we define a(t) on J,U I, by means of (17) and (18).
Assume now that #,%,%, .., t_,, %, and a(t)],. , have been constructed,
so that also the funetions v,(t) of (24) are well defined on [0,%, ,]. Then, we take t;

equal to the first zero greater than ¢, of the funetion

o1
(34) &u(t) = va,(tiq) €08 (ha(t — t5-y)) + %vik(iz’c’—z) sin (7t — tii)) 5
moreover, we take

(35) th=t, - o

and finally we define a(t) on J,U I, by means of (17) and (18).
We remark that T,<T; indeed, the length of J, may be estimated by

f 4
(36) b=t < 7;1;

and, therefore, Ty= Y [(t,—1,) + (f,—1 )< S op+ 7 3 1/h,<T, where, in the
k=1 k=1 k=1
last inequality, we have used (27) and (31).

In such a way, we have constructed a(f) on [0, T,]; if we set, in conformity
with (17), a(t) =1 on [Ty, T], we see that a(t) verifies (19), (20) and (21).
Now we define the sequence

1
37 R ———
(87) b=t — o5

and we prove that (25) holds for this sequence, giving the explicit expression of
V(1) on Jp U I,

In the interval J,, we have a(f) =1, and therefore ¥, (t) coincides with the
function &(¢) of (34). By the very definition of ¢,, we obtain in particular that

(38) ”h,,(tllc) =0.
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As regards the expression of v, (f) on I, taking (18) into account, we perform
the change of variable

(39) T =Ryt —1t) (tely)
and we set
(40) Oa () = wi(7) (tE€I).

Henee, we see by (24) and (38) that w,(7) coincides with the solution of problem
(12) with ¢ = &, and € = (1/hy)v,,(t,); thus, by (13), we have

(41) vy, (1) = ﬁl—v;k(t,’c) sin(h(t — #;)) exp {ek [hk(t — ) — % sin (2 (t — t,ﬁ))]} .

Now, in virtue of (31), t, belongs to I, (see (37)), and (41) gives

(42) on,80] = I (8| exp (ek ouh— ).

I

In order to obtain (25) we estimate [v,’,k(t,c)| from above: to this end we congider
the energy function

(43) By (1) == Bia(t)[v,, (8)]2 -+ |og,(8)]2 .

Then, by (43) and (24) we easily get

te
(42) B, () > B, (0) exp {— f lo (s)lds} ,

a(s)

by which, using the fact that a(f)>3% and |a'(t)|<hs, on [0, t,], We obtain

(44) () > B, (0) exp (— 2Thy) -
Now
(45) B, (0) = (ha}, + b})

while, by means of (38), we get
(46) By () = |on,(te)]? .
Substituting (43) and (46) into (44) we get

(47) |oa, (t)| > (hRag, -+ B2 )F exp (— The_a) ;
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then, taking (47) into account, (42) gives

( 1) lvhk(tk)!'exp {"' (hk)l,/}>
;7T
> (hidik + bzk)1/z.exp {ek@khk_ ()11 — Ty — In T & } .

Using (28) and (29), by (48) we get (25), i.e. the conclusion of theorem 1. &

REMARK. — The conclusion of theorem 1 can be used to prove that, for any
T >0 and any pair of C* initial data ¢ and y with compact support, there
exigts a coefficient a(f) verifying (2) for which the solution of problem (1) blows up
on [0, T].

Indeed, assume that the supports of ¢(x) and y(x) are included in the interval
[— L, L] and set

@(w) T_Tz gz + 2L + V2 1))

-+ 0o

W) =Y (o + 20(L + V2 T)).

h=—~o0

The functions ¢ and ¢ are 2(L -~ +/2 T)-periodie, hence we can find the cor-
responding coefficient @(f) in the sense of theorem 1. Owing to the finite speed of
propagation (which may be estimated by means of (19)) we easily get that theorem 1
holds for problem 1 with a(f) = @{¢) and initial data @{x) and p{z).
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