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We develop a geometric framework to study the structure and function of complex networks. We assume that
hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree
distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative
curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network
has some metric structure, and if the network degree distribution is heterogeneous, then the network has an
effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and
statistical mechanics of complex networks. This mapping interprets edges in a network as noninteracting
fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges
are linear functions of these energies or distances. The geometric network ensemble subsumes the standard
configuration model and classical random graphs as two limiting cases with degenerate geometric structures.
Finally, we show that targeted transport processes without global topology knowledge, made possible by our
geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest
heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic
disturbances and damages to the network structure.
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I. INTRODUCTION

Geometry has a proven history of success, helping to
make impressive advances in diverse fields of science, when
a geometric fabric underlying a complex problem or phe-
nomenon is identified. Examples can be found everywhere.
Perhaps the most famous one is general relativity, interpret-
ing gravitation as a curved geometry. Quite a contrasting
example comes from the complexity theory in computer sci-
ence, where apparently intractable computational problems
suddenly find near optimal solutions as soon as a geometric
underpinning of the problem is discovered �1�, leading to
viable practical applications �2�. Yet another example is the
recent conjecture by Palmer �3� suggesting that many “mys-
teries” of quantum mechanics can be resolved by the as-
sumption that a hidden fractal geometry underlies the uni-
verse.

Inspired by these observations, and following �4�, we de-
velop here a geometric framework to study the structure and
function of complex networks �5,6�. We begin with the as-
sumption that hyperbolic geometry underlies these networks.
Although difficult to visualize, hyperbolic geometry, briefly
reviewed in Sec. II, is by no means anything exotic. In fact it
is the geometry of the world we live in. Indeed, the relativ-
istic Minkowski spacetime is hyperbolic, and so is the
anti-de Sitter space �7–9�. On the other hand, hyperbolic
spaces can be thought of as smooth versions of trees abstract-
ing the hierarchical organization of complex networks �10�, a
key observation providing a high-level rationale �Sec. III� for
our hyperbolic hidden space assumption. In Sec. IV we show
that from this assumption, two common properties of com-
plex network topologies emerge naturally. Namely, heteroge-

neous degree distributions and strong clustering appear, in
the simplest possible settings, as natural reflections of the
basic properties of underlying hyperbolic geometry. The ex-
ponent of the power-law degree distribution, for example,
turns out to be a function of the hyperbolic space curvature.
Fortunately, unlike in �3�, for instance, we can directly verify
our assumption. In Sec. V we consider the converse problem
and show that if a network has some metric structure—tests
for its presence are described in �11�—and if the network’s
degree distribution is heterogeneous, then the network does
have an effective hyperbolic geometry underneath.

Many different pieces start coming together in Sec. VI,
where we show that the ensembles of networks in our frame-
work can be analyzed using standard tools in statistical me-
chanics. Hyperbolic distances between nodes appear as ener-
gies of corresponding edges distributed according to Fermi-
Dirac statistics. In this interpretation, auxiliary fields, which
have been considered as opaque variables in the standard
exponential graph formalism �12–16�, turn out to be linear
functions of underlying distances between nodes. The chemi-
cal potential, Boltzmann constant, etc., also find their lucid
geometric interpretations, while temperature appears as a
natural parameter controlling clustering in the network. The
network ensemble exhibits a phase transition at a specific
value of temperature, caused—as usual—by a nonanalyticity
of the partition function. This phase transition separates two
regimes in the ensemble: cold and hot. Complex networks
belong to the cold regime, while in the hot regime, the stan-
dard configuration model �17� and classical random graphs
�18� turn out to be two limiting cases with degenerate geo-
metric structures �Sec. IX�. Sections VII and VIII analyze the
degree distribution and clustering as functions of temperature
in the two regimes.
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Finally, in Sec. X, we shift our attention to network func-
tion. Specifically, we analyze the network efficiency with
respect to targeted communication or transport processes
without global topology knowledge, made possible by our
geometric approach. We find that such processes in networks
with strong heterogeneity and clustering, guided by the un-
derlying hyperbolic space, achieve the best possible effi-
ciency according to all measures, and that this efficiency is
remarkably robust with respect to even catastrophic levels of
network damage. This finding demonstrates that complex
networks have the optimal structure, allowing for routing
with minimal overhead approaching its theoretical lower
bounds, a notoriously difficult longstanding problem in rout-
ing theory, proven unsolvable for general graphs �19�.

II. HYPERBOLIC GEOMETRY

In this section we review the basic facts about hyperbolic
geometry. More detailed accounts can be found in �20–26�.

There are only three types of isotropic spaces: Euclidean
�flat�, spherical �positively curved�, and hyperbolic �nega-
tively curved�. Hyperbolic spaces of constant curvature are
difficult to envisage because they cannot be isometrically
embedded into any Euclidean space. The reason is, infor-
mally, that the former are “larger” and have more “space”
than the latter.

Because of the fundamental difficulties in representing
spaces of constant negative curvature as subsets of Euclidean
spaces, there are not one but many equivalent models of
hyperbolic spaces. Each model emphasizes different aspects
of hyperbolic geometry, but no model simultaneously repre-
sents all of its properties. In special relativity, for example,
the hyperboloid model is commonly used, where the hyper-
bolic space is represented by a hyperboloid. Its two different
projections to disks orthogonal to the main axis of the hyper-
boloid yield the Klein and Poincaré unit disk models. In the

latter model, the whole infinite hyperbolic plane H
2, i.e., the

two-dimensional hyperbolic space of constant curvature −1,
is represented by the interior of the Euclidean disk of radius
1 �see Fig. 1�. The boundary of the disk, i.e., the circle S

1, is
not a part of the hyperbolic plane, but represents its infinitely
remote points, called boundary at infinity �H

2. Any symme-
try transformation on H

2 translates to a symmetry on �H
2,

and vice versa, a cornerstone of the anti-de Sitter space/
conformal field theory correspondence �7–9�, where quantum
gravity on an anti-de Sitter space is equivalent to a quantum
field theory without gravity on the conformal boundary of
the space. Hyperbolic geodesic lines in the Poincaré model,
i.e., shortest paths between two points at the boundary, are
disk diameters and arcs of Euclidean circles intersecting the
boundary perpendicularly. The model is conformal, meaning
that Euclidean angles between hyperbolic lines in the model
are equal to their hyperbolic values, which is not true with
respect to distances or areas. Euclidean and hyperbolic dis-
tances, re and rh, from the disk center, or the origin of the
hyperbolic plane, are related by

re = tanh
rh

2
. �1�

The model is generalizable for any dimension d�2, in
which case H

d is represented by the interior of the unit ball
whose boundary S

d−1 is the boundary at infinity �H
d. The

model is related via the stereographic projection to another
popular model—the upper half-space model—where H

d is
represented by a “half” of R

d span by vectors x

= �x1 ,x2 , . . . ,xd� with xd�0. The boundary at infinity �H
d in

this case is the hyperplane xd=0 instead of Sd−1. Essentially
any d-dimensional space X with a �d−1�-dimensional bound-
ary can be equipped with a hyperbolic metric structure, with
the X’s boundary playing the role of the boundary at infinity
�X.
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FIG. 1. �Color online� Poincaré disk model. In �a�, L1,2,3 and P1,2,3 are examples of hyperbolic lines. Lines L1,2,3 intersect to form triangle
ABC. The sum of its angles a+b+c��. As opposed to Euclidean geometry, there are infinitely many lines �examples are P1,2,3� that are
parallel to line L1 and go through a point C that does not belong to L1. In �b�, a �7,3� tessellation of the hyperbolic plane by equilateral
triangles and the dual �3,7� tessellation by regular heptagons are shown. All triangles and heptagons are of the same hyperbolic size but the
size of their Euclidean representations exponentially decreases as a function of the distance from the center, while their number exponentially
increases. In �c�, the exponentially increasing number of men illustrates the exponential expansion of hyperbolic space. The Poincaré tool
�27� is used to construct a �7,7� tessellation of the hyperbolic plane, rendering a fragment of The Vitruvian Man by Leonardo da Vinci.
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Given the abundance of hyperbolic space representations,
we are free to choose any of those, e.g., the one most con-
venient for our purposes. Unless mentioned otherwise, we
use the native representation in the rest of the paper. In this
representation, all distance variables have their true hyper-
bolic values. In polar coordinates, for example, the radial
coordinate r of a point is equal to its hyperbolic distance
from the origin. That is, instead of Eq. �1�, we have

r � rh = re. �2�

A key property of hyperbolic spaces is that they expand
faster than Euclidean spaces. Specifically, while Euclidean
spaces expand polynomially, hyperbolic spaces expand expo-
nentially. In the two-dimensional hyperbolic space H�

2 of
constant curvature K=−�2�0, ��0, for example, the length
of the circle and the area of the disk of hyperbolic radius r

are

L�r� = 2� sinh �r , �3�

A�r� = 2��cosh �r − 1� , �4�

both growing as e�r with r. The hyperbolic distance x be-
tween two points at polar coordinates �r ,�� and �r� ,��� is
given by the hyperbolic law of cosines

cosh �x = cosh �r cosh �r� − sinh �r sinh �r� cos �� ,

�5�

where ��=�− ��− ��−�� � � is the angle between the points.
Equations �3�–�5� converge to their familiar Euclidean ana-
logs at �→0. For sufficiently large �r, �r�, and ��

�2	e−2�r+e−2�r�, the hyperbolic distance x is closely ap-
proximated by

x = r + r� +
2

�
ln sin

��

2

 r + r� +

2

�
ln

��

2
. �6�

That is, the distance between two points is approximately the
sum of their radial coordinates, minus some ��-dependent
correction, which goes to zero at �→	.

Hyperbolic spaces are similar to trees. In a b-ary tree �a
tree with branching factor b�, the analogies of the circle
length or disk area are the number of nodes at distance ex-
actly r or not more than r hops from the root. These numbers

are �b+1�br−1 and ��b+1�br−2� / �b−1�, both growing as br

with r. We thus see that the metric structures of H�
2 and b-ary

trees are the same if �=ln b: in both cases circle lengths and
disk areas grow as e�r. In other words, from the purely metric
perspective, Hln b

2 and b-ary trees are equivalent. Informally,
trees can therefore be thought of as “discrete hyperbolic
spaces.” Formally, trees, even infinite ones, allow nearly iso-
metric embeddings into hyperbolic spaces. For example, any
tessellation of the hyperbolic plane �see Fig. 1� naturally de-
fines isometric embeddings for a class of trees formed by
certain subsets of polygon sides. For comparison, trees do
not generally embed into Euclidean spaces. Informally, trees
need an exponential amount of space for branching, and only
hyperbolic geometry has it. Table I collects these and other
characteristic properties of hyperbolic geometry and juxta-
poses them against the corresponding properties of Euclidean
and spherical geometries.

III. TOPOLOGICAL HETEROGENEITY VERSUS

GEOMETRICAL HYPERBOLICITY

In this section we make high-level observations suggest-
ing the existence of intrinsic connections between hyperbolic
geometry and the topology of complex networks. Complex
networks connect distinguishable heterogeneous elements
abstracted as nodes. Understood broadly, this heterogeneity
implies that there is at least some taxonomy of elements,
meaning that all nodes can be somehow classified. In most
general settings, this classification implies that nodes can be
split in large groups consisting of smaller subgroups, which
in turn consist of even smaller subsubgroups, and so on. The
relationships between such groups and subgroups can be ap-
proximated by treelike structures, sometimes called dendro-

grams, which represent hidden hierarchies in networks �10�.
But as discussed in the previous section, the metric structures
of trees and hyperbolic spaces are the same. We emphasize
that we do not assume that the node classification hierarchy
among a particular dimension is strictly a tree, but that it is
approximately a tree. As soon as it is at least approximately
a tree, it is negatively curved �26�. This argument obviously
applies only to a snapshot of a network taken at some mo-
ment of time. A logical question is how these taxonomies
emerge. Clearly, when a network begins to form, the node

TABLE I. Characteristic properties of Euclidean, spherical, and hyperbolic geometries. Parallel lines is
the number of lines that are parallel to a line and that go through a point not belonging to this line, and
�=	�K�.

Property Euclidean Spherical Hyperbolic

Curvature K 0 �0 �0

Parallel lines 1 0 �

Triangles are Normal Thick Thin

Shape of triangles

Sum of angles in triangles � �� ��

Circle length 2�r 2� sin �r 2� sinh �r

Disk area 2�r
2
/2 2��1−cos �r� 2��cosh �r−1�
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classification is degenerate, but as more and more nodes join
the network and evolve in it, they tend to diversify and spe-
cialize, thus deepening their classification hierarchy. The dis-
tance between nodes in such hierarchies is then a rough ap-
proximation of node similarity, and the more similar a pair of
nodes, the more likely they are connected.

We consider several examples suggesting that these gen-
eral observations apply to different real networks. Social net-
works form the most straightforward class of examples,
where network community structures �28,29� represent hid-
den hierarchies �30�. More concretely, in paper citation net-
works, the underlying geometries can approximately be the
relationships between scientific subject categories, and the
closer the subjects of two papers, the more similar they are,
and the more likely they cite each other �31,32�. Classifica-
tions of web pages �or more specifically, of the Wikipedia
pages �33,34�� also show the same effect: the more similar a
pair of web pages, the more likely that there is a hyperlink
between them �35�. In biology, the distance between two
species on the phylogenetic tree is a widely used measure of
similarity between the species �36�. Note that this example
emphasizes both the existing taxonomy of elements and their
evolution. The evolution of the Internet is yet another para-
digmatic example. In the beginning, there were only a couple
of computers connected to each other, but then the network
grew �37� splitting into a collection of independently admin-
istered networks, called autonomous systems �ASs�, whose
number and diversity have been growing fast �38�. Currently,
ASs can be classified based on their geographic position and
coverage, size, number and type of customers, business role,
and many other factors �38,39�.

The general observation that the metric structure of node
similarity distances is hyperbolic follows from the math-
ematical fact illustrated in Fig. 2. We assume there that a
point in R

2 represents an abstract node attribute or character-
istic, while a Euclidean disk in R

2 represents a collection of
all the attributes for a given node in the network. The net-
work itself is not shown. Instead we visualize a hidden hier-
archy arising from the overlapping disks. The more two disks
overlap, the more similar the sets of characteristics of the
two corresponding nodes, that is, the more similar the nodes
themselves. But the mapping between disks R

2 and nodes in
H

3 in Fig. 2 is such that the more the two disks overlap, the
hyperbolically closer are the corresponding two nodes. For-
mally, if the ratio of the disks’ radii r ,r� is bounded by a
constant C, 1 /C
r /r�
C, and the Euclidean distance be-
tween their centers is bounded by Cr, then the hyperbolic
distance between the corresponding nodes in H

3 is bounded
by some constant C�, which depends only on C, and not on
the disk radii or center locations �26�. The converse is also
true. Therefore, the distances between nodes based on simi-
larity of their attributes can be mapped to distances in a
hyperbolic space, assuming that node attributes possess some
metric structure �R2 in the above example� in the first place.

IV. HYPERBOLIC GEOMETRY YIELDS

HETEROGENEOUS TOPOLOGY

We now put the intuitive considerations in the previous
section to qualitative grounds. We want to see what network

topologies emerge in the simplest possible settings involving
hyperbolic geometry.

A. Uniform node density at curvature K=−1

Since the one-dimensional hyperbolic space H
1 does not

exist, the simplest hyperbolic space is the hyperbolic plane
H

2 discussed in Sec. II. The simplest way to place N�1
nodes on the hyperbolic plane is to distribute them uniformly
over a disk of radius R�1, where R abstracts the depth of
the hidden treelike hierarchy. We will see below that R is a
growing function of N, reflecting the intuition in Sec. III that
the network hierarchy deepens with network growth. The
hyperbolically uniform node density implies that we assign
the angular coordinates �� �0,2�� to nodes with the uniform
density ����=1 / �2��, while according to Eqs. �3� and �4�
with �=1, the density for the radial coordinate r� �0,R� is
exponential,

��r� =
sinh r

cosh R − 1

 er−R � er. �7�

To form a network, we need to connect each pair of nodes
with some probability, which can depend only on hyperbolic
distances x between nodes. The simplest connection prob-
ability function is

p�x� = �R − x� , �8�

where �x� is the Heaviside step function. We will justify
and relax this choice in Sec. VI. This connection probability
means that we connect a pair of nodes by a link only if the
hyperbolic distance �5� between them is x
R.

The network is now formed, and we can analyze its topo-
logical properties. We are first interested in the most basic

R
2

H
3

FIG. 2. Mapping between disks in the Euclidean plane R
2 and

points in the Poincaré half-space model of the three-dimensional
hyperbolic space H

3 �20�. The x ,y coordinates of disks in R
2 are the

x ,y coordinates of the corresponding points in H
3. The z coordi-

nates of these points in H
3 are the radii of the corresponding disks.

This mapping represents the treelike hierarchy among the disks.
Two points in H

3 are connected by a solid link if one of the corre-
sponding disks is the minimum-size disk that fully contains the
other disk. This hierarchy is not perfect; thus, the tree structure is
approximate. The darkest disk in the middle partially overlaps with
three other disks at different levels of the hierarchy. Two points in
H

3 are connected by a dashed link if the corresponding disks par-
tially overlap. These links add cycles to the tree. The shown struc-
ture is thus not strictly a tree, but it is hyperbolic �26�.
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one, the degree distribution P�k�, to compute which we have

to calculate the average degree k̄�r� of nodes located at dis-
tance r from the origin. Since the node density is uniform,

k̄�r� is proportional to the area A�r� of the intersection S�r� of

the two disks shown in Fig. 3. Specifically, k̄�r�=�A�r� with
node density �=N / �2��cosh R−1��. The area element dA in
polar coordinates �y ,�� is dA=sinh ydyd�; cf. Eqs. �3� and
�4� with �=1. Therefore, the intersection area A�r�
=��S�r�dA is given by the following integration illustrated in
Fig. 3:

A�r� = 2
0

R−r

sinh ydy
0

�

d� + 2
R−r

R

sinh ydy
0

�y

d�

= 2��cosh�R − r� − 1� + 2
R−r

R

�y sinh ydy , �9�

where �y � �0,�� is given by the hyperbolic law of cosines
�5� for the triangle �OXY in Fig. 3,

cosh R = cosh r cosh y − sinh r sinh y cos �y . �10�

Solving the last equation for �y and substituting the result
into Eq. �9� yields the exact expression for A�r� and conse-

quently for the average degree k̄�r�,

k̄�r� =
N

2��cosh R − 1��2��cosh R − 1�

− 2 cosh R�arcsin
tanh�r/2�

tanh R

+ arctan
cosh R sinh�r/2�

	sinh�R + r/2�sinh�R − r/2�
�

+ arctan
�cosh R + cosh r�	cosh 2R − cosh r

	2�sinh2 R − cosh R − cosh r�sinh�r/2�

− arctan
�cosh R − cosh r�	cosh 2R − cosh r

	2�sinh2 R + cosh R − cosh r�sinh�r/2�
� ,

�11�

which perfectly matches simulations in Fig. 4. For large R

this terse exact expression is closely approximated by

k̄�r� = N� 4

�
e−r/2 − � 4

�
− 1�e−r� 


4

�
Ne−r/2, �12�

where the last approximation holds for large r.
The average degree in the network is then

k̄ = 
0

R

��r�k̄�r�dr 

8

�
Ne−R/2, �13�

from which we conclude that if we want to generate an

N-node network with a target average degree k̄ we have to

select the disk radius R=2 ln�8N / ��k̄��. We see that R scales
with N as R� ln N, i.e., the same way as the depth of a
balanced tree with its size. We also observe that by fixing

N = �eR/2, �14�

we gain control over the average degree in a network via

parameter �=�k̄ /8, using which we rewrite Eq. �12� as

k̄�r� =
k̄

2
e�R−r�/2 � e−r/2. �15�

To finish computing the degree distribution P�k� we treat
the radial coordinate r as a hidden variable in the terminol-
ogy of �40�, yielding P�k�=�0

Rg�k �r���r�dr, where the propa-
gator g�k �r� is the conditional probability that a node with
hidden variable r has degree k. For sparse networks this

propagator is Poissonian �40�, g�k �r�=e−k̄�r�k̄�r�k
/k!, using

which we finally obtain

P�k� = 2� k̄

2
�2

��k − 2, k̄/2�
k!

� k−3. �16�

That is, the node degree distribution is a power law.
This result is remarkable as we have done nothing to en-

force this power law. Network heterogeneity has naturally
emerged as a direct consequence of the basic properties of
hyperbolic geometry underlying the network. Indeed, the ob-
served power law is a combination of two exponentials �41�,
node density ��r� in Eq. �7� and average degree k̄�r� in Eq.
�15�, both reflecting the exponential expansion of space in
hyperbolic geometry discussed in Sec. II.

y

FIG. 3. The expected degree of a node at point X located at
distance r from the origin O is proportional to the area of the dark-
shaded intersection S�r� of the two disks of radius R. The first disk,
centered at O, contains all the nodes, distributed within it with a
uniform density. The second disk, centered at X, is defined by the
connection probability p�x�, which is either 1 or 0 depending on
whether the distance x from X is less or greater than R. The node at
X is connected to all the nodes lying in the dark-shaded intersection
area S�r�.

0 5 10 15
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Theory

FIG. 4. �Color online� Average degree at distance r from the
origin for a network with N=10 000 and R=16.55.
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B. Quasiuniform node density at arbitrary negative curvature

We next relax two constraints in the model. The first con-
straint is that the node density is exactly uniform. We let it be
quasiuniform,

��r� = �
sinh �r

cosh �R − 1

 �e��r−R� � e�r, �17�

that is, exponential with exponent ��0. In terms of the anal-
ogy with trees in Secs. II and III, this relaxation is equivalent
to assuming that the hidden treelike hierarchy has the aver-
age branching factor b=e�. Second, we let the curvature of
the hyperbolic space be any K=−�2 with ��0. The node
density is exactly uniform now only if �=�.

The exact expression for the average degree k̄�r� of nodes
at distance r from the origin is the same as before,

k̄�r� =
N

2�
 

S�r�
��y�dyd� = N�

0

R−r

��y�dy

+
1

�


R−r

R

��y��ydy� , �18�

but we cannot compute it exactly to yield an answer analo-
gous to Eq. �11�. However, approximations are easy. The
main approximation deals with the angle �y in Fig. 3. Instead
of Eq. �10�, we now have according to Eq. �5�

cosh �R = cosh �r cosh �y − sinh �r sinh �y cos �y ,

�19�

which for large R, r, and y yields �y =2e��R−r−y�/2. Substitut-

ing this �y in the integral for k̄�r� �18�, using there the ap-
proximate expression for ��y� in Eq. �17�, and introducing
notation �= �� /�� / �� /�−1 /2�, we obtain

k̄�r� = N� 2

�
�e−�r/2 − � 2

�
� − 1�e−�r� �20�

=� N�2�/��e−�r/2 if � � �/2

N�1 + �r/��e−�r/2 if � → �/2

N�1 − 2�/��e−�r if � � �/2.
� �21�

The average degree k̄ in the whole network is now

k̄ =
2

�
�2N�e−�R/2 + e−�R��

R

2
��

4
� �

�
�2

− �� − 1�
�

�
+ �� − 2��

− 1�� , �22�

and its limit at �→� /2 is well defined,

k̄ →
�→�/2

N
�

2
R�1 +

�

2�
R�e−�R/2. �23�

If � /��1 /2, we can neglect the second term in Eq. �22�,
leading to

k̄ =
2

�
�2Ne−�R/2. �24�

That is, the condition controlling the average degree in the
network changes from Eq. �14� to

N = �e�R/2, �25�

where the control parameter �=�k̄ / �2�2�. This control is the
less accurate, the closer the � to � /2. Indeed, as � ap-
proaches � /2, the relative contribution to the total average
degree coming from the second term in Eq. �22� increases. In
particular, if � /�=1 /2, then � is undefined, meaning that �

can no longer be �k̄ / �2�2�. If instead of solving Eq. �23� to

find radius R for given N and k̄, we fix R according to Eq.
�25� with some ���0, then similar to �42�, the average de-
gree in Eq. �23� will grow polylogarithmically with the net-
works size,

k̄ = �0 ln
N

�0
�1 +

1

�
ln

N

�0
� . �26�

If we neglect the second terms in Eqs. �22� and �20� at
� /��1 /2, then using Eq. �25�, we rewrite Eq. �20� as

k̄�r� =
k̄

�
e��R−r�/2 � e−�r/2. �27�

That is, somewhat surprisingly, the scaling of the average

degree k̄�r� with radius r does not depend on the exponent
��� /2 of the node density. Proceeding as in Sec. IV A, the
degree distribution P�k� for ��� /2 is then

P�k� = 2
�

�
� k̄

�
�2�/�

��k − 2�/�, k̄/��
k!

� k−�2�/�+1�. �28�

For arbitrary values of � /��0 the degree distribution scales
as

P�k� � k−�, with � = �2
�

�
+ 1 if

�

�
�

1

2

2 if
�

�



1

2
.� �29�

We observe that the node density exponent � and the
space curvature � affect the heterogeneity of network topol-
ogy, parameterized by �, only via their ratio � /�. This result
is intuitively expected in view of the analogy to trees dis-
cussed in Secs. II and III since a tree with branching factor
b=e� is metrically equivalent to the two-dimensional hyper-
bolic space with curvature K=−�2. In other words, the
branching factor of a tree and the curvature of a hyperbolic
space are two different measures of the same metric
property—how fast the space expands. Result �29� states
then that the topology of networks built on top of these met-
ric structures depends only on the appropriate normalization,
� /�, between the two measures.

The H
2 model described so far has thus only two param-

eters, � /��1 /2 and ��0, controlling the degree distribu-
tion shape and average degree. The model produces scale-
free networks with any power-law degree distribution
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exponent �=2� /�+1�2. The uniform node density in the
hyperbolic space corresponds to �=�, and results in �=3,
i.e., the same exponent as in the original preferential attach-
ment model �43�. Since �= �� /�� / �� /�−1 /2�= ��−1� / ��
−2�, the average degree of nodes at distance r from the ori-
gin �Eq. �27�� and the total average degree in the network

k̄=2��2
/� are

k̄�r� = k̄
� − 2

� − 1
e��R−r�/2, �30�

k̄ = �
2

�
�� − 1

� − 2
�2

. �31�

A sample network is visualized in Fig. 5.

V. HETEROGENEOUS TOPOLOGY IMPLIES

HYPERBOLIC GEOMETRY

In the previous section, we have shown that networks
constructed over hyperbolic spaces naturally possess hetero-

geneous scale-free degree distributions. In this section we
show the converse. Assuming that a scale-free network has
some metric structure underneath, we show that metric dis-
tances can be naturally rescaled such that the resulting metric
space is hyperbolic.

To accomplish this task we use the S
1 model from �11�

where the underlying metric structure is abstracted by the
simplest possible compact metric space: circle S

1. This
model generates networks as follows. First, N nodes are
placed, uniformly distributed, on a circle of radius N / �2��,
so that the node density on the circle is fixed to 1. Then each
node is assigned its expected degree, which is a random vari-
able � drawn from the continuous power-law distribution

���� = �0
�−1�� − 1��−�, � � �0, �32�

where ��2 is the target degree distribution exponent and �0
is the minimum expected degree. Finally, each node pair
with expected degrees �� ,��� and angular coordinates �� ,���
located at distance d=N�� / �2�� over the circle ���=�−�
− ���−�� � �� is connected with probability p̃���, which can be
any integrable function of

� =
d

����
, �33�

where ��0 is the parameter controlling the average degree
in the network. This form of the argument of the connection
probability function is the only requirement to ensure that the

average degree k̄��� of nodes with expected degree � in the
constructed network is indeed proportional to �; specifically,

k̄��� / k̄=� / �̄, where k̄ is the average degree in the network as
before and

�̄ = 
�0

	

�����d� = �0
� − 1

� − 2
. �34�

Due to this proportionality, the degree distribution in the net-
work is indeed power-law distributed with exponent �.

To see that condition �33� ensures k̄��� / k̄=� / �̄, set �=0
without loss of generality, let I=�0

	 p̃���d�, and observe that
�40�

k̄��� =
N

2�
  �����p̃���d��d��

= 2��
�0

	

�������d��
0

N/�2�����
p̃���d� = 2�I�̄� .

�35�

Since

k̄ = k̄�������d� = 2�I�̄2, �36�

we conclude that k̄���=�k̄ / �̄ and confirm that � controls the
average degree in the network. We also note that �0 is a

dumb parameter, which can be set to �0= k̄��−2� / ��−1�
leading to k̄���=�.

FIG. 5. �Color online� A modeled network with N=740 nodes,

power-law exponent �=2.2, and average degree k̄=5 embedded in
the hyperbolic disk of curvature K=−1 and radius R=15.5 centered
at the origin shown by the cross. For visualization purposes, we use
the native hyperbolic space representation �2�. Therefore, the shown
network occupies a small part of the whole hyperbolic plane in Fig.
1. The shaded areas show two hyperbolic disks of radius R centered
at the circled nodes located at distances r=10.6 �upper node� and
r=5.0 �lower node� from the origin. The shapes of these disks are
defined by Eq. �5� with �=1, and according to the model, the circled
nodes are connected to all the nodes lying within their disks, as
indicated by the thick links. In particular, the two circled nodes lie
within each other’s disks. The peculiar shape of these disks shows
that the hyperbolic distance between any two points other than the
origin is not equal to the Euclidean distance between them. In par-
ticular, the farther away from the origin are the two nodes, located
at the same Euclidean distance in the tangential direction, the longer
is the hyperbolic distance between them, which explains why pe-
ripheral nodes are not connected to each other and why a majority
of links appear radially oriented.
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We now establish the equivalence between this S
1 model

and the H
2 model described in the previous section. To do so,

we need to find a change of variables from �, expected de-
gree of a node, to r, its radial coordinate on a disk of radius
R, such that if variable � is power-law distributed according
to Eq. �32�, then after this �-to-r change of variables, vari-
able r is exponentially distributed according to Eq. �17�. The
change of variables that accomplishes this task is

� = �0e��R−r�/2, �37�

where ��0 is a parameter defining � in Eq. �17� after this
change of variables. The resulting value of � is �=���
−1� /2, which is the same relationship among �, �, and � as
in Eq. �29�. In other words, after the �-to-r mapping above,
the nodes get distributed on the disk as in the H

2 model,
suggesting that parameter � is actually the space curvature.

To check if it is indeed the case, and if the two models are
indeed equivalent, we have to verify that the pairs of nodes
connected or disconnected in the S

1 model with expected
degree � mapped to radial coordinate r correspond to, re-
spectively, connected or disconnected nodes in the native H

2

model. That is, we have to demonstrate that the connection
probabilities in the two models are consistent, p�x�= p̃���. To
show this we first fix the disk radius R to its value in the H

2

model �25�, and then observe that if we set

� = ���0
2, yielding k̄ = �I

2

�
�� − 1

� − 2
�2

, �38�

then the change of variables �37� maps the argument � of the
connection probability in the S

1 model �33� to

� = e��x−R�/2, �39�

where x is equal to the second approximation of the hyper-
bolic distance in Eq. �6�. Therefore, the connection probabil-
ity p�x� in the H

2 model is approximately equal to the con-
nection probability p̃�e��x−R�/2� in the S

1 model. In particular,
the step function connection probability �8� in the H

2 model
corresponds to

p̃��� = �1 − �� �40�

in the S
1 model. The integral I of this connection probability

is obviously 1, so that the k̄ vs � relationship �36� in the S
1

model becomes k̄=2���0��−1� / ��−2��2, which is consis-

tent with the condition �=���0
2 �38� given the k̄ vs � rela-

tionship in the H
2 model �31�. As the final consistency check,

we observe that the substitution of the �-to-r mapping �37�
into the proportionality k̄���=�k̄ / �̄ in the S

1 model yields

Eq. �30� in the H
2 model. That is, the average degrees k̄�r� of

nodes with radial coordinate r in the S
1 and H

2 models are
the same.

The two models are thus equivalent and, with the appro-
priate choice of parameters, generate statistically the same
ensembles of networks, which one can confirm in simula-
tions. In this section the network metric structure has been
modeled the simplest way, by circle S

1=�H
2, which by no

means is the only possibility for the hyperbolic space bound-
ary �X �see Sec. II�. Therefore, the established equivalence

between the S
1 and H

2 models suggests that as soon as a
heterogeneous network has some metric structure induced by
distances d on �X, this metric structure can be rescaled by
node degrees � to become hyperbolic, using appropriate
modifications of Eqs. �33� and �39�. The heterogeneous de-
gree distribution effectively adds an additional dimension to
�X �the radial dimension in the S

1=�H
2 case�, such that the

resulting space X �H2 in the considered case� is hyperbolic, a
mechanism conceptually similar to how time in special rela-
tivity, or gravity in �7–9�, makes the higher-dimensional
�time� space hyperbolic. In other words, hyperbolic geometry
naturally emerges from network heterogeneity, the same way
as network heterogeneity emerges from hyperbolic geometry
in the previous section.

VI. HYPERBOLIC GEOMETRY VERSUS STATISTICAL

MECHANICS

In this section we relax the final constraint in the model
that the connection probability is a step function, and we
provide a statistical-mechanics interpretation of the resulting
network ensemble. Since p̃��� can be any integrable function
in the S

1 version of the model, p�x� can be any function in
the H

2 version. Given this freedom, we consider the follow-
ing family of connection probability functions:

p�x� =
1

e���/2��x−R� + 1
=

1

�� + 1
= p̃��� , �41�

parameterized by ��0. The p̃��� function is integrable for
any ��1,

I = 
0

	

p̃���d� = ��

�
sin

�

�
�−1

. �42�

However, we will not restrict ��1 and will also consider
�� �0,1�.

The main motivation for the connection probability
choice �41� is that it casts the ensemble of graphs in the
model to exponential random graphs �12–16�. Exponential
random graphs are maximally random graphs subjected to
specific constraints, each constraint associated with an aux-
iliary field or Lagrangian multiplier in the standard entropy
maximization approach, commonly used in statistical me-
chanics. Each graph G in the ensemble has assigned prob-
ability weight P�G�=e−H�G�

/Z, where H�G� is the graph
Hamiltonian and Z=�Ge−H�G� is the partition function. For
example, the ensemble of graphs in the configuration model,
i.e., graphs with a given degree sequence �ki�, is defined by
Hamiltonian H�G�=�i�iki=�ij�iaij =�i�j��i+� j�aij, where
�i are the auxiliary fields coupled to nodes i, and �aij� is G’s
adjacency matrix. A natural generalization of this ensemble
�13� is given by the Hamiltonian H�G�=�i�j�ijaij in which
the auxiliary fields are coupled not to nodes i but to links ij.
The partition function is then

Z = �
i�j

�1 + e−�ij� , �43�

and the probability of link existence between nodes i and j is
given by �13�
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pij = −
� ln Z

��ij

=
1

e�ij + 1
. �44�

The connection probability �41� thus interprets the auxiliary
fields �ij in this ensemble as a linear function of hyperbolic
distances xij between nodes in the ensemble of graphs gen-
erated by our model,

�ij = �
�

2
�xij − R� , �45�

which makes the two ensembles identical.
The connection probability �41� is nothing but the Fermi-

Dirac distribution. It appears because we allow only one link
between a pair of nodes. If we allowed multiple links, or if
we considered weighted networks, the resulting link statistics
would be Bose-Einstein �13,14�. Hyperbolic distances x in
Eq. �41� can now be interpreted as energies of fermionic
links, whereas hyperbolic disk radius R is the chemical po-
tential, 2 /� is the Boltzmann constant, and �=1 /T is the
inverse temperature. The ensemble is grand canonical with
the number of particles or links M fixed on average. The
standard definition of the chemical potential is then

M = �N

2
�

0

2R

g�x�p�x�dx , �46�

where g�x� is the degeneracy of energy level x. In our case,
g�x� is the probability that two nodes are located at distance
x from each other. We can compute this probability to yield

g�x� =
�

�
�� − 1

� − 2
�2

e��x−2R�/2 + �a + bx�e��x−2R�, �47�

where a ,b are some constants and �=2� /�+1. Substituting

this g�x� in definition �46�, using M = k̄N /2 there, and keep-
ing the leading terms, we get

k̄ = N�I
2

�
�� − 1

� − 2
�2

e−�R/2 +
e−��R/2

�1 − ��c
� , �48�

where c is another constant which we determine in the next
section. If ��1, we neglect the second term above, and
observe that the standard definition of the chemical potential
in statistical mechanics �Eq. �46�� yields the same result as
Eq. �25�, obtained using purely geometric arguments. The
same observation applies for the parameter �=Ne−�R/2 that
we get from Eq. �48�: it is the same as in Eq. �36� with �
=� / ���0

2� and �̄ in Eq. �34�, or as in Eq. �31� if temperature
T=0, so that I=1.

At T=0 the system is in the ground most degenerate state,
and all M links occupy the lowest energy levels until all of
them are filled. In this ground state, Fermi distribution �41�
converges to the step function �8�, which a posteriori justi-
fies our choice there. At higher temperatures the fermionic
particles start populating higher energy states, and at T=1 we
have a phase transition caused by the divergence of p̃���
leading to a discontinuity of the partition function �43�. This
discontinuity is due to the discontinuity of the chemical po-
tential R. We see from Eqs. �48� and �42� that R diverges as
�−ln��−1� at �→1+. If ��1, then the second term in Eq.

�48� is the leading term, and instead of Eq. �25� we have

N = k̄�1 − ��ce��R/2, �49�

so that at �→1−, the chemical potential R diverges as �
−ln�1−��. We investigate what effect this phase transition
has on network topology in the next two sections.

VII. DEGREE DISTRIBUTION AT NONZERO

TEMPERATURE

A. ��1

Since the connection probability p̃��� in Eq. �41� is inte-
grable in this cold regime, we immediately conclude that the
degree distribution is the same power law as at the zero

temperature, while the average degree is k̄=2�I�̄2 �36� with
I in Eq. �42�. In view of the equivalence between the S

1 and
H

2 models established in Sec. V, the power-law exponent �
�2 is related to the H

2 model parameters ��0 and �
�� /2 via �=2� /�+1, as at T=0. The chemical potential is
R= �2 /��ln�N /�� with �=���0

2 �Eqs. �25� and �38��.

B. ��1

In this hot regime, the connection probability p̃��� di-
verges, and we have to renormalize its integral I=�p̃���d�.
Specifically, instead of integrating to infinity as in Eq. �35�,
we have to explicitly cut off the integration at the maximum
value of �max=N / �2�����. The exact value of �0

�maxp̃���d�
with p̃��� in Eq. �41� is 2H1�1,�−1 ;1+�−1 ;−�max

� ��max,
where 2H1 is the Gauss hypergeometric function. The leading
term of this product for large �max and �� �0,1� is
�max

1−�
/ �1−��; substituting which into the expression for the

average degree in the S
1 model �35� we get

k̄���
�k�

=
��

����
, �50�

�k� � k̄ = �2�������2 N1−�

1 − �
, �51�

���� = 
�0

	

������d� = �0
� �̃ − 1

�̃ − � − 1
, �52�

where �̃ is the input value of the � parameter in the S
1

model, i.e., the distribution of the hidden variable � is ����
=�0

�̃−1��̃−1��−�̃. We introduce a new notation for this param-
eter to differentiate it from the value of power-law exponent
� in generated networks, which is different from �̃ in this hot

regime. Indeed, since the average degree k̄��� of nodes with
hidden variable � is no longer proportional to � but to ��

�50�, the degree distribution in the modeled networks is

P�k� � k−�, with � = ��̃ − 1�T + 1. �53�

The mapping to the H
2 model is achieved via the same

change of variables �37� and by requiring that �=e��x−R�/2.
Performing this change of variables, and noticing that ��̃
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−1� / ��̃−�−1�= ��−1� / ��−2�, we obtain the following key
relationships in the H

2 model:

� = 2
�

�
T + 1, �̃ = 2

�

�
+ 1, �54�

k̄�r� = k̄
� − 2

� − 1
e���R−r�/2, �55�

k̄ =
�

1 − �
� 2

�
���� − 1

� − 2
�2

, �56�

N = �e��R/2, � = ����0
2��N1−�. �57�

The last two equations fill in the c coefficient in the expres-
sion for the chemical potential �49�. Finally, we note that in
the hot regime the admissible range of input parameters con-
trolling the degree distribution exponent � is �̃��+1 �S1� or
���� /2 �H2�, both yielding ��2.

VIII. CLUSTERING AS A FUNCTION OF TEMPERATURE

A. ��1

In the cold regime, the average clustering c̄ is a decreas-
ing function of temperature �see Fig. 6�. Clustering is maxi-
mized at T=0, and it gradually, almost linearly, decreases to
zero at the phase transition point T=1.

Unfortunately, c̄ cannot be computed analytically, but
some estimates for specific values of � are possible. The
average clustering c̄��� of nodes with expected degree � in
the S

1 model is the probability that two nodes with expected

degrees and angular coordinates ��� ,��� and ��� ,���, both
connected to node with �� ,0� �we set �=0 without loss of
generality�, are connected to each other. Introducing nota-
tions for the three rescaled distances ��=N�� / �2������,
��=N�� / �2������, and �=N�� / �2�������, where ��
= ���−���, this probability is given by �40�

c̄��� = � N

k̄���
�2 

�0

	

d��d������������

� 
−�

�

d��d��p̃����p̃����p̃��� . �58�

Changing the integration variables from �� and �� to �� and
�� in the second integral, extending the integration limits to
infinity, and using the expression for the average degree in
the model �35� yield

c̄��� =
1

�2I�̄�2 
�0

	

d��d����������������

� 
−	

	

d��d��p̃������p̃������p̃�����

��
−

��

��
�� .

�59�

At T=0, I=1, while p̃���→�1−��. Therefore, the inner
integral in the last expression reduces to the area of the in-
tersection of the square defined in the ��� ,��� coordinates by
������1; �����1�, and the stripe ���� /��−�� /����1 �see
Fig. 7�. For small �, the stripe is so wide for almost any
combination of ��� ,��� that it fully contains the square,
whose area is 4, so that c̄��0�
1 proving that clustering is
maximized at the zero temperature. Recall that clustering
cannot be 1 for all node degrees because of structural con-
straints �45�. For arbitrary values of �, the exact expression
for the intersection area involves cumbersome combinatorial
conditions for the mutual relationship among �, ��, and ��,
which make taking the outer integral in Eq. �59� problematic.
However, one can check that for large �, c̄���=g����0 /�,
where g��� is a decreasing function of �.
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FIG. 6. �Color online� Average clustering c̄ as a function of
temperature T=1 /�� �0,1�. The simulation results are averaged

across 100 networks with average degree k̄=6 and N=105 nodes
each. The average clustering is calculated excluding nodes of de-
gree 1. The theoretical results are obtained via the numerical inte-
gration of c̄=��0

	 c̄�������d� with c̄��� given by Eq. �59�. The stron-
ger disagreement between simulations and theory for smaller values
of � is due to the increasingly pronounced finite-size effects �44�.
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FIG. 7. �Color online� The inner integral in Eq. �59� at the zero
temperature is the dark-shaded area in the center.
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For any other values of T� �0,1�, the inner integral in Eq.
�59� can be taken by residues, but the number of poles de-
pends on �=1 /T. At �=2, for example, the inner integral is
�2���� / ����+���+�����, so that for �=3 we have the ex-
act expression for c̄���,

c̄��� = �0��2� + �0�ln�2� + �0� − 2�� + �0�ln�� + �0�

+ �0 ln �0�/�2, �60�

and c̄��0�=ln�27 /16�=0.52, while c̄���= �ln 4��0 /� for large
�. For other values of �, one can show that c̄���= g̃����0 /�,
where g̃��� is also a decreasing function of �. In other words,
the degree-dependent clustering c̄��� decays with � as ��−1,
an effect that was considered as a signature of the hierarchi-
cal organization of complex networks �46,47�.

B. ��1

In the hot regime, temperature has no effect on clustering,
which is always zero for large networks. This effect can be
confirmed in simulations and seen analytically. Indeed, ob-
serve that in view of Eqs. �50�–�52�, the �-to-� change of
variables, turning Eq. �58� into Eq. �59�, now yields the pref-
actor in the latter equal to �����1−��1−�� / �2�����N1−���2

instead of 1 / �2I�̄�2. This new prefactor is obviously zero in
the thermodynamic limit.

IX. CONNECTION TO THE CONFIGURATION MODEL

AND CLASSICAL RANDOM GRAPHS

Since clustering does not depend on temperature in the
hot regime, while the power-law exponent �54� depends on
temperature via the ratio T /�, we can let T→	 and �→	,
but fix their ratio to be a new parameter �=� /T. With this
parameter the key equations �54�, �56�, and �57� in the H

2

model become

� = 2
�

�
+ 1, k̄ = ��� − 1

� − 2
�2

, N = �e�R/2. �61�

But since curvature �=	, the last ��-dependent term in the
expression for the hyperbolic distance �6� is zero. Since this
term reflects the presence of the metric structure in the net-
work, its disappearance effectively destroys this structure.
More formally, the network metric structure becomes degen-
erate, because the hyperbolic distance xij between a pair of
nodes i and j reduces to the sum of their radial coordinates,
xij =ri+r j, as a result of which the auxiliary fields �45� de-
couple, �ij =�i+� j, where �i=��ri−R /2� /2. Therefore, the
probability pij of the existence of link ij in Eq. �44� depends

now only on the product of i , j’s expected degrees k̄�ri� , k̄�r j�
given by Eq. �55�, pij = �k̄�ri�k̄�r j�� / �k̄N�, so that the network
ensemble becomes the ensemble of networks in the configu-
ration model, i.e., the ensemble of graphs with given ex-
pected degrees �17�.

Alternatively, we can keep both � and � finite while heat-
ing the networks up by increasing T→	. In this case, Eqs.

�54�–�57� converge to �→	, k̄�r�→ k̄, k̄→�, and R→	,
while the Fermi-Dirac connection probability �41� becomes

uniform p�x�→p= k̄ /N. That is, all nodes get uniformly dis-
tributed on the boundary at infinity �H

2, and each pair of
nodes is connected with the same probability p, independent
of their distances. We note that the distance between two
points i , j��H

2 with angular coordinates �i ,� j is xij

=sin���ij /2� �25�—compare with Eq. �6� in H
2 and with

xij =ri+r j in the other limiting case, the configuration model.
The limiting degree distribution is Poissonian ��→	�, and
the network ensemble converges to the ensemble of classical

random graphs GN,p with a given average degree k̄= pN �18�.
The network in this case loses not only its metric structure,
but also its hierarchical heterogeneous organization.

Here, we finish the description and analysis of our geo-
metric model of complex networks. To summarize, the
model can produce scale-free networks with any average de-

gree k̄, power-law exponent ��2, and average clustering c̄,
controlled, respectively, by parameters �� ,� ,�� and
�� /� ,� ,�� in the S

1 and H
2 formulations of the model �see

Table II�. In Fig. 8 we observe a good match between the
basic topological properties of the real Internet and a syn-
thetic network generated by the H

2 model with an appropri-
ate choice of parameters in the cold regime. In the hot regime
the model subsumes the standard configuration model and
classical random graphs as two different limiting cases with
degenerate geometric structures.

X. EFFICIENCY OF GREEDY NAVIGATION

IN MODELED NETWORKS

In this section we shift our attention from the analysis of
the structure of complex networks in our model to the analy-
sis of their function. Specifically, we are interested in their
navigation efficiency.

One important function that many real networks perform
is to transport information or other media. Examples include
the Internet, brain, or signaling, regulatory, and metabolic
networks. The information transport in these networks is not
akin to diffusion. Instead information must be delivered to
specific destinations, such as specific hosts in the Internet,
neuron groups in the brain, or genes and proteins in regula-
tory networks. In the latter case, for example, the network
reacts to an increased concentration of some sugar by ex-
pressing not all but very specific proteins, the ones respon-
sible for digesting this sugar. At the same time the nodes in
the network are not aware of the global network structure, so

TABLE II. Network properties in the model—average degree k̄,
power-law exponent �, and average clustering c̄—and the model
parameters controlling these properties, with references to the cor-
responding equations.

Property

Cold regime Hot regime

S
1

H
2

S
1

H
2

k̄ � �36� � �38� � �51� � �56�
� � �32� � /� �29� �̃ �53� � /� �54�
c̄ �=1 /T �Fig. 6� 0
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that the questions we face are if paths to specific destinations
in the network can be found without such global topology
knowledge and how optimal these paths can be.

The salient feature of our model is that it allows one to
study the efficiency of such path finding without global
knowledge, because our networks have underlying geometry
which enables greedy forwarding �GF�. Since each node in
the network has its address, i.e., coordinates in the underly-
ing hyperbolic space, a node can compute the distances be-

tween each of its neighbors in the network, and the destina-
tion whose coordinates are written in the information packet
or encoded in the signal. GF then accounts to forwarding the
information to the node’s neighbor closest to the destination
in the hyperbolic space. Since each node knows only its own
address, the addresses of its neighbors, and the destination
address of the packet, no node has any global knowledge of
the network structure.

We report simulation results for two forms of GF: original

GF �OGF� and modified GF �MGF�. The OGF algorithm
drops the packet if the current node is a local minimum,
meaning that it does not have any neighbor closer to the
destination than itself. The MGF algorithm excludes the cur-
rent node from any distance comparisons and finds the
neighbor closest to the destination. The packet is dropped
only if this neighbor is the same as the packet’s previously
visited node.

These GF processes can be very inefficient. They can of-
ten get stuck at local minima, or even if they succeed reach-
ing the destination, they can travel along paths much longer
than the optimal shortest paths available in the network. Fur-
thermore, even if they are efficient in static networks, their
efficiencies can quickly deteriorate in the presence of net-
work topology dynamics, e.g., they can be vulnerable with
respect to network damage.

To estimate the GF efficiency in static networks, we com-
pute the following metrics: �i� the percentage of successful
paths, ps, which is the proportion of paths that reach their

destinations; �ii� the average hop length h̄ of successful
paths; and �iii� the average and maximum stretch of success-
ful paths. We consider three types of stretch. The first stretch
is the standard hop stretch defined as the ratio between the
hop lengths of greedy paths and the corresponding shortest
paths in the graph. We denote its average and maximum by
s1 and max�s1�. The optimal paths have stretch equal to 1.
The other two stretches are hyperbolic. They measure the
deviation of the hyperbolic length, traveled by a packet along
either the greedy or shortest path, from the hyperbolic dis-
tance between the source and destination. Formally, let �s , t�
be a source-destination pair and let s=h0 ,h1 , . . . ,h�= t be the
greedy or shortest path between s and t, and � its hop length.
Further, let xi , i=1. . .�, be the hyperbolic distance between hi

and hi−1. The hyperbolic stretch is the ratio �ixi /xst, where xst

is the hyperbolic distance between s and t. For greedy paths,
we denote the average and maximum of this stretch by s2 and
max�s2�; for shortest paths those are denoted by s3 and
max�s3�. The lower these two stretches, the closer the greedy
and shortest paths stay to the hyperbolic geodesics, and the
more congruent we say the network topology is with the
underlying geometry.

We first focus on static networks, where the network to-
pology does not change, and then emulate the network topol-
ogy dynamics by randomly removing one or more links from
the topology. For each generated network instance, we ex-
tract the giant connected component �GCC� and perform GF
between 104 random source-destination pairs belonging to
the GCC. All the metrics converge after approximately 103

source-destination pairs, but we evaluate an order of magni-
tude more combinations for more reliable results. The net-
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FIG. 8. �Color online� The Internet as seen by the CAIDA’s
Archipelago Measurement Infrastructure �48� vs a network in the
H

2 model with �=0.55, �=1, and �=2. �a� The degree distributions
P�k� in both networks are power laws with exponent �=2.1. The
theoretical curve is given by Eq. �28�. �b� The average nearest-

neighbor degrees k̄nn�k�. �c� The degree-dependent clustering. The
theoretical curve is obtained by a numerical estimate of the outer
integral in Eq. �59�. The inner integral is �2���� / ����+���

+����� at �=2. The numerical integration is performed by summa-
tion over the node degrees k in the modeled network, i.e.,

�d�����→�kP�k�, and by mapping �’s to k’s via �=k�̄ / k̄. Random
graphs capturing the three metrics in �a�–�c� reproduce also many
other important structural properties of the Internet �49�.
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work size is N=104, and the average degree is k̄=6.5 in all
the experiments, while temperature T=0 only in the follow-
ing two sections.

A. Static networks

Figure 9 shows the results for static networks, averaged,
for each �, over five network instances. We see that the suc-

cess ratio ps increases and path length h̄ and all the stretches
decrease as we decrease � to 2. Remarkably, for �=2.1, e.g.,
equal to the � observed in the Internet, OGF and MGF yield
ps=99.92% and ps=99.99%, with the OGF’s maximum
stretch of 1, meaning that all greedy paths are shortest paths.
Interestingly, the hyperbolic stretch of shortest paths �s3 and
max�s3�� is slightly worse �larger� than of greedy paths �s2

and max�s2��, which allows us to informally say that for
small �’s, greedy paths are “shorter than shortest” as they
are shortest hopwise, but GF tends to select among many
shortest paths those of least hyperbolic stretch.

In summary, GF is exceptionally efficient in static net-
works, especially for the small �’s observed in the vast ma-
jority of complex networks, including the Internet. The GF
efficiency is maximized in this case, and the two algorithms
exhibit almost the best possible performance, with reachabil-
ity reaching almost 100% and all greedy paths being optimal
�shortest�.

B. Dynamic networks

We next look at the GF performance in dynamic networks
with link failures. For each �, we randomly select a network
instance from above and remove one or more random links
in it. We consider the following two link-failure scenarios. In
scenario 1 we remove a percentage pr, ranging from 0% to
30%, of all links in the network, compute the new GCC, and
for all source-destination pairs remaining in it, we recompute
the new success ratio ps

new and the average and maximum
stretch s1

new and max�s1
new�. In scenario 2 we provide a finer-

grain view focusing on paths that used a removed link. We
remove one link from the network, compute the new GCC,
and for the source-destination pairs that are still in it, we find
the percentage ps

l of successful paths, only among those pre-
viously successful paths that traversed the removed link. For
these still-successful paths, we also compute the new average
and maximum stretch s1

l and max�s1
l �. We then repeat the

procedure for 1000 random links and report the average val-
ues for ps

l and s1
l and the maximum value for max�s1

l �.
Figure 10 presents the results. We see that for small �’s,

the success ratio ps
new remains remarkably high, for all mean-

ingful values of pr. For example, MGF on networks with �
=2.1 and pr
10% yields ps

new�99%. The simultaneous fail-
ure of 10% of the links in a network such as the Internet is a
rare catastrophe, but even after such a catastrophe the suc-
cess ratio in our synthetic networks is above 99%. The aver-
age stretch s1

new slightly increases as we increase pr, but re-
mains quite low. We do not show max�s1

new� to avoid clutter.
For �=2.1, max�s1

new�
2. The percentage ps
l of MGF paths

that used a removed link and that found a bypass after its
removal is also remarkably close to 100% for small �’s. The
average stretch s1

l in scenario 2 also remains low, below 1.1,
and the maximum stretch max�s1

l � never exceeds 1.5.
In summary, GF is not only efficient in static networks,

but its efficiency is also robust in the presence of network
topology dynamics. In particular, for small �’s matching
those found in real networks such as the Internet, GF main-
tains remarkably high reachability and low stretch, even after
catastrophic damages to the network.

C. Role of clustering

Next we fix �=2.1 and investigate the GF performance as
a function of temperature in Fig. 11. The picture is qualita-
tively similar to Fig. 9. The GF efficiency is the better, the
smaller is the temperature, i.e., the stronger the clustering
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FIG. 9. �Color online� Greedy forwarding in static networks.
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�see Fig. 6�. At zero temperature where clustering is maxi-
mized, GF demonstrates the best possible performance, as
discussed in Sec. X A

D. Random graphs

Finally, we look at the GF performance in the configura-
tion model and classical random graphs, which are two dif-
ferent degenerate cases with zero clustering in our geometric
network ensemble �see Sec. IX�. To test the configuration
model, we fix �=1 /2, so that �=1 /�+1, compute distances
between nodes i , j according to xij =ri+r j, and show the
results in Fig. 12. We observe that the GF efficiency is poor
in this case. The success ratio ps never exceeds 40% and
drops to below 10% for large �’s. This poor performance is

expected. Indeed, since xij =ri+r j, GF reduces to following
the node degree gradient. Each node just forwards the packet
to its highest-degree neighbor h since this neighbor has the
smallest radial coordinate rh, thus minimizing the distance to
the destination. If during this process the packet reaches the
highest-degree hub in the network core, without visiting a
node directly connected to the destination, then it gets stuck
at this hub, because no angular coordinates instructing in
what direction to exit the core are any longer available—a
problem, which does not admit a simple and efficient solu-
tion �50�.
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FIG. 10. �Color online� Greedy forwarding in dynamic
networks.
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FIG. 11. �Color online� Greedy forwarding as a function of tem-
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To test classical random graphs, we assign to nodes their
angular coordinates � uniformly distributed on �0,2��, con-

nect each node pair with the same probability p= k̄N, and
compute distances according to xij =sin���ij /2�. Greedy for-
warding is extremely inefficient in this case. The OGF and
MGF average success ratios ps are 0.17% and 0.21%. In
summary, the hierarchical organization �heterogeneous de-
gree distribution� and metric structure �strong clustering� in
the network are both critically important for network naviga-
bility.

E. Why hierarchical structure and strong clustering ensure

efficient navigation

We have seen that more heterogeneous networks �smaller
�� with stronger clustering �smaller T� are more navigable.
Here, we explain why it is the case.

We first recall that the congruency, measured by the hy-
perbolic stretch, between the network topology and hyper-
bolic geometry is the stronger, the smaller are the � and T

�see Figs. 9 and 11�. To visualize this effect, we draw in Fig.
13�a� a couple of GF paths and their corresponding hyper-
bolic geodesics. We see that the lengths of the latter are
indeed dominated by the sums of the radial coordinates of
the source and destination, minus some ��-dependent cor-
rections �6�. This domination of the radial direction shapes
the following hierarchical path pattern of the hyperbolic geo-
desics, as well as of the corresponding GF paths: �i� zoom
out from the network periphery to the core, moving to in-
creasingly higher-degree nodes, that is, nodes covering in-
creasingly wider areas by their connections �see Fig. 5�; �ii�
turn in the core to the direction of the destination; and �iii�
finally zoom in onto it, moving to lower-degree nodes. This
path pattern is exactly the pattern of hierarchical paths in
�51�. A path is called hierarchical in �51� if it consists of two
segments: first, a segment of nodes with increasing degrees
and then a segment of nodes with decreasing degrees. As
shown in �51� �see Fig. 2�a� there�, the percentage of shortest
paths that are also hierarchical approaches 100% with �
→2. Remarkably, this hieratical path pattern also character-
izes the policy-compliant paths followed by information
packets in the Internet �52,53�. Since the GF paths, also the
shortest paths in the network, follow the shortest geodesic
paths in the hyperbolic space, the resulting hyperbolic stretch
is small. Thanks to strong clustering, the network has many
partially disjoint paths between the same source and destina-
tion, which all follow the same hierarchical pattern. There-
fore, even if some paths are damaged by link failures, other
congruent paths remain, and GF can still find them using the
same hyperbolic geodesic direction, which explains the high
robustness of network navigability with respect to network
damage. As clustering weakens, not only the path diversity in
the network decreases, but also the network metric structure
deteriorates since the edge existence probability �41� de-
pends less and less on the hyperbolic distance between
nodes. In the extreme case of classical random graphs, for
example, the connection probability does not depend on this
distance at all. As a result, the congruency between network
topology and underlying geometry evaporates.

Heterogeneity is another key element responsible for high
navigability. This heterogeneity is nothing but a reflection of
the hierarchical treelike structure of the underlying hyper-
bolic space. Indeed, its hierarchical structure manifests itself
in the hierarchy of node degrees and in the degree-dependent
amount of space that nodes cover by their connections. As
Fig. 5 shows, nodes of higher degrees, closer to the top of the
hierarchy, cover wider areas with their connections. To quan-
tify, at T=0 the angular sector ��� ,��� that nodes with ex-
pected degree � cover by their connections to nodes with
expected degree �� �see Fig. 13�b�� is ��� ,���=4����� /N.
This degree-dependent hierarchy of space coverage makes
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FIG. 12. �Color online� Greedy forwarding in the configuration
model.
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the hierarchical zooming-out–zooming-in path pattern pos-
sible and successful.

Finally, the stronger the heterogeneity, the more bridges
are in the network, where by bridges we mean nodes that
connect to all nodes with expected degrees exceeding a cer-
tain threshold; an example is shown in Fig. 13�c�. This
threshold is given by the equation ��� ,���=2�, yielding that
a node with expected degree � is connected to all nodes with
expected degrees ���N / �2���. However such ��-degree
nodes may not exist in the network, as the required �� may
exceed the maximum expected degree �max=�0N1/��−1� �44�.
Requiring ����max leads to ��N��−2�/��−1�

/ �2��0�. That is,
only such �-degree nodes are expected to be bridges. The
equation for the expected bridge existence is then ���max,
yielding N��−3�/��−1�

/ �2��0
2��1. That is, bridges exist in any

sufficiently large network with ��3—the smaller the � is,
the more bridges and the longer they are—while networks
with ��3 have no bridges. The role of bridges in the net-
work core is straightforward: as soon as GF reaches a bridge,
it can cross the entire network, in any direction, at one hop
�54�. Without bridges, GF is doomed to wander along the
network periphery, endangered by getting lost there at any
hop. The GF success ratio in networks with ��3 deterio-
rates to zero in the thermodynamic limit �55�.

XI. CONCLUSION

We have developed a framework to study the structure
and function of complex networks in purely geometric terms.
In this framework, two common properties of complex net-
work topologies, strong heterogeneity and clustering, turn
out to be simple reflections of the basic properties of an
underlying hyperbolic geometry. Heterogeneity, measured in
terms of the power-law degree distribution exponent, is a
function of the negative curvature of the hyperbolic space,
while clustering reflects its metric property.

Conversely, a heterogeneous network with a metric struc-
ture has an effective hyperbolic geometry underneath. This
finding sheds light on self-similarity in complex networks
�11�. The network renormalization procedure considered in
�11�—throwing out nodes of degrees exceeding a certain
threshold—is equivalent to contracting the radius of the hy-
perbolic disk where all nodes reside. This contraction is a
homothety along the radial direction, which is a symmetry
transformation of the hyperbolic space, and self-similarity of
hyperbolic spaces with respect to such homothetic transfor-
mations has been formally defined and studied �25�. Self-
similarity of complex networks thus appears as a reflection
of self-similarity of hyperbolic geometry or as the invariance
with respect to symmetry transformations in the underlying
space.

The developed framework establishes a clear connection
between statistical mechanics and hyperbolic geometry of
complex networks. The collection of edges in a network, for
example, can be treated as a system of noninteracting fermi-
ons whose energies are the hyperbolic distances between
nodes. This geometric interpretation may lead to further de-
velopments applying the standard tools of statistical mechan-
ics to network analysis.

θ∼κκ′/N
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N∼e
ζR/2
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κ∼e
ζ(R−r)/2

κ′∼e
ζ(R−r′)/2R

(a)
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FIG. 13. �Color online� �a� Two greedy paths, which are also
shortest paths �s1=1�, from the source at the top to two destinations
are shown by the solid arrows. The dashed curves are the hyper-
bolic geodesics between the same source and destinations. The hy-
perbolic stretches s2=s3 of the left and right paths are 1.51 and
1.68. �b� The inner triangular shape �green� shows the angular sec-
tor � that the outer shape �red�, which is the hyperbolic disk of
radius R centered at the circled point located at distance r from the
crossed origin, cuts out off the dashed circle of radius r� centered at
the origin. The expected node degrees at r and r� are � and ��. �c�
The circled node is an example of a bridge node. It is connected to
all nodes in its hyperbolic disk of radius R �the outer shape �red��,
including all nodes with expected degrees exceeding a certain
threshold or, equivalently, to all nodes with radial coordinates be-
low a certain threshold, shown by the innermost disk �green� whose
radius is R−r, where r is the radial coordinate of the circled node.
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The network ensemble in our framework subsumes the
standard configuration model and classical random graphs as
two limiting cases with degenerate geometric structures. The
hyperbolic distance between two nodes �Eq. �6�� delicately
combines their radial and angular coordinates. In the con-
figuration model, the distance degenerates to the sum of ra-
dial coordinates only, destroying the network metric struc-
ture. In classical random graphs, on the contrary, there is no
radial distance dependence. The connection probability be-
tween nodes does not depend on any distances at all. As a
result, not only the metric structure of a network but also its
hierarchical heterogeneity gets completely destroyed.

We have shown that both these properties, strong cluster-
ing and hierarchical heterogeneous organization, are criti-
cally important for navigability, which is the network effi-
ciency with respect to targeted transport processes without
global knowledge. Such processes are impossible without
auxiliary metric spaces since global knowledge of network
topology would be unavoidable in that case. The developed
framework not only provides a set of tools to study these
processes, but also explains why and how strong clustering
and hierarchical network organization makes them efficient.

We have observed that the strongest clustering and stron-
gest heterogeneity, often found in real networks, lead to op-
timal navigability. The transport efficiency is the best pos-
sible in this case, according to all efficiency measures. Yet
more remarkable is that this efficiency is extremely robust
with respect to even catastrophic disturbances and damages
to the network structure.

Complex networks thus appear to have the optimal struc-
ture to route information or other media through their topo-
logical fabric. No complicated and artificial routing schemes
or constructions, impossible in nature anyway, turn out to be

needed to route information optimally through a complex
network. Its geometric underpinning drastically simplifies
the routing function, making efficient the “dumb” strategy of
transmitting information in the right hyperbolic direction to-
ward the destination.

Does signaling in real networks, such as cell signaling
pathways or the brain, follow hyperbolic geodesics, and if it
does then what network perturbations might break this sig-
naling, potentially causing �lethal� diseases? To answer these
questions, one has first to map a real network to its underly-
ing space, finding the coordinates for each node. In our re-
cent work to reduce the routing complexity in the Internet
�56�, we map the Internet to its hyperbolic space using sta-
tistical inference methods. These methods work well, but re-
quire substantial manual intervention, and do not scale to
large networks. An interesting open problem is thus to find
constructive mapping methods, e.g., deriving the underlying
distances between nodes from their similarity measures
based on node attributes and annotations in a given network.
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