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Abstract. We study harmonic functions with respect to the Riemannian
metric

ds2 =
dx2

1 + · · · + dx2
n

x
2α

n−2
n

in the upper half space R
n
+ = {(x1, . . . , xn) ∈ R

n : xn > 0}.
They are called α-hyperbolic harmonic. An important result is that
a function f is α-hyperbolic harmonic ı́f and only if the function

g (x) = x
− 2−n+α

2
n f (x) is the eigenfunction of the hyperbolic Laplace

operator �h = x2
n� − (n − 2) xn

∂
∂xn

corresponding to the eigenvalue
1
4

(
(α + 1)2 − (n − 1)2

)
= 0. This means that in case α = n − 2, the

n − 2-hyperbolic harmonic functions are harmonic with respect to the
hyperbolic metric of the Poincaré upper half-space. We are presenting
some connections of α-hyperbolic functions to the generalized hyper-
bolic Brownian motion. These results are similar as in case of harmonic
functions with respect to usual Laplace and Brownian motion.
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1. Introduction

One of the major results in stochastics is that the classical potential theory,
connected to Laplace equation, and theory of Brownian motion has strong
relations found first by Kakutani [18] (see also [19]). We are pointing out simi-
lar results also between generalized Brownian motion and harmonic functions
in
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R
n
+ = {(x0, . . . , x) | x1, . . . , xn ∈ R, xn > 0}

with respect to the Riemannian metric

ds2
α =

dx2
1 + · · · + dx2

n

x
2α

n−2
n

,

where α ∈ R. The Riemannian metric dsn−2 is the hyperbolic distance of the
Poincaré upper half space. The Laplace–Beltrami operator connected to ds2

α

is

�αf = x
2α

n−2
n

(
�f − α

xn

∂f

∂xn

)
.

When α = n − 2 it is called the hyperbolic Laplace operator.
If a twice continuously differentiable function f : Ω → R satisfies �αf =

0, it is called α-hyperbolic harmonic. If α = n−2, then α-hyperbolic harmonic
functions are called briefly hyperbolic harmonic.

We recall the result.

Theorem 1.1. [20, Lemma 2.1] Let Ω be an open set contained in R
n+1
+ . A

twice continuously differentiable function f : Ω → R is α-hyperbolic harmonic
if and only if the function g (x) = x

n−2−α
2

n f (x) is a solution of the equation

�n−2g +
1
4

(
(n − 1)2 − (α + 1)2

)
g = 0.

The hyperbolic distance dh (x, y) between the points x and y in R
n+1
+

may be computed as follows

dh (x, y) = inf
γ(0)=x,γ(1)=y

∫

γ

√
γ

′2
1 (t) + · · · + γ′2

n (t)
γn (t)

dt

= ln
(

λ (x, y) +
√

λ (x, y)2 − 1
)

,

where λ (x, y) = 1 + |x−y|2
2xnyn

and cosh dh (x, y) = λ (x, y).
The geodesics, representing the shortest distance between the points,

are circular arcs perpendicular to the hyperplane xn = 0 (that is, half-circles
whose origin is on xn = 0 and straight vertical lines ending on the hyperplane
xn = 0).

We recall important properties of hyperbolic distance (see for example
[22]).

Lemma 1.2. The hyperbolic ball Dh (a, rh) in R
n+1
+ with the hyperbolic cen-

ter a = (a1, .., an) and the radius rh is the same as the Euclidean ball
De (ca (rh) , re) with the center

ca (rh) = (a1, . . . , an cosh rh)

and the Euclidean radius re = an sinh rn.

The hyperbolic distance has the following invariance property.
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Theorem 1.3. The group under composition of orientation preserving Möbius
transformations mapping the upper half space bijectively onto itself is the
group of isometries of the hyperbolic upper half space model, that is mappings
f satisfying

dh(f(v), f(w)) = dh(v, w),

(that is, the orientation preserving transformations mapping the upper half
space onto itself are translations, dilatations, special orthogonal transforma-
tions and the inversion with respect to the sphere mapping the upper half
bijectively onto itself and their compositions).

Moreover, hyperbolic harmonic functions are invariant under orientation
preserving Möbius transformations.

Theorem 1.4. Let Ω be an open subset of the upper half space R
n
+. If f : Ω →

R is hyperbolic harmonic then f ◦ T is also hyperbolic harmonic on T−1 (Ω)
for any orientation preserving Möbius transformation T .

We recall the definition of the n-dimensional Brownian motion.

Definition 1.5. Let (Ω,F ,P) be a probability space and {Bt}t≥0 be an R
n-

valued stochastic process. Then {Bt}t≥0 is called a standard n-dimensional
Brownian motion, if the following properties hold:

(i) B0 = 0;
(ii) The function t → Bt is continuous almost surely;
(iii) The process {Bt}t≥0 has independent increments, that is Bt+s − Bs is

independent of (Bs1 , . . . , Bsk
) for all 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk ≤ s <

s + t < ∞;
(iv) The increments are stationary, that is, Bt+s − Bs has n-normal distri-

bution with the mean 0 and the covariance tI, that is,

P (Bt+s − Bs ∈ E) = P (Bt ∈ E)

=
∫

E

(2πt)− n
2 exp

(

−‖x‖2

2t

)

dx.

An R
n-valued continuous-time stochastic process {Bu

t }t≥0 is called an
n-dimensional Brownian motion started at u if the process {Bu

t − u}t≥0 is
a standard n-dimensional Brownian motion. We denote the transition prob-
ability P t

u by

P t
u (Bu

t ∈ E) = P (Bu
t ∈ E) .

From the definition we obtain directly that the Radon-Nikodym deriv-
ative is

dP t
u

dx
= (2πt)− n

2 exp

(

−‖x − u‖2

2t

)

.
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2. Harmonic Measure

Solutions of a general class of elliptic equations behave in a similar way as
harmonic functions with respect to the Laplace equation. In order to use these
type of results, we first recall a general definition of Brelot space, introduced
by Brelot in [5].

Definition 2.1. Let X be a locally compact Hausdorff space. A mapping H :
U→ H (U) from an open subset of X is called a harmonic sheaf if for any
open subset U of X the set H (U) is a vector subspace on real continuous
functions on U . A function h : W → R from an open subset W of X is called
harmonic if its restriction to any open subset U of W belong to H (U).

A relatively compact open set U ⊂ X is called regular if for any contin-
uous f ∈ C (∂U) there exists a harmonic function h on U such that it has a
continuous extension h̄ ∈ C (

Ū
)

satisfying

f = h̄|∂U .

The pair (X,H) is called a Brelot space, if X is locally connected and does
not contain any isolated points and the following properties hold:
(a). For any point x ∈ X there exists a harmonic function h ∈ H (U) for

some open neighborhood U of x and h (x) 
= 0, (that is H non-generate
at any point x ∈ X);

(b). The harmonic sheaf H satisfies the Brelot convergence property. That
is, the limit of any increasing sequence of harmonic functions on a con-
nected open set is harmonic provided it is finite at a point;

(c). Regular sets form a basis for the topology on X.

Brelot spaces, introduced by Brelot in 1957, are also harmonic spaces
defined by Constantinescu and Cornea [10].

Theorem 2.2. Let U ⊂ X be regular. Then for any point x ∈ U there exists a
(Radon) measure LU

x : f → HU
f (x) such that for any continuous f ∈ C (∂U)

and for any x ∈ U , the function HU
f is harmonic in U and limx→y HU

f (x) =
f (y) for any y ∈ ∂U . A Radon measure induces a regular Borel measure μU

x

on ∂U such that ∫

∂U

f dμU
x = HU

f (x)

for any continuous f ∈ C (∂U). If a function f ≡ 1 is harmonic, then the
harmonic measure μU

x is a probability measure on ∂U .

Theorem 2.3. If H (U) is a set of α-hyperbolic harmonic functions on open
subset U of Rn

+, then H : U→ H (U) is a harmonic sheaf and the pair
(
R

n
+,H)

is a Brelot space, where the regular sets are the same as with respect to the
usual Laplace equation. Moreover, the harmonic measure μU

x is a probability
measure on ∂U for any regular set U ⊂ R

n
+.

This result is a special case of the theorem concerning elliptic differential
equations, proved for example by R.-M. Herve. It is stated in [10, p. 79] with
several references.
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An important tool for computing the harmonic measure of the Laplace
operator is the fundamental solution (see [17]). Applying [12] or [13], we find
the fundamental α-hyperbolic function from the function

(
λ2 − 1

) 1−n
4 Q

± n−1
2

|k+1|−1
2

(λ) ,

where Q
± n−1

2
|k+1|−1

2

(λ) is the Legendre function of the second kind, defined in

[16, 8.703] by

Qβ
ν (u) = C

(
u2 − 1

) β
2 u−ν−β−1

2F1

(
β + ν + 2

2
,
β + ν + 1

2
;
2ν + 3

2
;

1
u2

)
,

(2.1)
where

C =
√

πΓ (β + ν + 1) eiβπ

2ν+1Γ
(
ν + 3

2

)

and 2F1 is the hypergeometric function

2F1 (a, b; c;x) =
∞∑

m=0

(a)m (b)m

(c)m

xm

m!
,

converging for x satisfying |x| < 1. We recall the Euler relation

2F1 (a, b, c;x) = (1 − x)c−a−b
2F1 (c − a, c − b, c;x)

and the equality

2F1

(
ν − β + 2

2
,
ν − β + 1

2
;
2ν + 3

2
; 1

)
=

Γ
(
ν + 3

2

)
Γ (β)

Γ
(

ν+β+1
2

)
Γ

(
ν+β+2

2

)

=
Γ

(
ν + 3

2

)
Γ (β) 2ν+β

√
πΓ (ν + β + 1)

.

(see [2, Theorem 2.2.2. and Theorem 2.2.5] and [16, 8.335]). Setting u =
cosh rh = λ (x, y) , we denote

sβ,ν (rh) =Cβ,ν coshβ−ν−1 rh 2F1

(
ν − β+2

2
,
ν − β+1

2
;
2ν + 3

2
;

1
cosh2 rh

)
,

(2.2)
where

Cβ,ν =
√

πΓ (β + ν + 1)
2β−1Γ (β) Γ

(
ν + 3

2

) .

Then sβ,ν (0) = 1. The surface measure ωn of the Euclidean unit ball is

ωn =
π

n
2 n

Γ
(

n+2
2

) .

The fundamental α-hyperbolic harmonic function was found in [12], but it
included constants which were not computed. We verify that the function

Hα (x, y) =
x

α+2−n
2

n y
α+2−n

2
n sn−2

2 , α
2

(rh)

ωn (n − 2) sinhn−2 (rh)
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is the fundamental α-hyperbolic harmonic function. The function Hα (x, y)
has the different coefficient than the function computed in [13].

We first notice that if y ∈ R
n+1
+ is fixed the function Hα (x, y) is α-

hyperbolic harmonic with respect to the variable x if x 
= y (that is dh(x, y) 
=
0). Similarly, if x ∈ R

n+1
+ is fixed it is α-hyperbolic harmonic with respect to

the variable y if y 
= x. It is also Lebesgue integrable in the hyperbolic ball
Dh (x,Rh).

Lemma 2.4. The function Hα (x, y) is Lebesgue integrable in the hyperbolic
ball Dh (x,Rh) and

∫

Dh(x,Rh)

|Hα (x, y) (dh (x, y))| dm (y)

y
α(n−1)

n−2
n

≤ M (x,Rh) sinh2 Rh

for some positive constant M (x,Rh) > 0.

The proof is similar as in [12].

Lemma 2.5. Let Ω ⊂ R
n+1
+ be open. Let u be continuous in Ω. Then

lim
Rh→0

∫

∂Dh(x,Rh)

u
∂Hα (x, y)

∂m(α)
dσ(α) (y) = −u (x)

for any hyperbolic balls Dh (x,Rh) satisfying Dh (x,Rh) ⊂ Ω, where

dσ(α) (y) = y
− α(n−1)

n−2
n dσ (y) ,

∂

∂m(α)
= y

α
n−2
n

∂

∂me
,

me the outward-pointing normal of Dh (x,Rh) and ωn is the surface measure
of the unit ball.

Proof. Lemma 1.2 implies that the outward-pointing normal at y ∈
∂Dh (x,Rh) is given by

me = (m1, . . . ,mn) =
(y1 − x1, . . . , yn − xn cosh Rh)

xn sinhRh
.

Set rh = dh (x, y). Since cosh rh = λ (y, x) we compute

∂rh

∂yi
=

∂rh

∂yi
=

∂ arccos λ (x, y)
∂yi

=
yi − xi − xn (cosh rh − 1) δn (i)

ynxn sinh rh

and
n∑

i=1

mi
∂rh

∂yi
=

1
yn

.

Set

γ (α, n) =
(n − 2) (α − n) + 2α

2 (n − 2)
.

Hence we deduce that

∂Hα (x, y)
∂m(α)

= yγ(α,n)
n x

α+2−n
2

n

s
′
n−2
2 , α

2
(rh)

sinhn−2 rh
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− (n − 2) yγ(α,n)
n x

α+2−n
2

n

sn−2
2 , α

2
cosh rh

sinhn−1 rh

+
α + 2 − n

2
yγ(α,n)

n x
α+2−n

2
n mn

sn−2
2 , α

2
(rh)

sinhn−2 rh

.

Using Lemma 1.2 we infer that Dh (x,Rh) = De (xe, xn sin Rh) and xe =
(x0, x1, . . . , xn cosh Rh), which implies

lim
Rh→0

x
α+n

2
n sinhRh

ωnxn−1
n sinhn−1 Rh

∫

∂Dh(x,Rh)

y
γ(α,n)
h u (y) s′

n−2
2 , α

2
(Rh) dσ(α) = 0,

since sinh Rh goes to 0 and the rest of the formula is just the average value
of the continuous function over Dh (x,Rh). Similarly, we compute that

lim
Rh→0

x
α+n

2
n sinhRh

ωnxn−1
n sinhn−1 Rh

∫

∂Dh(x,Rh)

yγ(α,n)
n mnsn−2

2 , α
2

(rh) u (y) dσ(α) = 0.

Since dσ(α) (y) = y
− α(n−1)

n−2
n dσ (y), we obtain in the last integral

lim
Rh→0

− x
α+n

2
n cosh Rh

ωnxn−1
n sinhn−1 Rh

∫

∂Dh(x,Rh)

yγ(α,n)
n sn−2

2 , α
2

(rh) u (y) dσ(α)

= lim
Rh→0

− x
α+n

2
n cosh Rh

ωnxn−1
n sinhn−1 Rh

∫

∂Dh(x,Rh)

u (y)
sn−2

2 , α
2

(rh)

y
α+n

2
n

dσ

= −u (x) ,

completing the proof. �

Theorem 2.6. Let Ω ⊂ R
n+1
+ be open and Dh (a, ρ) a hyperbolic ball with a

center a and the hyperbolic radius ρ satisfying Bh (a, ρ) ⊂ Ω. If u is a twice
continuously differentiable function in Ω and x ∈ Dh (a, ρ), then

u (x) =
∫

∂Dh(a,ρ)

(
Hα (x, y)

∂u (y)
∂m(α)

− u (y)
∂Hα (x, y)

∂m(α)

)
dσ(α) (y)

−
∫

Dh(a,ρ)

�αuHα (x, y) dy(α),

where dy(α) = y
− αn

n−2
n dy, dσ(α) = y

− α(n−1)
n−2

n dσ and ∂u
∂m(α)

= y
α

n−2
n

∂u
∂me

.

Proof. Denote Dh (a, ρ) = D and pick a hyperbolic ball such that Dh (x,Rh) ⊂
D. Set R = D\Dh (x,Rh). Since Hα is α-hyperbolic harmonic, applying the
Green’s identity

∫

R

(u�αv − v�αu) dy(α) =
∫

∂R

(
u

∂v

∂m(α)
− v

∂u

∂m(α)

)
dσ(α)

of the Laplace–Beltrami operator

�α = y
2α

n−2
n

(
� − α

yn

∂

∂yn

)
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with respect to the Riemannian metric ds2
α (see [1]) we obtain

∫

R

Hα (x, y) �αudy(α) =

∫

∂D

(

Hα (x, y)
∂u

∂m(α)

− u
∂Hα (x, y)

∂m(α)

)

dσ(α)

−
∫

∂Dh(x,Rh)

(Hα (x, y)
∂u

∂m(α)

− u
∂Hα

∂m(α)

(x, y))dσ(α).

Since
∫

∂Dh(x,Rh)

∣
∣
∣
∣Hα (x, y)

∂u

∂m(α)

∣
∣
∣
∣ dσ(α) (y) ≤ M sinh Rh

ωn sinhn−1 Rh

∫

∂Dh(x,Rh)

dσ

and sinhRh goes to 0 we infer that the rest of the formula is just the average
value of the continuous function over Dh (x,Rh) and we conclude

lim
Rh→0

∫

∂Dh(x,Rh)

∣
∣
∣
∣Hα (x, y)

∂u

∂m(α)

∣
∣
∣
∣ dσ(α) (y) = 0.

Applying the previous result we obtain the desired result. �

In case φ ∈ C∞
0

(
R

n+1
+

)
we obtain

φ (x) = −
∫

�αφ (y)Hα (x, y) dy(α)

and therefore −�αHα (x, y) = δx in the distribution sense. We conclude the
following result.

Theorem 2.7. The function Hα (x, y) is the fundamental α-hyperbolic har-
monic function.

The fundamental solution may also be computed using hyperbolic Brow-
nian motion explained in the next section.

3. Hyperbolic Brownian Motion

Heinz Leutwiler started in 1987 [20] to study potential theoretic properties
of solutions of the Weinstein equation

�f − k

xn

∂f

∂xn
+ l

f

x2
n

= 0.

Later hyperbolic function theory was initiated by Heinz Leutwiler around
1990 [21,22] and further developed together with the first author (see [11]).

Hyperbolic Brownian motion was defined in 1996 by Gruet [15]. Several
persons have been researching it: Baldi et al. [3,4], Byczkowski et al. [7–9],
Ma�lecki and Serafin [23], Franchi and Le Jan [14]. We define a α-hyperbolic
Brownian motion, called also a hyperbolic Brownian motion with drift μ =
α+1

2 (see [6] and [23]).

Definition 3.1. Let α ≥ 1. A α-hyperbolic Brownian motion is a unique
strong solution X (t) = (X1 (t) , . . . , Xn (t)) corresponding to the system of
stochastic differential equations

dXi(t) = Xn(t)dBi, i = 1, . . . , n − 1,
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dXn(t) = Xn (t) dBn − α

2
Xn (t) dt,

X (0) = x ∈ R
n
+,

EB2
i (t) = t for i = 1, . . . , n,

where B1, . . . , Bn are independent standard Brownian motions in R.

The generator of this diffusion is given by

lim
t→0

Ex (f (X (t))) − f (x)
t

=
1
2

(
x2

n � f − αxn
∂f

∂xn

)
,

if f : Rn+1→ R and f ∈ C2
(
R

n+1
)
.

We also immediately notice that the hyperbolic Brownian motion is
n−2- hyperbolic Brownian motion. Using Itô calculus, we obtain the solution.

Proposition 3.2. Let μ = α+1
2 . The solution X(μ) (t) of the previous system

of stochastic differential equations is generated by the geometric Brownian
motion X

(μ)
n (t) with drift −μ

X(μ)
n (t) = xn exp(Bn (t) − μt)

and

X
(μ)
1 (t) = x1 +

∫ t

0
X

(μ)
n (t) dB1 (u) ,

...
X

(μ)
n−1 (t) = xn−1 +

∫ t

0
X

(μ)
n (t) dBn−1 (u) ,

where B1, . . . , Bn are standard Brownian motions.

α-hyperbolic Brownian motion has the following characterization (see
[23]).

Proposition 3.3. Let B = (B1, . . . , Bn−1, ) be a standard Brownian motion
R

n−1 independent of the geometric Brownian motion X
(μ)
n with drift −μ.

Denote

A(−μ)
xn

(t) = xn

∫ t

0

exp
(
2X(−μ)

n (u)
)

du.

Then 2μ − 1-hyperbolic Brownian motion X(μ) generated by the geometric
Brownian motion X

(μ)
n with drift −μ has the property

X(μ) (t) d= Y (μ)
(
A(−μ)

xn
(t)

)
,

where

Y (μ) (t) =
(
B1 (t) , . . . , Bn−1 (t) , R(−μ) (t)

)

and R(−μ) =
{

R
(−μ)
t | t ≥ 0

}
is a Bessel motion with the index −μ starting

from xn > 0 independent from the Brownian motion B.

Using the previous result, the transition density function of the gener-
alized hyperbolic Brownian motion was computed by Ma�lecki and Serafin in
[23].



72 Page 10 of 13 S.-L. Eriksson, T. Kaarakka Adv. Appl. Clifford Algebras

Theorem 3.4. Let μ = α+1
2 ≥ 0. The transition density function of X(μ) with

respect to the hyperbolic volume element x−n
n dx is

p(μ) (t, x, y) =
(

xn

yn

)μ− n−1
2 e− μ2t

2 Γ
(

n+1
2

)

π (2π)
n
2 t

1
2

∫ ∞

0

e
π2−u2

2t sinh u sin
(

πu
t

)

(cosh u + cosh ρ)
n+1
2

du,

where ρ = dh (x, y).

Our main result is the following connection between the potential kernel
and the fundamental solution.

Theorem 3.5. Let μ = α+1
2 ≥ 0 and

X(μ) (t) =
(
X

(μ)
1 (t) , . . . , X(μ)

n (t)
)

be the α- hyperbolic Brownian motion. Then the potential kernel V (μ) (x, y)
defined in [23] by

V (μ) (x, y) =
∫ ∞

0

p(μ) (t, x, y) dt

satisfies the equality

yα+2−n
n V (μ) (x, y) = 2Hα (xn, yn) .

Proof. Set β = n−2
2 and ν = α

2 . We infer from [23] that

V (α+1
2 ) (x, y) =

xν−β
n

yν−β
n

2e−βiπQβ
ν (cosh rh)

(2π)
n
2 sinhβ (rh)

.

Applying (2.1) we obtain

V (α+1
2 ) (x, y) =

xν−β
n

yν−β
n

2C0

(
u2 − 1

) β
2

2F1

(
β+ν+2

2 , β+ν+1
2 ; 2ν+3

2 ; 1
u2

)

uβ+ν+1 (2π)
n
2 sinhβ (rh)

,

where u = cosh rh and

C0 =
√

πΓ (β + ν + 1)
2ν+1Γ

(
ν + 3

2

) .

Using the Euler relation and (2.2) we obtain

V (α+1
2 ) (x, y) =

xν−β
n

yν−β
n

2C0 2F1

(
ν−β+2

2 , ν−β+1
2 ; 2ν+3

2 ; 1
u2

)

uν+1−β sinhn−2 (rh)

=
2sβ,ν (rh) Γ (β)

sinhn−2 (rh) 4π
n
2 y

2(ν−β)
n

.

Applying Γ (x + 1) = xΓ (x) and

ωn =
π

n
2 n

Γ
(

n+2
2

) =
2π

n
2

Γ
(

n
2

)

=
4π

n
2

(n − 2) Γ
(

n−2
2

) =
4π

n
2

(n − 2) Γ (β)
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we conclude

yα+2−n
n V (α+1

2 ) (x, y) = 2Ha (x, y) .

�

We recall the definition of the first exit time from a set D (the first hit
time for the complement of D).

Definition 3.6. If D is a nonempty, open, connected bounded subset of Rn,
then we denote

τD =
{

inf {t > 0 : Xt /∈ D} ,
∞, if there is no such t > 0.

We recall the Dynkin formula and its direct corollary.

Theorem 3.7. (Dynkin formula) Let f : D → R be a bounded, continuous
function defined on the closure of D. If f has bounded first and second partial
derivatives in D, then for every x ∈ D,

Exf(XτD
) = f(x) +

1
2
Ex

∫ τD

0

�αf(Xs)ds.

Moreover, if h is α-hyperbolic harmonic in Ω and D̄ ⊂ Ω, then

Exh(XτD
) = h(x).

In case of harmonic functions with respect to Laplace operator, Kaku-
tani [18] (see also [19]) noticed that the harmonic measure has a probabilistic
interpretation. If K is a nice compact subset of ∂U , then the harmonic mea-
sure μU

x (K) is also equal to the probability that a Brownian motion started
at x reaches K before hitting ∂U\K. Future problem is to find out if the
similar result holds for α-hyperbolic Brownian motion. The difficulty is the
computation of the harmonic measure of α-hyperbolic harmonic functions.
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[1] Akin, Ö., Leutwiler, H.: On the invariance of the solutions of the Weinstein
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