
You can use homogeneous coordinates to 

interpolate various parameters properly 
when tiling polygons. This technique is 
based completely on one of those things 

that homogeneous coordinates are good 

at-perspective. 
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It's always a red letter day when I can figure out a new use 

for homogeneous coordinates. This time l 'll tell you about a 

way to use them to interpolate various parameters properly 

when tiling polygons. The exact definition of "properly" 

comes from one of those things that homogeneous coordi

nates are good at-perspective. 

The existing machinery 

First, some notational conventions: I'll write matrices in 

boldface, vectors in Roman type, and vector elements in ital

ics with subscripts. A general homogeneous vector, one whose 

w component is not 1, will appear with a tilde over the name. 

A vector of the same name with no tilde represents that homo

geneous vector with the w component divided out. 

Coordinate systems 

Now let's review some basic operations of the graphics pipe

line and define some coordinate systems. In general, the pipe

line transforms a coordinate point through a whole chain of 

coordinate spaces as the point makes its way to the screen. 

I'm going to vastly simplify the process for this discussion. 

There are only two coordinate spaces that we'll really need to 

deal with here: eye space and pixel space. 

We'll start with polygon vertices in eye space, the coordi

nate space with the eye at the origin looking down the z axis. 
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This space is significant because it's the last step in the chain in 

which physical distances are meaningful. For example, it's 

where we must perform all lighting calculations. Let's call a 

point in this space E. In homogeneous coordinates this is 

E =[Ex, Ey, Ez, 1] 

We do the perspective distortion necessary to get to hard

ware pixel space in two steps. First, we multiply by a 4 x 4 ma

trix consisting of a perspective transformation and a viewport 

transformation. I'll call this matrix M. Since M has a perspec

tive component, the w coordinate of the transformed point 

will not be 1. 

We perform clipping in this coordinate system. (This is differ

ent from the optimized clipping space I discussed in" A Trip 

down the Graphics Pipeline: Line Clipping," IEEE CG&A, 

Vol. 11, No. 1, Jan. 1991, pp. 98-105. The method I described 

there merely changes the coefficients of the clipping planes 

used; it doesn't change the basic mathematical relationships). 

After clipping, we perform the second operation; we divide 

out thew component to get coordinates in nonhomogeneous 

hardware pixel coordinates. 
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Figure 1. Transformations between coordinate systems. 

I diagrammed these relations in Figure 1. The key thing 

that we are going to worry about here is manipulating coordi

nates either before or after the homogeneous division. 

Polygon tilers 

Now let's quickly review the mathematics of a polygon tiler. 

A 3D polygon tiler begins with a list of the pixel space coordi

nates of each vertex. [P,. P,. PJ. The tiler must then do two 

things. First. it must identify which pixels lie inside the poly

gon. Second. it must calculate a Z depth value for each pixel 

inside the polygon for use in occlusion tests. We are primarily 

interested in this second calculation. 

A tiling algorithm consists of two nested loops. represent

ing two successive reductions in dimensionality. The outer Y 

loop tracks the intersection of each edge with a current scan 

line. That is. the Yloop interpolates values for [P,. P,] be

tween the endpoints of the edge as a function of the pixel coor

dinate Y. The inner X loop then interpolates the [ PJ value 

horizontally between pairs of edge intersections. 

Let's examine the mathematics of the Y loop more closely. 

We are given coordinates at two endpoints of an edge: let's 

call them P' and P". The edge intersects scan line Y at a pro

portional distance between these two points of 

Y-P', 

a== P",-- P', 

a goes from 0 at P' to I at P". The intersection is then 

P == P' + a(P" - P') 

We step down the screen in equal steps of Y. This means we 

are going to evaluate the above equation for equal steps in a. 

We typically do this incrementally: we precalculatc the change 

in P resulting from each scan-line jump and then. for each iter

ation of the Y loop. add that increment to P. 

There is an implicit assumption here. The Y. X nested inter

polation works consistently only if the polygon is well be

haved. By that I mean that all the vertices in P space are 
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coplanar. Effectively. the relation of P; to pixel coordinates is 

of the form 

P:==aX+bY+c 

Another question 

But there ·s another question about why this works. What 

we actually start with is a flat polygon in eye space. We then 

put this polygon through a weird perspective-distorting trans

form and expect that mere linear interpolation in pixel space 

gives us the correct Z value. To show that this is really okay. 

let's start with a point that is a distance~ along an edge in eye 

space. 

E == E' + ~(E" - E') 

Transform it by M to get P 

p == E'M + ~(E"M - E'M) == P' + ~(P" - P') 

Divide out the w component to get P. 

p P' + ~er" - P'l 
k+ ~(P;,'. - P:.) 

Now we want to write this in terms of the endpoints of the 

edge in pixel space. Each endpoint satisfies 

OT 

P'==t p:, 

Plug this and a similar expression for P" into the above equa

tion. do a little algebra. and you get 

p == P' + ( __ - ~~:: - I (P" - P') 
l P;,+ ~(P:: - P;,)) 

What does this mean? Compare this with linear interpola

tion in pixel space: 

P = P' + a(P" - P') 

It means that a point. say halfway between E' and E". trans

forms to a point somewhere on the line connecting P' and P". 

but not necessarily halfway between them. To generalize. 

equally spaced dots along an edge in eye space transform into 

dots that are indeed colinear in pixel space; they just aren't 

equally spaced any more. This means that a flat polygon in 

eye space transforms into a flat polygon in pixel space. 

Getting colorful 

With the invention of Gouraud shading. polygon tilers 

began linearly interpolating colors across the polygon in the 
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Figure 2a. Correct perspective. 

same way they interpolated Z values. To make the tiler do 

this, modify the machinery as follows. For each vertex, build a 

larger vector of values that include colors as well as position 

coordinates. Each vertex looks like 

Then feed this down the pipe. The first stage transforms the 

positional components according to matrix M: 

This then goes to the clipper. Any interpolation done here is 

performed on the color components as well as the positional 

components. (The perceptive reader might suspect that there 

is something fishy about the way we are clipping colors. We 

will deal with this later.) 

After clipping, divide thew component out of the posi

tional components 

= [Px, Py, P,, Cred, Cgreen, Cb1ue] 

The tiler gets an array of this form for each vertex. The tiler 

then uses the same machinery to interpolate color values as it 

uses to interpolate P, values. 

To get consistent results regardless of how the polygon 

might be rotated, we must have well behaved color assign

ments. I use well behaved here in the same sense I did for P, 

values. For, say, the red color primary, the vertex color assign

ments expressed as [Px, Py, Crect] should be coplanar (with a 

similar requirement for green and blue values). This makes 

the color a linear function of the screen space coordinates; 

that is, each color primary is expressible in the form 

Crect = ax+ by+ c 

Of course this is guaranteed if the polygon is a triangle, but it's 

perfectly possible for polygons with more sides. If the color as

signments don't satisfy this constraint, then-according to 

most computer graphics books-you split the polygon into tri

angles. But, as I explain below, this isn't an adequate solution. 
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Figure 2b. Incorrect perspective. 

More stuff 

Why stop at color? Phong shading requires that we interpo

late normal vector components between endpoints. No prob

lem.Just treat each component the same way we treated color 

components. 

How about some more elaborate shading models? Suppose 

that we have local light sources and that our lighting model de

pends on the location of the viewer. For each point on the ob

ject, a different vector extends from it to the light source and 

to the eye. We therefore need to calculate the eye space point 

E that corresponds to each pixel inside the polygon. 

And then there's texture mapping. We can assign texture co

ordinates (u, v) to each vertex and interpolate them at each 

pixel, then use the interpolated values as input to some tex

ture function. 

The naive approach is to just tack on more elements to our 

array 

[Px, Py, Pz, Crect, ... , Nx, ... , Ex, ... , u, v] 

and linearly interpolate them all between polygon vertices. 

But there's a hidden error here. Doing pure linear interpola

tion in screen space for E, u, and vis really not correct. To ap

preciate this fully, let's look at a common example. 

A problem of perspective 

Suppose we have a square polygon with parametric coordi

nates (u, v) defined at the four corners as (0, 0), (0, 1), (1, 0), 

and (1, 1). Now let's be really original and map a checker

board onto the square and view it in perspective. If we simply 

interpolate the (u, v) parameters linearly across and down the 

polygon according to the standard tiling machinery, we get the 

checkerboard you see in Figure 2b, with equal vertical spacing 

of the small squares. This is not right. How can you tell? Use a 

standard artist's trick: draw a diagonal through the per

spectivized square. If the perspective is correct, the corners of 

the small squares should pass through this line. Try it; I'll wait. 

... Not too good, right? What we really want is for the check

erboard to look like Figure 2a. Try drawing the diagonal line 

now, and you'll see that it works. 
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Figure 3a. Correct perspective. 

But this isn't the worst thin g th at can happen. Try rotating 

the sq uare a bit. You'd like to see the nice picture in Figure 3a. 

Instead. you'll get the weird mess shown in Figure 3b. Let's 

see how this comes about. Figure 4a shows the results of v in

terpolation. As the tiler scans out the top half of the polygon. 

v stays a constant 0 on the left edge and interpolates from 0 to 

I on the right edge. Interpola ting across each scan line the n 

gives the constant v lines shown. On the bottom part of the 

polygon. v interpolates from 0 to I on the left edge and stays a 

constant 1 on the right. Interpolating across each scan line 

gives the constant v lines shown. They arc all unpleasantly 

bent. It's not quite so bad for interpolation of u values shown 

in Figure 4b. Here th e lines aren't bent. but they still arc incor

rectly equally spaced. 

Correct mapping 

Let's figure out how to do this correctly. This turns out to be 

easier if we change the problem slightly. Let's instead solve 

the problem of finding eye space coordinates Eat each pixel. 

First we'll do this simply but stupidly. We simply take each in

terpolated pixel space coordinate [P,. P,. PJ and transform it 

by the inverse of M to get back to eye space. This will produce 

v=O 

v=l _________ _] 
Figure 4a. Lines of constant v. 
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Figure 3h. Incorrect perspective. 

something with a non unit w component. so we have to divide 

it out to get back to true eye space. 

PM-I = E = fE,. l-, . t. ,. l -., I 
EI 1: .. = E 

A faster way to be correct 

Doing a full matrix multiplication al each pixel is slow and . 

fortunately. unnecessary. Look at the above equation again . 

Remember that we arc ca lcul a ting the screen space vector 

P by linearl y interpolating hctween e ndpoints in pixel space. 

Since Pis related to Eby a nice linear matrix mult iplication. 

we can effectively "factor" the matrix multplication out of 

the loop by linearly interpolating hetwcen E values at its end

points. We only need to find the E coordinates at each end-

point of the edge. _ 

In general. for any point E 

E ==PM-]=! M- 1 = _( MM_1 

/' ,. J>,. 

------~-·- · ---~-----~--------. 

u=l 

Figure 4b. Lines of constant u. 
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Figure 5. Division between eye space and pixel space and 
their linearly related spaces. 

so 

- E 
E==

I'w 

We can see this in Figure 5, an enhanced version of Figure 1. 

Crossing over the dotted line represents a homogeneous divi

sion. 

What does this mean? To fe ed our tiler, we manufacture an 

array of values for each polygon vertex as follows: 

The first three elements are the positional coordinates in 

postperspective pixel space. The last four are values which, 

when linearly interpolated along edges, give four homoge

neous coordinates of the point in eye space. You can use the 

same interpolation technique used to interpolate the Pz value. 

We still must divide, on a pixel by pixel basis, the interpolated 

Ex, Ev, and Ez values by the interpolated Ew value to get the 

true eye-space vector E. 

We have basically shown that while we can interpolate P, 

linearly since it's of the form 

P, =aX+bY+c 

we should interpolate, say, E, hyperbolically since it is of the 

form 

E _aX+bY+c 
z- dX+eY+f 

This hyperbolic interpolation is just the quotient of two lin

early interpolated quantities. We might have seen this by the 

relation between a and~ under the "Another question" sec

tion earlier. 

Again, referring to Figure 5, we find that linear interpola

tion of coordinates below the dotted line implies hyperbolic 

interpolation for coordinates above the line. And vice versa. 

Note, however, that while each component of Eis a hyper

bolic function of P, all the points of E are still coplanar. 
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Now back to texture parameters. To consider them well be

haved, we expect that they are related to eye space coordi

nates by another nice linear function . We can then calculate 

them with the same machinery we use to calculate the eye 

space coordinates. We build a vector of 

Interpolate the last three values across the polygon just as be

fore. Then at each pixel divide the interpolated u/ Pw and 

u I Pw by the interpolated 1 IP w· It works. 

Clipping 

Whenever you see a division in an expression, you should 

immediately be worried by the possibility that the denomina

tor might be zero. What does this mean here? If Pw = 0, it 

means that the point Pis at infinity. This will come from a 

point in eye space that's in the same plane as the eye, that is 

E, = 0. This is a perfectly reasonable situation, and we have to 

be able to deal with it. 

Why didn't we worry about this when we did the homoge

neous division of P by Pw to get P? Because these parts of the 

polygon are removed by the clipping process. Revelation! We 

want to defer the division by Pw of all our other auxiliary coor

dinates until after clipping. Now all we have to show is that 

this generates the correct values geometrically. 

Clipping happens in postperspective space before the ho

mogeneo us division . That is, it happens to P coordinates and 

is itself a linear interpolation of the points in homogeneous 

space. Let's say our edge from P' to P" straddles a clip bound

ary. The clipper calculates a proportional distance ywhere the 

edge hits the boundary. The clipped point is then 

P"' = r' + y (P" - P') 

We then divide this interpolated point by its interpolated w 

component 

to give the endpoint of the clipped edge in pixel space 

~ = P"' = [?:" R'." P'" 1] 
~," x' J ' z' 

Now to apply this to E interpolation. The E vector corre

sponding to this clipped P is 

P- ,,,,.,.-i (P- '+y(P- "-P- '))M-1 

E"'=P"'M-1 =--
1
-.. -

P.::' ··k+ y <P:: - P:V) 

_ E' +y(E" - E') 

- ?;, + y (P;: - P;v) 

That is, if we clip the E vector just as we do the P vector and 

then divide it by the clipped P w value, we will get the correct E 
vectors to interpolate between in the polygon tiler. We are 

guaranteed that Pw -cf. 0 because the clipper is designed to clip 
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away just those types of points. Notice that clipping applies to 

coordinates above the dotted line of Figure 5. The mora l: Clip 

first and divide later. 

More about color 

So what about colors C and normal vector components N? 

So fa r we have been in terpola tin g them linea rly in P space . 

This sounds okay, but consider the fo llowing. Suppose yo u 

had a square polygon and your shading calculations gave one 

color to the two left vertices and another to the two right verti 

ces, a simple gradation of color across the square. You might 

think that this would be well behaved according to our earlier 

definiti on. But it's not well behaved if the sq uare is vi ewed in 

perspective. Look again at Figure 4a and pre tend that v repre

sents color. Ick. And dividing it into triangles definite ly won't 

help, since that is effective ly what the tile r did for the ori enta

tion I picked for Figure 4a. 

Now, admittedly, real shading situations aren't so violent. 

because the values of the colors and norm al components 

aren 't usually radically different for the various vertices. A lot 

of renderin g programs don't worry abo ut it fo r this reason. 

But it 's not too hard to do it right; we interpolate colors hyper

bolically. And when you think about it. it really makes the 

most sense to define color values and normal vector compo

nents so that they are linearly inte rpolated in preperspective 

eye space, just like texture coordinates. This is a sensible ap

proach because distance measurements st ill make sense in eye 

space. 

The added bonus is that interpolating colors hyperbolically 

means that we clip the co lors correctly. 

The new mechanism 

So here's the whole story. 

1. Construct an array of values for each vertex of the polygon 

[P,, P,, P,. P,, , C ed, £,, ... , N, , ... . 11 , . .. • I] 

The auxiliary components following P" can be any values you 

intend to linearly interpolate in nonperspective-distorted eye 

space. Note the constant I at the end. 

2. Perform the standard clipping process. interpolating all 

values if any clipping is done. 

3. A ft er clipping, it 's time for homoge neous division. In the 

original algorithm. we just divided P by P,, .. Now. we divide 

the entire array by the P,, value--colors and all. This gives 
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This fin al value, which I have fa ncifull y written as I. is the ho

mogeneous coordin ate- the w value- for each of the auxil

iary vectors we are interpolating. That is 

I= c ... = £" .. = "N ... =ii,, 

4. Linearly interpolate all values down polygon edges and 

across sca n lines inside the polygon. Remember. the va lue of I 
is diffe rent at the various vertices. so it too changes across the 

polygon. _ _ _ 

5. At each pixe l. divide the auxili a ry components ( C. E. N. 

and 1.iV) by the final clement I to get the proper perspectively 

projected value. We are guaranteed that I will never be zero. 

Why? Because, after clipping. all ? .. values are positive. 

6. Calculate the pixel color using these values as input to 

some shadin g model. 

There is another organizational thing going on here. The 

clipping and homogeneous division. even the tile r. do not 

need to know the meaning of the auxiliary components. T hey 

can operate just fine given only the total length of the array. 

The only code that needs to kn ow the arra y's interpretation is 

the code th at feeds vertices into the pipe and the code th at col

ors the pixels that come out of it- that is, Steps 1 and 6. This 

mea ns th at yo u can make a system th at lets users select which 

and how many things to interpolate without needing to 

change Steps 2 through 5. 

Anything else? 

This new way to do interpolat ion is pretty simple. Within 

th e polygo n tiler. we have just one more extra va lue. I, to in

terpolate. But then we must divide this into all our auxiliary 

variables on a per pixel basis. Can we ge t rid of the nasty old 

division? 

If the l values on each endpoint arc equal. you can divide it 

out before interpolating. This happens if the polygon is paral

lel to the screen-and this is perhaps not too likely. 

We could approximate the hyperbolic curve we want by 

some sort of higher order polynomial approximation . But 

that's probably not worth it. It's best to be correct and just do 

the division. It'll make you feel warm inside. D 
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